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Spanning Tree Protocol

Broadcast (BFS)

This translates familiar sequential BFS to a distributed version.  

See Lynch, 15.4.

Algorithm idea

Initially, a start node is marked.

All newly marked nodes are enabled to send search messages to all outgoing neighbors.  

If an unmarked node receives a search message, it marks itself and sends a search

message to outgoing neighbors (out-nbrs).

The node from which the first message arrives is the parent of a process.

The following corrected algorithm avoids most multiple sends over the same edge.

However... we can't avoid them all: what if two processes send to each other at the same

time?  Any thoughts about what's the best we can do?

automaton BFS(p:Int, n:Set[Int])

signature

  input receive(m:Int, i:Int, const p),

        init(i:Int)

  output send(m:Int, const p, j:Int)

states

  newMark:Bool := false,

  parent:Int := -1,

  nbrs:Set[Int]:=n,

  sentMark:Set[Int] := {},

  root:Bool := false

transitions

  input init(i)

  eff

    root := true;

    if i=p then newMark := true fi



  input receive(m, i, j) where m=1 %/\ i \in n

  eff

    if ~root /\ parent = -1 then   % this is the first message

      parent := i;

      newMark := true

    fi;

    sentMark := insert(i,sentMark)   % no need to send message back

  output send(m, i, j) where m=1 %/\ j \in n

  pre newMark /\ ~(j \in sentMark) /\ j \in nbrs

  eff sentMark := insert(j,sentMark)   % don't send another message

Representation of state: = <false, -1, {}>, <true, 3, {1,4}>  

That is, <newMark, parent, sentMark>      

Channel
automaton Channel(i:Int , j:Int)

  signature

    input SEND (m: Int , const i : Int, const j : Int)

    output RECEIVE(m : Int, const i : Int ,const j : Int)

  

  states

    queue : Seq[Int] := {} 

  transitions 

    input SEND (m, i, j)

      eff queue := queue |- m 

    output RECEIVE(m,i,j)

      pre head(queue) = m 

      eff queue := tail(queue)

Representaton of state: {}, {4}, {4,7}

That is, queue

Composition
automaton BFSNetwork

  components

   P1: Process(1, {2,4});

   P2: Process(2, {1,3});

   P3: Process(3, {2,4});

   P4: Process(4, {3.1});

   C12: Channel(1, 2);   C21: Channel(2,1);

   C23: Channel(2, 3);   C32: Channel(3,2);

   C32: Channel(3, 4);   C43: Channel(4,3);

   C41: Channel(4, 1);   C14: Channel(1,4)

Applications of BFS

Broadcast: Piggyback the actual message on the search messages

Child pointers: When receiving a search message, respond with either a parent or non-



parent message.  

This can be used for return messages.

If communication is not always bi-directional, may need to run another instance of

SynchBFS to reply.

Broadcast/convergecast: When leaves receive a message, send to parents – eventually,

start node gets all replies.

Leader election: Use broadcast/convergecast to determine max (or min) UID in network.

Computing the diameter: All processes do BFS, determine max-disti from i to any other

process by piggybacking distance information.  Then broadcast/convergecast to get the

largest distance in the graph.

Proof Techniques
See Lynch, 8.5

Proofs apply to properties that apply to all states (invariants) or properties that apply to

all traces (trace properties).  

Definitions:

Execution:  A sequence s0, a1, s1, a2, ... such that si are states and ai are actions and (si-

1, ai, si) is a transition of the automaton.

Trace: An execution resticted to its external actions (inputs and outputs), i.e., its visible

actions.  No states, no internal actions.

Types of properties

Proving properties often proceeds by alternately trying to understand what the algorithm

does, formulating a property, trying to prove it and finding it's not true or perhaps not as

useful as hoped, and then going back to trying to understand the algorithm.  The

following traces some of the steps that I followed trying to prove important properties of

the BFS algorithm.

Invariants

Properties of states that are true in all reachable states.  Usually proof by induction. 

Here are important invariants for BFS:  

1.  If q in p.sentMark, then q.parent ~= -1 or mark in C[p,q].queue 

To prove:  In start state, all initial values satisfy this.  Suppose that in state si the above

assertion holds.  Then possible actions ai are:

init:  doesn’t affect either the antecedent or the consequent

send: adds a new node to sentMark, but also puts the mark in the channel

receive: takes the mark out of the channel, but if q.parent=-1 it sets q.parent to the

sending node

2. There are no cycles in the set of parent edges defined by BFS.

Crudely speaking, if this is true at some stage of the algorithm, then the only way it can



be made false is by an action that sets a parent variable.  This is a receive action.  I claim

that the receive sets the parent variable only during the first message that a node receives.

Thus it has sent no messages itself, and no other node can have made it a parent.

The above is a safety property: a cycle is a bad thing that the algorithm avoids.

We also want to know that every node eventually is marked, and thus has selected a

parent.

3.  Possible invariant: After (2*)d*(n-1), or (2*)d*e, transitions, every non-root node

within d of the start node has a parent node.  

Clearly true for d=0, since the root is explicitly excluded.  Let’s say this is true for d=1,

ie, after n-1 (resp e) transitions,   Can we prove it for d=2, ie, does it hold for nodes at

distance 2 from the root after another n-1 (resp e) transitions?  How about assuming that

it’s true for d=i, can we prove it for d=i+1?  THIS IS UGLY!!

4.  Better invariant: After 2n transitions, at least n mark messages have been sent.  

Possibilities after two transitions:
2 sent
1 sent, 1 received

Possibiliies after 2n transitions:
2n sent
2n-1 sent, 1 received
n sent, n received (the number received can't exceed the number sent)

4.  How many messages does each channel transmit in the entire running of the

algorithm?    

Each channel transmits at most one message in each direction (remember, we can't

prevent two processes from sending to each other at the same time).  

Be sure you understand why this is so.

Thus the total number of messages sent (and received) is <= 2*|E|, where E is the set of

edges.  

An important consequence of this is that every execution is finite as long as the network

is finite, ie, executions terminate.

Note that we can prove this by adding a counter to the Channel automaton, as discussed

in class.  Remember also that channels are one-way and each pair of processes has two

channels between them – we ignored this in class, which gave the incorrect result.

[The following is a liveness property, not a state invariant.]

5.  When a receive happens, the receiving node becomes marked if it hasn't been marked

already.     

So, can we guarantee that the system can always continue until a message travels over

each edge, ie, there's a send and a receive for each edge?

The following reasoning requires a connected graph.  Note that the algorithm will



construct a tree, but not a spanning tree (of the entire graph) if the graph is not connected.

 

Suppose an execution has proceeded for a while, but some nodes are still unmarked.

We need an edge between a marked node and an unmarked node to make progress.  Can

we guarantee that there is one?  Yes, because if there's not, the graph could be divided

into marked and unmarked nodes, with no edges connecting them.  

So, consider an edge that has a marked node at one end and an unmarked one at the other.

The possibilities are that there is a message already in the channel and there is not.  If not,

the send is enabled on the process (need to discuss state variables here).  If so, the receive

is enabled on the channel.  

The above is a liveness property, i.e., the execution continues until nothing more is

enabled (this is the definition of fairness for finite traces – for infinite traces, it's more

complicated).  It requires assuming fair traces.

Exercise: Turn these observations into an induction proof.  

Ask: What is the induction variable?  Does the proof work for the initial case (or cases)?

Does the induction step work?

False induction proof

All horses are the same color.

Induction base: Put one horse in a corral.  All horses in the corral are the same color.

Induction hypothesis: All corrals with < n horses contain only one color of horse.

Induction step: Put n horses in a corral.  Take one horse out and put it in a separate corral.

Now all horses in each of the two corrals are the same color.  But since we could have

chosen any horse, by transitivity, all horses are the same color.

What's wrong?   

Trace properties

Any property of the external behavior sequences of automata.  Formally, a trace property

P is an external signature together with a set of sequences of actions in the signature, i.e.,

the allowable sequences:

<sig(P), traces(P)>

An automaton A satisfies a trace property P if it has the same external signature and

traces(A) ⊆ traces(P) or maybe fairtraces(A) ⊆ traces(P).

All of the problems we will consider in asynchronous systems can be formulated as trace

properties.  Also, we’ll usually be concerned with fairness, i.e., we’ll be making

statements about trace properties that hold for fair traces.

Tasks for BFS: 



tasks {{send(m,i,j)}, {receive(m,i,j}}

We say that a class C in tasks(A), a class of actions of A, is enabled if any member of the

class is enabled.

Formal definition of fairness:

An execution fragment α  is fair if the following conditions hold for each class C in

tasks(A):

1) If α  is finite, then C is not enabled in the final state of α.

2) If α  is infinite, then α contains either infinitely many events from C or infinitely

many states in which C is not enabled.

For finite traces: No action is enabled at the end of the trace.

For infinite traces: If a member of {send(m,i,j)} occurs only finitely many times, there

must be infinitely many states in which it is NOT enabled.  It can still be enabled

infinitely often, but after every enabled state there must be one in which it is not enabled. 

Note that, in our proof of BFS, we actually assumed finite fair traces.

Now we've looked at two kinds of properties: safety and liveness.

Safety properties

A safety property says that bad things don’t happen. 

In other words, traces(P) is non-empty, prefix-closed, limit-closed: 

1. λ is in P

2. if α is in P, all prefixes of α are in P

3. if all prefixes of α are in P, then α is in P

Examples:

1.  At most one process declares itself as leader.  (The traces are those including only one

leader action.)  Formally, define the property by:

sig(P) = { SEND(m,i,j), RECEIVE(m,i,j), leader(r) | m ∈M, i,j ∈ℵ, r ∈ℵ }

traces(P) = { τ1, τ2, ... | ∀i(τi∈sig(P)) ∧ ¬∃i, j, r, s (τi = leader(r) ∧τj = leader(s) ) }

2.  DHCP: No two processes get the same IP address

3.  ARP: No two processes respond to the same ARP message

4.  HTTP: No response to a GET is returned before the response to an earlier GET.

5.  RIP (or any other routing protocol): No loops in routing tables.  The path taken by any

packet is the shortest path.

6.  Mutual exclusion: No two simultaneous grants of resources

How to prove a safety property:

1. Relate it to a state invariant

2. Prove the state invariant

No cycles in the set of parent edges defined by BFS algorithm.  Consider doing an



induction: If the current set of parent edges has no cycles, then there is no action that will

create one.  What is the invariant for the proof?

Liveness properties

A liveness property says that good things do happen.  traces(P) includes only those traces

with the good things in them:

Every finite sequence over sig(P) has an extension in traces(P).

Examples

A leader is eventually elected

traces(P) = { τ1, τ2, ... | ∀i(τi∈sig(P)) ∧ ∃i, r (τi = leader(r)) }

A process eventually gets an IP address

A browser eventually gets a page

Note: you will have to assume fairness to get these properties.

What we can say is that “Every trace of a correct leader election algorithm contains at

most one leader action” and “Every fair trace of a correct leader election contains a

leader action.”

It is a liveness property that every node gets marked by BFS.

Invariant assertion: 

Spanning tree example: powerpoint

Spanning Tree

See Peterson & Davie, 3.2.2

Note that BFS computes a spanning tree (the parent pointers identify the edges).  How

many edges are there in a spanning tree?  

Here’s a different spanning tree protocol.  

What does the Cisco STP compute

When the protocol stabilizes, the state should be as follows:

1) Root bridge: The process (switch) with the lowest MAC address (or lowest

combined priority+MAC address) is the root.  This uses a leader election

algorithm.

2) Root ports: Each bridge has one root port.  The root port on each bridge is the

port of the bridge with the smallest distance from the root.  If two ports are

equidistant from the root, then the one going to the bridge with the lower MAC

address is the root port.  This uses a breadth-first search, if we assume rounds;

however, if the network is asyncrhonous, it’s more complicated.

3) Designated ports: Each network segment (connecting bridges) has a designated

port.  Messages put on that network segment are forwarded to the rest of the

network through the designated port.  The designated port is on the bridge closest



to the root.  If there is a tie, it is on the bridge with the lowest MAC address. If the

bridge selected by this rule has multiple ports on a network, it is the port with the

lowest id.

Examples 

Cisco Version

All processes send a BPDU (Basic Protocol Data Unit) at each round (actually, default is

every 2 seconds).  The BPDU contains the id (MAC address) of the sending process, the

id of the process it thinks is the root, and the distance from the sending process to its

presumed root. 

id:Int

id:Int

cost:Int

When a process receives a BPDU, it compares the ID of the root (designated by the

neighbor that sent the BPDU) to the local value for the ID of the root.  If the new root ID

is lower, it replaces its local root ID with the new one and adds one to the cost in the

incoming BPDU and makes that its cost to the root.  If it receives different BPDU’s

having different roots, it uses the “best,” i.e., the one with the lowest root ID and the



lowest distance (if root Ids are the same).   The choice of root is essentially leader

election.

Finally it designates the port to which the sending neighbor is connected as the root port.

(Effectively choosing its parent)   The desitnation of a root port is essentially BFS.

Designated ports are then chosen: for each network it is on, the bridge checks incoming

BPDUs.  If its own cost is lowest, or if it is tied with another bridge on cost and its id is

smaller, it is the designated bridge, and its port on that network segment is the designated

port.  If it has multiple ports on the network segment, it chooses the one with the lowest

id.  This ensures that messages on a network segment (or a LAN) connected to multiple

switches will be forwarded.  

Minimum Weight Spanning Tree
Minimize total weight of all edges in the tree.  We will show a synchronous algorithm

here, on the way to a much more complex asynchronous algorithm later.

Assume: 

G=(V,E) undirected

weights are known by adjacent processes

UID’s

n (size of graph) is known

Each node will decide which of its adjacent edges is or is not in the tree.  

Theory

Spanning tree of G is a tree connecting all nodes, with edges selected from G.

Spanning forest is a collection of trees spanning all the nodes, with edges selected from

G.

All MST algorithms are special cases of a general strategy.

1) Start with trivial spanning forest of n separate nodes.

2) Merge components along edges that connect components until all are connected

(but no cycles).

The trick is to make sure that we merge only along edges that are minimum weight

outgoing edges of some component.

Justification:

Lemma Let (Vi, Ei) 1 <= i <= k be a spanning forest, with k>1

Fix any i

Let e be an edge of smallest weight among the set of edges with exactly one endpoint in

Vi.

Then there is a spanning tree for G that

1) Includes ∪jEj



2) Includes e

3) Has min weight among all spanning trees that include ∪jEj

Proof:

Suppose this is false, then there is some T that is a spanning tree for G and includes ∪jEj,

doesn’t contain e, and has weight strictly less than the weight of any spanning tree that

includes both ∪jEj and e.  

We can construct T’ by adding e to T.  This contains a cycle, which must contain another

edge outgoing from the same component (Vi,Ei).  The weight of e’ must be greater than

or equal to the weight of e.  Remove e’ from T’.  The result is a spanning tree that

contains both ∪jEj and e and has weight no greater than T’.  This contradicts the choice of

T.

Strategy for MST

Repeatedly: 

Choose component i

Choose any least-weight outgoing edge from i and add (merging two components)

Sequential MST are special cases:

Dijkstra adds 1 more node on each iteration

Kruskal adds min weight edge globally

Distributed version:

We want to choose edges concurrently for multiple components – but (if multiple edges

have the same weight) this can produce cycles.

Assume all edge weights are distinct (we can get the same effect by breaking ties with

UID’s.)

Lemma. If all edge weights are distinct, then there is a unique MST.

The concurrent strategy:

At each stage, suppose (inductively) that the forest produced so far is part of the unique

MST.

Each component chooses a least-cost outgoing edge.

Each of these is in the (unique) MST, by Lemma 1.

So, all are ok – add them all.

Relationship to Cisco spanning tree

Is the Cisco spanning tree a min-weight tree?


