
Logical Time

• Each event is assigned a logical time from a
totally ordered set T

• The logical times for the events must
respect any possible dependencies between
events
– If event A happens before event B at some

process or in some channel, then the logical
time of A must precede the logical time of B

Logical Time
ATM 1
$1000

ATM 2
$1000

ATM 3
$1000

Withdraw $100

Withdraw $100

w1
s(1,2)

s(1,3)

r(1,2)

r(1,3)

w2

w3

Logical Time
ATM 1
$1000

ATM 2
$1000

ATM 3
$1000

Withdraw $100

Withdraw $100

w1
s(1,2)

s(1,3)

r(1,2)

r(1,3)

w2

w3

577w3
466r(1,3)
745w2
6
3
2
1

3
5
2
1

4r(1,2)
3s(1,3)
2s(1,2)
1w1

TimeEvent

w1 < s(1,2) < s(1,3)
s(1,2) < r(1,2)

r(1,2) < w2
s(1,3) < r(1,3)

r(1,3) < w3

Convenient Fact (Theorem 18.1)

• Take any allowable assignment of logical
times to an execution s0a1s1a2s2…
– That is, ltimes are in order for ai’s at the same

process and for sends and receives
• If the execution is reordered by logical

times, it looks exactly the same to each
process

Logical Time
ATM 1
$1000

ATM 2
$1000

ATM 3
$1000

Withdraw $100

Withdraw $100

w1
s(1,2)

s(1,3) r(1,2)

r(1,3)

w2 w3

577w2
466w3
745r(1,3)
6
3
2
1

3
5
2
1

4s(1,3)
3r(1,2)
2s(1,2)
1w1

TimeEvent

w1 < s(1,2) < s(1,3)
s(1,2) < r(1,2)

r(1,2) < w2
s(1,3) < r(1,3)

r(1,3) < w3

Send/receive diagram
aka Call Flow or Message Sequence Chart

ATM 1
$1000

ATM 2
$1000

ATM 3
$1000

Withdraw $100

Withdraw $100

w1
s(1,2)

s(1,3)

r(1,2)

r(1,3)

w2

w3

Non-blocking time-keeping

• Each host maintains a clock
• Before it sends, it timestamps the message

with the next value of the clock
• When it receives it updates the clock to be

strictly greater than the timestamp on the
message and the local clock

Blocking time-keeping

• Each process assigns a logical time as the
time of the clock + the order of events at the
process

• It timestamps each message with the current
time on the clock

• It holds messages in a queue until the local
clock catches up

Logical time
ATM 1-fast
$1000

ATM 2 - slow
$1000

ATM 3- medium
$1000

Withdraw $100

Withdraw $100

w1
s(1,2)

s(1,3)

r(1,2)

r(1,3)

w2

w3

The Banking Problem

• Asynchronous send/receive network
• Banking system with a balance at each

process
• Transfers between banks
• Each process has a local balance
• The total of the local balances is the correct

amount in the system

The Banking Problem
Using logical times to define snapshot

$10 $20 $30

$1

$2

$3

$5$4

1

2

7

8

4

3

5

6
9

10

The Money Counting Algorithm

• For each process of A, determine its local
balance after all events with logical times
before t and before any event with logical
time after t

• For each channel, determine the amount of
money in messages sent before t but
received after t

Computing the local balance

• For process values:
– Attach a timestamp to each send event
– Record money value just before the first event with

time > t
• For channel values:

– Record incoming messages that arrive after time t until
the first message sent at time > t

• The balance: sum of the process value and all
incoming channels

Global Snapshot Problem

• A global snapshot returns a state of the system
– States of all processes and channels
– Looks to each process as if it was taken at the same

instant everywhere
• The bank problem is a special case
• Note that the actual values computed in the bank

algorithm may never have been observable by an
omniscient observer.

