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ABSTRACT
Current congestion control algorithms treat packet loss as an in-
dication of network congestion, under the assumption that most
losses are caused by router queues overflowing. In response to
losses (congestion), a sender reduces its sending rate in an effort
to reduce contention for shared network resources. In network
paths where a non-negligible portion of loss is caused by packet
corruption, performance can suffer due to needless reductions of
the sending rate (in response to “perceived congestion” that is not
really happening). This paper explores a technique, called Cumula-
tive Explicit Transport Error Notification (CETEN), that uses infor-
mation provided by the network to bring the transport’s long-term
average sending rate closer to that dictated by only congestion-
based losses. We discuss several ways that information about the
cumulative rates of packet loss due to congestion and corruption
might be obtained from the network or through fairly generic trans-
port layer instrumentation. We then explore two ways to use this
information to develop a more appropriate congestion control re-
sponse (CETEN). The work in this paper is done in terms of TCP.
Since numerous transport protocols use TCP-like congestion con-
trol schemes, the CETEN techniques we present are applicable to
other transports as well. In this paper, we present early simulation
results that show CETEN to be a promising technique. In addition,
this paper discusses a number of practical and thorny implementa-
tion issues associated with CETEN.

1. INTRODUCTION
This paper describes a technique for coping with the potential

suboptimal performance caused by the transport layer’s inability to
derive the reason a packet is dropped1. Today’s transport proto-
cols assume that packet loss is the result of a queue in the network
overflowing due to congestion [15]. However, this assumption is
false when links in the network path corrupt non-negligible per-
centages of packets (which are subsequently dropped to ensure re-
liability). In the case of purely corruption-based loss, the transport
would ideally continue transmitting (including retransmitting data
lost due to corruption in the case of a reliable transport) without
altering its sending rate. Assume the packet loss rate on a path
is p, which is the sum of the loss rate due to congestion, c, and
the loss rate due to corrupted packets2, e, so that p = c + e.

1The discussions in this paper are in terms of TCP [27], but also ap-
ply to alternate transport protocols and congestion control schemes
that use packet loss as a signal of network congestion (e.g., SCTP
[33] and TFRC [11, 14]).
2Note: There are situations whereby a packet loss may, in fact, in-

[25] shows that TCP throughput is proportional to 1√
p

. The goal
of the work outlined in this paper is to make TCP’s throughput pro-
portional to 1√

c
(i.e., only the portion of the total loss rate caused

by congestion). This approach should yield TCP-friendliness in the
face of network congestion while increasing TCP’s performance in
the face of corruption-based loss.

Several approaches have been proposed and investigated in the
literature to mitigate the problems caused by corruption-based loss,
as follows.
Fix the errors at the link layer. This mitigation method calls for
links with known high corruption probabilities to repair the losses
locally using Forward Error Correction (FEC) [2] or Automatic Re-
peat reQuest (ARQ) [32]. The cost of such repair may be a loss of
available bandwidth or the introduction of new path dynamics (ex-
tra delay, jitter, packet reordering, etc.).
Split the transport connection. These techniques call for intelli-
gent entities at the end-points of a link with known high corruption
rates to silently terminate and re-initiate transport layer connections
to hide losses on the error-prone link from the endpoints. I-TCP
[3] is an example of the strategy. Consider the case of a connec-
tion between a sender, S, and a receiver, R, that traverses a link
between two intermediate hosts, I1 and I2. One variant of this ap-
proach calls for three different transport layer connections to be
established (transparently to the user): between S and I1, between
I1 and I2 and between I2 and R. This effectively isolates the cor-
ruption based losses to the connection between I1 and I2, which
can be tuned to deal with such losses in a more aggressive man-
ner than TCP’s standard response. This class of mitigation may not
work when packet headers are encrypted (e.g., when using IPsec
[20]).
Corruption notifications. This class of mechanisms calls for send-
ing messages to the source or destination addresses of packets that
are found to be in error by an intermediate host. These messages
can be sent in-band (as in [5, 4]) on the next packet that arrives from
the connection in question or using an out-of-band signal such as
an ICMP [26] message. The message serves to indicate to the end-
point that a corruption-based loss occurred with the implication be-
ing that the host could continue sending without adjusting its con-
gestion control state. The downsides of this strategy are (i) that the
messages are based on potentially-corrupted information and thus
could be sent to an endpoint not involved in the connection and
(ii) in the case of out-of-band messages, an additional bandwidth

dicate both congestion and corruption. For instance, a packet could
be marked as experiencing congestion via ECN [28] and then later
be corrupted and dropped. Also, in some wireless networks, con-
tention for the channel (congestion) may ultimately cause packet
corruption. While these cases certainly deserve careful thought, we
defer them to future work and do not consider them further in this
paper.
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requirement is imposed.
Hybrid schemes that intermix the above strategies have also been

developed, such as TCP snoop [6]. TCP snoop does not split the
end-to-end TCP connection, but rather provides transport layer loss
repair at the ends of a link that is known to corrupt packets, while
also delaying the loss signal from reaching the TCP endpoint. TCP
snoop retains the notion that the endpoint is ultimately responsible
for loss recovery, while attempting local loss recovery to obviate
the need for end-to-end recovery of losses due to corrupted packets
(which also prevents a needless congestion response).

In this paper we offer an initial study of an additional approach
for mitigating the impact of corruption-based losses called Cumu-
lative Explicit Transport Error Notification (CETEN). We share the
name CETEN with an earlier work [21] that developed many of the
concepts. We refer to the specific scheme used in the original work
as CETENO in this paper. The key idea behind CETEN is that
the mechanism does not attempt to derive the reason for specific
packet losses, but rather uses aggregate information provided by
the network in an attempt to ensure that TCP’s long-term average
sending rate is appropriate for the congestion level of the current
network. The network provides information about the corruption-
based loss rate, e. The TCP sender uses this information along
with an estimate of the total loss rate, p, to determine the fraction
of losses due to corruption, e

p
(and, therefore, the fraction due to

congestion, c
p

= p−e

p
). TCP’s congestion response is then altered

to only take into account the congestion-based losses when deter-
mining the sending rate.

The remainder of this paper is organized as follows. § 2 dis-
cusses methods for gathering enough information to estimate both
the total loss rate and its components. In § 3 we use the informa-
tion gathered via the mechanisms sketched in § 2 to refine TCP’s
congestion response to more accurately reflect only the congestion-
based losses. § 4 presents the results of preliminary simulations of
the CETEN techniques. § 5 discusses several implementation is-
sues. Finally, § 6 gives our conclusions and discusses future work
in this area.

2. GATHERING INFORMATION
The first problem we tackle is gathering all the information re-

quired to untangle the loss story into its component causes. For
a static path through the network, total packet loss rate, p, is the
sum of the packet loss rate due to congestion, c, and the packet loss
rate due to corruption (or errors), e. Once obtained, this informa-
tion might be used by a TCP sender to adjust its congestion control
response to include only congestion related loss. Unfortunately,
the TCP sender has none of the needed information on hand. The
remainder of this section discusses various potential methods of
obtaining enough information to drive a better congestion control
response.

2.1 Gathering the Corruption Loss Rate
As noted in the previous sections the TCP endpoints have no in-

formation about why packet losses occur. Therefore, to figure out
the loss rate caused by corruption, e, the intermediate nodes along a
path need to be actively involved. While engaging the intermediate
nodes has the potential to provide a rich set of information it is also
problematic in terms of both performance and deployment. These
practical issues are discussed further in § 5. In the following sec-
tions we provide a taxonomy of possible schemes for endpoints and
intermediate nodes along the network path to interact to provide an
estimate of e to the TCP sender.

2.1.1 Out-of-Band Router Queries
This method calls for the TCP sender to issue some form of

ICMP [26] query to each router (via TTL limiting, ala traceroute)
along the path requesting the corruption loss rate on the attached
link. Current routers generally keep the counters necessary to cal-
culate the fraction of corrupted packets that arrive. The advantages
of this approach are a rich set of information about the network
path and no on-the-wire changes for the network or transport pro-
tocols (i.e., for the packets of the data transfer). Changes at the
transport layer are particularly burdensome since every transport
protocol would have to be modified. Disadvantages of ICMP-based
router queries are that (i) additional traffic is required to collect the
information, (ii) ICMP messages are unreliable, which will add
complexity to the endhost to robustly obtain the path’s corruption
information and (iii) ICMP messages can be forged, leading to a
sender having a bogus understanding of the network properties.

2.1.2 Router Advertisement
A closely related technique to the above ICMP request/reply

scheme would be a router advertisement scheme similar in spirit
to several IP traceback proposals (e.g., [31]). Under such a scheme
a router would simply choose every m-th packet and send a corrup-
tion estimate for its link to the sender of the chosen packet. The ad-
vantages of this scheme are similar to those outlined for the ICMP
request/reply mechanism outlined above. That is, the sender gets a
rich set of information about the corruption rate without changing
the on-the-wire network or transport protocols. This scheme cuts
down on the bandwidth required when compared with the ICMP re-
quest/response scheme sketched above due to the implicit request.
However, it still requires extra packets to be formed and transmit-
ted by the intermediate nodes. The resources are further controlled
by giving the routers an explicit knob to control the overhead (i.e.,
m). This scheme exacerbates the reliability concerns discussed in
the last section. When a sender is making an explicit request the
sender can reasonably judge when to send another request in the
absence of a response. However, if a router advertisement is lost
the host will have to wait for m packets to traverse that router be-
fore having another chance at obtaining the corruption information
for the given link. Finally, router advertisements can also suffer
from the ICMP spoofing issue outlined above.

2.1.3 Out-of-Band Cumulative Queries
Another technique that can be used to gather corruption rates

from intermediate nodes is out-of-band cumulative queries. This
scheme is based on an in-band version originally outlined in [21]
(which will be discussed below). This mechanism calls for an
ICMP message to be transmitted from the TCP sender’s host to the
TCP receiver’s host that encodes the “corruption survival probabil-
ity”. The corruption survival probability is 1− e, or the probability
that a packet will traverse the entire network path from sender to
receiver without being corrupted. The sender initializes the prob-
ability to 1.0. Each hop along the path multiplies the probability
contained in the ICMP packet with the corruption survival prob-
ability of the hop’s incoming link. The result then replaces the
probability in the ICMP message before the packet is forwarded.
The receiving host then echos corruption reports to the sender in
another ICMP message. The key difference between this scheme
and the mechanisms given in the last sections is that the cumulative
query pushes the aggregation of path information to the intermedi-
ate nodes themselves rather than requiring the TCP sender to aggre-
gate the information from multiple queries/advertisements. While
the out-of-band nature of the scheme still requires additional traf-
fic, the cumulative notion lessens this traffic since a single probe

ACM SIGCOMM Computer Communications Review Volume 34, Number 5: October 200476



characterizes the entire path, as opposed to characterizing a link at
a time, as outlined in the schemes above. The spoofing and relia-
bility concerns discussed above also apply to this mechanism.

An additional point about this cumulative out-of-band mecha-
nism is that all the routers on a path are not required to support
these queries. A router connected to links where corruption is neg-
ligible will add nothing to the estimate of the corruption rate. That
is, the router will essentially multiply the value from the ICMP
message by 1.0 and re-encode the ICMP message. Therefore, such
routers would not need to waste resources participating in the effort
to gather e.

Finally, we note that [19] discusses similar use of ICMP probing
in the context of determining a number of different path properties
(minimum MTU, minimum bandwidth, maximum delay, etc.). [19]
mentions that one of the properties that could be collected using
ICMP messages is the “maximum error rate”, which would exactly
match the cumulative scheme we outline here in the case of a single
corruption-prone link in the path.

2.1.4 In-Band Requests
Another option would be requests attached to the data packets

in the transfer. For instance, an IP option could include a TTL′

field and an empty field for the corruption rate. The sender would
specify a TTL′ in the option. When a router along the path decre-
mented the IP TTL to the value of TTL′ then the router would insert
the probability of corruption-based loss into the empty field in the
IP option. The receiver of the packet could then echo the received
probability back to the sender in ACKs. The sender would have to
iterate through a range of TTLs to determine the corruption rate of
the entire path.

This in-band scheme has several advantageous properties. First,
no additional packets are required to be formed and transmitted in
the network, since the reports are piggybacked on TCP segments,
saving network resources. While routers still have to do work to
process the in-band requests the work is not likely as intensive as
forming up a new packet. The reports are more reliable than the
out-of-band schemes discussed above. Reports on data segments
are reliable in that if the data packet is lost the retransmit can be
used to request the information again. The reports that are echoed
on ACKs are not reliable since ACKs can be lost with little conse-
quence in TCP. However, sending reports on multiple ACKs will
increase the chances of the TCP sender getting the information
(similar to the way selective acknowledgments [22] and ECN [28]
congestion indications are sent on multiple ACKs for robustness
purposes). Finally, routers that are not connected to corruption-
prone links do not need to participate in this scheme (since such
routers would be sending a “no corruption loss” report anyway).

This in-band scheme has disadvantages, as well. With the out-
of-band schemes the intermediate node can easily find the requests
for corruption information in the traffic stream (due to the ICMP
packet types). When using the in-band scheme any packet could
contain a request for corruption information and therefore partic-
ipating intermediate nodes will have to examine all packets. The
in-band mechanism also suffers from concerns over forged reports.
However, these concerns are somewhat mitigated because an at-
tacker would have to form an acknowledgment that is consistent
with a given TCP connection. This reduces the chances of a blind
attack against the TCP connection when compared to blind attacks
using one of the out-of-band scheme presented above.

2.1.5 In-Band Cumulative Queries
A final class of strategies for gathering corruption information

from the intermediate nodes is to use in-band cumulative queries.

This scheme combines the ideas from § 2.1.3 and § 2.1.4. The in-
formation gathered is cumulative, but rather than using ICMP mes-
sages, the corruption survival probability is encoded in a field or
option of the data packets and returned in a field or option in ACK
packets. This notion was used in [21]. The pros and cons of this
scheme are as discussed above in § 2.1.3 and § 2.1.4

2.2 Estimating the Total Loss Rate
At first glance it appears as though TCP would have an accu-

rate estimate of the total loss rate, p, since TCP is a reliable pro-
tocol that retransmits segments that are lost (for whatever reason).
However, TCP is often too aggressive in its loss recovery behavior
which leads to unnecessary retransmissions. [1] presents Internet
measurements that show a simple count of retransmissions provides
only a gross estimate of the loss rate. For instance, [1] shows that
TCP Reno’s retransmission rate is more than 10% higher than the
actual loss rate in two-thirds of the transfers studied and in 16% of
the transfers more than twice as many retransmits as are required
are sent. The results for TCP SACK are better, showing a median
difference of 2% between the retransmission rate and the loss rate
and 75% of the connections spuriously retransmitting no more than
10% of the time. Given the inaccuracy of using the retransmission
count as p we explore several methods for obtaining more accurate
information in the following sections.

2.2.1 Sender-Side Estimation
One approach to obtain a better estimate of p is to have the sender

infer the loss rate via the retransmission count, as well as additional
information that might be available. For instance, TCP’s DSACK
option [12] calls for the receiver to report duplicate segment arrivals
to the sender. The sender could use this information in conjunction
with the retransmission count to calculate a more accurate estimate
of the loss rate3. Even without DSACK, TCP can use hints from
the ACK stream to infer that a segment has been received more
than once. For instance, since a needless retransmit does not update
any state at the receiver a duplicate ACK (or an ACK with no new
SACK information) is transmitted by the receiver. This case is more
complicated than the DSACK case because a duplicate ACK can be
sent for several reasons and therefore the TCP sender must attempt
to derive the cause of the duplicate ACK.

[1] provides the details of a sender-side loss estimation scheme
(known as LEAST ), as sketched above. In addition, [1] presents
Internet measurements showing that estimating the loss rate within
10% of the true loss rate is possible in over 90% of the transfers
(regardless of TCP variant employed). Furthermore, when using
DSACK a TCP sender is able to estimate within 1% of the true loss
rate in over 97% of the transfers and within 10% of the true loss
rate in over 99% of the transfers.

In the context of CETEN, accurately estimating the total loss
rate from TCP sender with no additional protocol machinery (ala
LEAST ) is ideal. The outstanding question with using sender-
side estimation is whether the accuracy is “good enough”.

2.2.2 Receiver-Side Estimation
An alternate to sender-side estimation is for the receiver to esti-

mate the loss rate and transmit the information back to the sender
in ACK packets. This is analogous to the approach used in TFRC
[11, 14] for rate-based congestion control. Such a scheme could

3DSACKs are not sent reliably and therefore an exact determina-
tion of the loss rate is not always possible due to ACK loss in the
network. In addition, spurious retransmissions are not the only
cause of DSACKs. Packet duplication in some network element
could also cause such behavior, for instance.
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disregard spurious retransmits in the loss estimate. On the other
hand, simply counting segments that arrive out of order may cause
an overestimate of the loss rate due to packet reordering in the net-
work [7]. Finally, in the CETEN context a receiver-based loss esti-
mator would need a new TCP option to convey the loss rate to the
sender for use in adjusting the congestion response.

We are not aware of any concrete scheme for accurately esti-
mating the loss rate from the TCP receiver’s vantage point. Future
work could include designing such a scheme and comparing the ac-
curacy with that of LEAST . In addition, such a scheme would be
of general use in network monitoring – even if it was not used for
CETEN.

2.2.3 Endpoint Cooperation
A third class of methods to gather the total loss rate is to use a

cooperative counting mechanism between the TCP sender and re-
ceiver. Such a mechanism would call for the sender to keep track of
the total number of segments sent, Ss, within a particular sequence
range. The sender would then query the receiver for the total num-
ber of segments that arrived, Sa, in the given sequence range. The
number of losses in the given range is then easily determined as
Ss − Sa. The advantage of this scheme lies in its simplicity and
robustness.

One disadvantage of this scheme is that additional state is re-
quired at both the sender and receiver – although, we expect that a
simple table of counters does not represent a high barrier to using
such a scheme. Another cost of this method is that additional on-
the-wire protocol machinery is required to exchange information
about the number of segments that arrive at the receiver.

2.2.4 Querying Routers
A final class of schemes to obtain an estimate of p would be to

query the routers along a given network path as discussed above in
terms of gathering e. To gather the total loss rate a scheme could
either gather p directly or gather c and calculate p as c + e. The
various classes of mechanisms discussed in § 2.1 (in the context of
determining e) with their associated costs and benefits would apply
to gathering congestion information or total loss rates, as well.

[21] discusses a particular cumulative in-band version by gath-
ering c from the network in the context of CETEN. The notion is
similar to that discussed in § 2.1.5 in that a new header field is in-
troduced that represents the congestion survival probability (1−c),
which is initialized to 1.0 by the TCP sender. Each hop updates the
value in the packet based on their level of congestion. The value is
echoed back to the sender in ACK packets.

One practical disadvantage of counting on help from the routers
to determine p or c is that all the routers must participate or the es-
timates will end up low and the congestion response will not be ac-
curate. As discussed above ubiquitous deployment is not required
when querying routers for corruption information only. In practi-
cal terms, ubiquitous deployment is a significant disadvantage to
relying on help from intermediate nodes to determine p or c.

2.3 Practical Concerns
A number of the schemes sketched in the previous two sections

query the intermediate nodes in the network for information — ei-
ther via header options or ICMP messages. Above we have dis-
cussed the idealistic tradeoffs in different gathering techniques (e.g.,
additional bandwidth requirements vs. ease of finding information
requests). However, there are another set of tradeoffs that also come
into play if these techniques were to be used in real networks. The
Internet has evolved away from its textbook description in a num-
ber of areas for many reasons. A case in point is that middleboxes

can cause unexpected behavior. [23] outlines experiments to over
80,000 web servers that provide two key findings that impact the
information gathering techniques presented above.

• Roughly 17% of the web servers tested do not support Path
MTU Discovery (PMTUD) [24] due to ICMP packets being
discarded by an intermediate node. (30% of the web servers
did not attempt PMTUD and so, 17% is a lower bound.)

• When an undefined IP option (simulating a freshly minted IP
option) is included on the SYN segment sent by the client,
70% of the connection initiations fail, compared with 2%
when no IP options are included.

These two findings will ultimately impact on the way protocols
and protocol extensions are designed. And, in particular, if the
techniques outlined in this paper are ever to deployed these issues
will have to be tackled.

2.4 Choosing Gathering Techniques
The CETENO scheme [21] gathered estimates of both c and e

via cumulative in-band querying of the routers in a particular path.
These values were computed by routers using a fast moving aver-
age.

The work presented in this paper gathers e using the cumulative
in-band querying technique (from § 2.1.5). We made this choice
mainly due to the low overhead and ease of implementation. We
do not necessarily argue that this technique would be the best path
forward for real implementations. Our goal in this paper is to gain
an initial understanding of how CETEN techniques may work and
not to do fine-grained engineering of protocol extensions. For gath-
ering p we implement the LEAST algorithms in the TCP sender
(as discussed in § 2.2.1). We consider this to be more practical
for CETEN than to require assistance from all the routers along
a path for CETEN to work properly. In addition, using LEAST
is more palatable from a deployment standpoint than the receiver-
based scheme or the cooperative counting technique due to the
communication requirements these solutions impose. However,
future work could include comparing CETEN when using total
loss information gathered in different ways to gauge how sensi-
tive CETEN is to the accuracy of the p estimates. In contrast to
CETENO , because our estimate of p is a long-term average, we
also use long-term averages of e which has the advantage of easing
some computational burden on routers as well.

3. A NEW CONGESTION RESPONSE
As discussed above, TCP performance has been shown to be pro-

portional to 1√
p

, where p is the total packet loss rate. However, by
gathering information about the components of p, as discussed in
the last section, our goal is to change TCP’s congestion control re-
sponse to be proportional to 1√

c
, where c is the congestion-based

loss rate. As further motivation, figure 1 is a log-log plot that shows
the performance predicted by the TCP model [25] as a function of
p. The network is assumed to have a round-trip time (RTT) of
0.5 seconds and the modeled TCP has a maximum segment size
(MSS) of 1460 bytes. The performance is given for both a stock
TCP and an alternate TCP that is able to determine that 75% of the
packet loss is caused by corruption (i.e., e

p
= 0.75). As shown in

the plot, a TCP that can derive the true congestion rate from the
overall loss rate enjoys performance benefits.

While TCP’s ultimate performance is well modeled by the TCP
equation, the formula is not directly implemented in the proto-
col. Therefore, simply replacing p with c as in the above idealized
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Figure 1: Performance computed using Padhye’s TCP model
with and without packet corruption being treated as conges-
tion.

analysis is not feasible4. TCP’s sending rate is controlled using
a congestion window (cwnd) which dictates the number of seg-
ments5 that can be transmitted into the network before receiving
an acknowledgment. TCP obeys additive-increase, multiplicative-
decrease (AIMD) congestion control [15]. In the absence of loss,
the TCP sender increases cwnd by roughly 1 segment per RTT.
When loss is observed the TCP sender halves cwnd. These in-
crease/decrease decisions ultimately yield performance that is pre-
dicted by the TCP model. The next two subsections explore two
different methods for altering TCP’s congestion control decisions
in an attempt to obtain performance that is consistent with the con-
gestion level in the network rather than the total loss rate.

3.1 Probabilistic Response
First we explore a scheme that probabilistically performs mul-

tiplicative decrease, denoted CETENP . In this scheme, a coin
is weighted with the probability of losing a segment due to con-
gestion, c

p
. Each time stock TCP would multiplicatively decrease

cwnd, the coin is flipped. If the flipped coin lands on the “conges-
tion” side, then the TCP sender decreases the cwnd by half (i.e., the
standard multiplicative decrease). Otherwise, the TCP sender does
not change the cwnd at all. The notion is that the long-term average
behavior of the TCP will be correct. That is, the connection will re-
duce the cwnd in roughly the right number of cases over the course
of the connection so that the congestion response is approximately
proportional to 1√

c
. For instance, assume 10% of the losses on a

particular connection are corruption-based. In this case, in roughly
10% of the cases when TCP would normally reduce cwnd (and thus
its sending rate) by half, cwnd is not altered at all, and the sending
rate is not reduced. [9] provides an analytic analysis that shows
CETENP to be proportional to 1√

c
.

3.2 Adaptive Response
Next we introduce a CETEN variant that uses adaptive conges-

tion window reduction, denoted CETENA. Rather than proba-
bilistically choosing whether to reduce cwnd (by one-half) or not,
CETENA reduces the cwnd on every loss event, but by an amount
that may be less than the standard one-half. Specifically, CETENA

4For rate-based transport protocols, such as TFRC [11, 14], simply
replacing p with c is the natural and appropriate approach.
5TCP actually tracks cwnd in terms of bytes. However, we use
segments in the discussion in this paper for simplicity.

uses the fraction of loss caused by corruption to determine the mul-
tiplicative decrease factor (MDF) according to the following equa-
tion:

MDF =
1 + ( e

np
)k

2
(1)

The n and k parameters allow for the shaping and bounding of the
multiplicative decrease factor. Each time a current TCP multiplica-
tively decreases cwnd, the following reduction is used instead:

cwnd = cwnd · MDF (2)
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Figure 2: Multiplicative decrease factor as a function of the
fraction of corruption-based losses.

Figure 2 shows the MDF as a function of e
p

for various n and
k values. When n = k = 1, the MDF exactly counteracts the
negative performance impact caused by corruption based loss and
provides TCP with the same theoretical performance as the case
when only the congestion-based loss is present (this is shown an-
alytically in [9]). When all loss is due to congestion, the standard
MDF of 1

2
is used, whereas when all loss is due to corruption, no

decrease in cwnd is performed (MDF=1.0).
A simple way to make the MDF more conservative is to increase

n, as shown in the n = 2, k = 1 case in figure 2. In this case the
MDF is still linear as the fraction of corruption-based loss increases
from 0.0 to 1.0. However, the amount TCP will reduce the window
is more than in the n = k = 1 case — to the point of always
requiring a reduction in cwnd even when all loss is caused by packet
corruption. Such an MDF function will still show suboptimal TCP
performance in the face of corruption-based loss, but obtain better
performance than standard TCP with an MDF fixed at 0.5. Another
method to make the MDF more conservative is to use k to shape
the function. For example, the MDF can be shaped as shown in the
n = 1, k = 2 case on figure 2. In this case, at low corruption rates,
CETENA is more conservative, but at high corruption rates the
MDF grows more rapidly.

Any continuous monotonically-increasing function that is no
more aggressive than the n = k = 1 line on figure 2 and is based
on e

p
can be used to determine the MDF. There are tradeoffs no

matter what function is considered and an in-depth comparison of
MDF functions is beyond the scope of this paper. Therefore, for
the remainder of this paper we will use equation 1 with n = k = 1
as the MDF.
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4. PRELIMINARY SIMULATIONS
This section offers preliminary ns-26 simulations of CETENP

and CETENA. All simulations consist of a sender and receiver
separated by two routers. The links between the endpoints and the
routers have bandwidths of 1 Gbps and one-way propagation delays
of 3 ms. The link between the routers has a bandwidth of 5 Mbps
and a one-way propagation delay of 40 ms. The drop-tail queues
in the routers can hold 150 packets. The TCPs use SACK [22, 10],
DSACK [12], advertised windows of 500 packets, a maximum seg-
ment size of 1460 bytes and delayed ACKs with a 100 ms heartbeat
timer. The TCP senders use the DSACK variant of the LEAST al-
gorithm to estimate the total loss rate [1]. All simulations run for
1 hour to assess the long-term sending rate of TCP with CETEN.
Corruption-based errors are introduced via a uniform random pro-
cess on the link between the routers through a programmable packet
corruption rate. Using a uniform random process for generating
corruption based errors is not terribly realistic. However, for this
initial evaluation we did not want to focus on any particular link
technology. That said, Appendix A provides results from simula-
tions involving various bursty loss models; the results are generally
consistent with those of the uniform loss process. Therefore, for the
results presented in the body of the paper we utilize only a uniform
loss model and note that evaluating CETEN under more realistic
conditions is future work. The routers in our network do not at-
tempt to dynamically assess the corruption rate, but rather just use
the programmed corruption rate. § 5.3 discusses the need for fu-
ture work in this area. The corruption rate setting is verified to be
within 10% of the observed corruption rate in all simulations. Fi-
nally, each point on the plots presented in this section represents
the mean of 30 random simulation runs.
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Figure 3: Performance of a single TCP flow as a function of the
corruption rate.

4.1 Single Flow Simulations
Figure 3 shows TCP performance as a function of the corrup-

tion rate for a simple simulation scenario consisting of a single
TCP flow. Packet corruption is applied only to data packets. The
“Stock SACK” line on the plot shows the goodput of unaltered TCP
SACK. As expected, the goodput of TCP drops as the number of
losses increase (no matter what the cause).

Next we consider the CETENA results reported in figure 3.
CETENA is able to obtain better performance than stock TCP
across a breadth of corruption rates. While the goodput obtained by

6http://www.isi.edu/nsnam/

CETENA decreases as the corruption rate increases, the goodput
obtained by CETENA at high corruption rates is still roughly an
order of magnitude more than stock TCP SACK. The fundamental
cause of the reduction in goodput as the corruption rate increases is
lost retransmits which require the expiration of the retransmission
timer (RTO) in order to repair when using ns’ sack1 TCP variant
(as outlined in [10]). The firing of the RTO timer effects goodput
in three ways. First, the idle time spent waiting for the RTO to fire
represents missed opportunities to transmit data. Second, during
this idle period TCP is wasting opportunities to increase cwnd. Fi-
nally, when the RTO fires the TCP sender clears its “scoreboard”
of collected SACK information per RFC 2018 [22]. Therefore, the
TCP sender transmits a burst of packets (allowed because e/p is
close to 1.0, meaning little cwnd reduction occurs) starting at the
current cumulative ACK point regardless of whether all of these
packets require retransmission. The segments that are unnecessar-
ily retransmitted represent wasted bandwidth that could have been
put to better use. The probability of losing a given packet and its re-
transmission is O(p2), which explains why the goodput reduction
increases as the corruption-rate increases.
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Figure 4: Example evolution of cwnd over time (with losses
noted as tick marks on the x-axis).

The final line on figure 3 shows the goodput of the CETENP

variant. As shown, CETENP performs better than stock TCP
SACK, but not as well as CETENA. The cause of the discrep-
ancy in performance between CETENP and CETENA in these
simple simulations is CETENP ’s lack of backoff in certain cir-
cumstances. To illustrate this, figure 4 shows the evolution of the
cwnd over time for a standard TCP connection (without CETEN).
The plot shows five loss points, which are marked with ticks on
the x-axis. The third loss is caused by packet corruption while the
remaining losses are caused by congestion. In the absence of cor-
ruption losses, the cwnd naturally oscillates between W

2
and W , as

expected. At point “A”, however, the TCP experiences a corruption-
based loss. This causes the cwnd to be reduced by half. When using
CETENP , “A” is a decision point where the TCP flips a weighted
coin. Regardless of the outcome of the coin flip, the TCP will con-
tinue transmission with no additional problem. However, that is not
the case at point “B”. When the TCP experiences loss at point “B”,
(the network’s limit) and CETENP flips the coin, there are two
possible outcomes: congestion or corruption. When the coin lands
on “congestion”, the connection will reduce cwnd by half and con-
tinue transmission as shown in the diagram. When the coin lands
on “corruption”, the connection will not reduce cwnd and continue
transmission. However, since cwnd is W , the saturation point of
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the network, and is not reduced, additional losses will occur. These
losses will trigger additional coin flips until a coin flip eventually
forces the TCP sender to reduce cwnd.

Figure 4 shows the limited utility of CETENP in networks with
little or no multiplexing. In other words, in some cases CETENP

ultimately has no choice on whether to reduce cwnd. Therefore,
the fraction of the cases in which not reducing cwnd actually aids
performance is less than predicted. Put another way, if 10% of the
loss is due to corruption then the TCP sender will be able to avoid
reducing cwnd by half on the order of 1% of the time. CETENP

may work better in networks with a higher degree of statistical mul-
tiplexing than that used in the simple simulations presented above.
In such cases, when a congestion loss happens, it does not nec-
essarily mean that any given TCP will be the predominant cause
of the congestion. Hence, as long as some number of competing
flows slow down, a particular CETENP flow may not be forced
to reduce cwnd on congestion-based loss.

4.2 Simulations with Competing Traffic
Our second set of simulations involves a more complex traffic

pattern designed to explore CETEN in an environment with com-
peting traffic. These simulations involve one TCP connection in
each direction across our network. We provide results for only one
of the two TCP connections in this paper, however we note that both
TCP connections perform similarly. In addition, 5 on/off constant
bit-rate (CBR) flows are constructed in each direction. These CBR
flows have on and off times picked randomly from an exponential
distribution with a mean on time of 2.5 seconds and a mean off time
of 10 seconds. When on, each CBR flow transmits at 1 Mbps (one-
fifth of the bottleneck bandwidth). The corruption rate is applied to
all traffic in this set of simulations.
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Figure 5: TCP goodput in a congested network as function of
the corruption rate.

Figure 5 shows the TCP goodput obtained in simulations involv-
ing competing traffic as a function of the corruption rate applied
to the network. The “Stock SACK” line shows the performance of
stock TCP SACK. As in the last section, the performance drops as
the total loss rate increases, as expected.

CETENA shows largely the same characteristics in figure 5
as discussed in § 4.1, obtaining up to an order of magnitude bet-
ter performance than stock TCP. The performance degradation of
CETENA as the corruption rate increases has three fundamental
causes. First, a portion of the performance degradation is appro-
priate since the network is congested and therefore the TCP con-
nection cannot expect to utilize the full capacity. The plot illus-

trates this point in showing that CETENA does not utilize the full
capacity even when there is little or no corruption-based loss (in
contrast to the results shown in § 4.1). The second cause of the
performance degradation is ACK loss. The LEAST algorithm for
estimating the total loss rate depends on receiving DSACK notifica-
tions from the receiver. When these ACKs are lost, the sender over-
estimates the total loss rate (which, in turn, decreases the MDF).
The final cause of performance degradation for CETENA is lost
retransmits, as discussed in § 4.1.

As in the single flow tests, CETENP shows improved perfor-
mance when compared to stock TCP SACK while not enhancing
goodput as much as CETENA. The suggestion in the last section
that CETENP would work better in an environment with some
statistical multiplexing seems to be true. However, CETENP is
still susceptible to situations where the choice of whether or not to
reduce cwnd is effectively taken away from the TCP sender.

4.3 Fairness Simulations
The simulations presented above show that both variants of

CETEN offer performance benefits in networks with a non-neg-
ligible amount of corruption-based loss. We now turn our attention
to a preliminary analysis of the dynamics of CETEN in the pres-
ence of more than one TCP connection sharing the network path.
Over a common network path, TCP has been shown to converge
to a state where all connections receive their “fair share”, or about
1

N
-th of the available bandwidth when N TCP connections are ac-

tive (which our results also confirm). To investigate the impact of
CETEN on this property of TCP, we use simulations that utilize
the same setup used in the last two sections, with a different traffic
mix. In this section we explore simulations with 10 and 50 compet-
ing TCP connections running in each direction across our simulated
path. All connections run the same TCP variant. To assess fairness
we use Jain’s fairness index [17]. The index is computed as:

f(x1, x2, · · · , xn) =

 

n
X

i=1

xi

!2

n ·

n
X

i=1

x2

i

(3)

where xi is the total number of bytes transferred by connection
i and n is the total number of connections in the simulation. A
fairness index of 1.0 indicates that each flow transmits the exact
same number of bytes.

Figure 6 shows the average fairness index for the 10 and 50
connection simulations as a function of the packet corruption rate.
These plots lead to several observations:

• When the corruption rate is less than or equal to 10%, all TCP
variants studied achieve fairness indices of roughly 0.95–1.0,
indicating that the bandwidth is being shared roughly equi-
tably amongst all the flows (in both sets of simulations).

• When the corruption rate is in the 0–10% range, stock TCP
SACK is more fair than either CETEN variant at most points
studied. The throughput difference between connections is
due to CETEN’s aggressiveness (and sometimes over-agg-
ressiveness as will be shown in the next section) causing
more spread in the performance attained. However, the re-
duction in fairness over stock TCP SACK does not represent
a significant departure from the way stock TCP SACK shares
the bottleneck.

• Corruption rates of greater than 10% cause degradation in
fairness across all variants of TCP tested. As the packet cor-
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Figure 6: Average fairness indices.

ruption rate increases from 10% to 20%, stock TCP SACK’s
fairness index drops by roughly 0.2 (in both sets of simula-
tions). As outlined in § 4.1, as the loss rate increases, TCP is
more prone to relying on the retransmission timer (RTO) to
repair loss. Once in this small cwnd regime, TCP’s perfor-
mance is more prone to vary based on the specific losses the
connection experiences. Therefore, competing TCPs behave
differently because they are exposed to various loss amounts
and patterns – each of which has a large impact on perfor-
mance. CETENP generally tracks stock TCP SACK when
the corruption rate is more than 10% because of CETENP ’s
susceptibility to being forced to reduce cwnd in high loss
environments and therefore behave roughly as a stock TCP
flow. CETENP is not quite as prone to reducing cwnd as
stock TCP SACK and therefore is able to keep the cwnd a lit-
tle larger and show a slight increase in fairness. CETENA

is generally more aggressive than stock TCP SACK and so
is not as likely to fall into the small cwnd regime where
performance is dictated by specific loss events. Therefore,
CETENA is able to better keep its fairness high because all
the connections benefit from staying out of the small cwnd
regime..

Generally, the CETEN schemes have fairness comparable to (or
only slightly less than) that of stock TCP at the lower error rates.
At the higher error rates, CETENP is slightly more fair than
stock TCP, as both experience fast degradations in fairness, while
CETENA’s fairness index is shown to be a bit more robust to high
error rates.

4.4 Friendliness Simulations
The simulations presented in the last section show that both

CETENP and CETENA leave the multiplexing abilities of TCP
intact when TCP is competing only with like flows. In this sec-
tion we explore a further question as to whether TCP senders using
CETEN modifications compete in a “friendly” manner with stock
TCP senders. We consider two different network conditions in this
section. The first condition is when e is high enough to ensure that
the aggregate stock TCP SACK traffic from all flows on the net-
work cannot consume the bottleneck bandwidth. The second case
we explore is a case when the aggregate stock TCP SACK traf-
fic can saturate the available capacity regardless of the corruption

losses present in the network. We establish “ideal friendliness” as
the average stock TCP SACK performance with no CETEN flows
are present in the network. We would hope that the performance of
stock TCP SACK would not deviate from this ideal when CETEN
flows are introduced into the network.

4.4.1 Underutilized Network
Our first experiment involves the same dumbbell topology used

in our previous simulations. In the first set of simulations we ini-
tiated 50 TCP connections all from the same endpoint and applied
a corruption rate of 1% to the data packets. The number of con-
nections utilizing CETEN varies from 0–50 with stock TCP SACK
senders making up the remainder of the connections. The simu-
lations run for 5 minutes. The bottleneck bandwidth in this set of
simulations is 100 Mbps (which is approximately twice the capac-
ity that can be consumed by 50 stock TCP SACK flows with the
given RTT and corruption rate).
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Figure 7: Stock TCP throughput as a function of the fraction
of CETEN flows in a network with a 100 Mbps bottleneck.

Figure 7 shows the average throughput of the stock TCP SACK
flows as a function of the fraction of CETEN flows used. The
plot first shows that CETENP and CETENA perform similarly.
Also, the plot shows that the average performance of the stock TCP
SACK flows decreases as the number of CETEN flows increases
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(by roughly 10% when 90% of the flows use CETEN). The reason
for the performance degradation is that CETEN is more effective
in utilizing the available capacity. Therefore, CETEN generates
congestion-based losses where there were none without CETEN.
Therefore, the total loss rate is increased and p is what determines
stock TCP SACK performance. The point where 40% of the con-
nections use CETENA is clearly an outlier on the plot. We have
not yet been able to nail down a cause of this anomaly. However,
we note that the point is only a couple of percentage points different
from where the point “should be” and therefore does not present a
large problem for CETENA. We will continue to search for the
source of this outlier.
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Figure 8: Fraction of bottleneck utilized as a function of the
fraction of CETEN flows.

Figure 8 shows the bottleneck utilization as a function of the
fraction of CETEN flows active in the network. This figure shows
that the CETEN flows are able to better use the available capacity
than the non-CETEN flows. In addition, figures 7 and 8 together
show that CETEN is obtaining better performance largely by utiliz-
ing previously unused capacity rather than stealing capacity from
non-CETEN connections.

Figure 8 also shows that CETENA is able to increase utiliza-
tion until approximately half the connections are using CETENA,
after which the bottleneck utilization drops off. This suggests that
CETENA is overly aggressive because flows are increasing p to
the detriment of performance. CETENP does not exhibit this
problem because it is less aggressive than CETENA. The results
do show that the over-aggressiveness of CETENA does (i) im-
prove overall performance and (ii) not greatly impact competing
non-CETEN connections. Future work should include experiment-
ing with ways to make CETENA less aggressive and able to bet-
ter use the bottleneck bandwidth (e.g., by using a different MDF
function or a different set of shaping and bounding parameters).

4.4.2 Fully Utilized Network
The second experiment is similar to the first except that the bot-

tleneck bandwidth is reduced such that the traffic pattern can fully
utilize the bottleneck link. We ran two sets of simulations with the
bottleneck bandwidth set to 5 Mbps and 25 Mbps. The packet cor-
ruption rate was 1% for both sets of simulations. Again, we vary
the fraction of connections that use CETEN (with the balance us-
ing stock TCP SACK). This simulation scenario is a case when no
mitigation for corruption-based losses is needed (or, appropriate)
because (i) the network is fully utilized and (ii) the connections are
all obtaining roughly the same performance (i.e., their “fair share”).
Therefore, we’d like to determine whether CETEN causes the net-

work to diverge from this “ideal” state by being overly aggressive.
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Figure 9: Stock TCP throughput as a function of the fraction
of CETEN flows in a network with a 5 Mbps bottleneck.

Figure 9 shows the average performance of stock TCP SACK
connections as a function of the fraction of competing CETEN con-
nections in the case where no “spare” capacity exists for a 5 Mbps
bottleneck. The utilization of the bottleneck link is nearly full (93–
96%) in all simulations shown in the figure. In these simulations,
each connection’s “fair share” of the network is just under 4 seg-
ments per RTT (when taking into account the bandwidth, the RTT
and 150 packet drop-tail queue in the router). Unlike the case of the
overprovisioned network presented in the last section, CETENP

and CETENA no longer perform similarly. The plot shows that
CETENA “steals” bandwidth from stock TCP SACK, causing up
to an order of magnitude reduction in the average performance of a
stock TCP SACK connection. This is caused by the aggressiveness
of CETENA creating additional loss for stock TCP SACK. Since
each connection’s fair share of the network is less than 4 segments,
these additional losses cause loss to be repaired via TCP’s RTO
— which is costly from a performance standpoint. Meanwhile,
CETENP achieves roughly ideal friendliness. As illustrated in
figure 9, CETENP deviates from the ideal case by roughly 5% in
the worst case (when 90% of the connections use CETEN). As we
observed in previous simulations, CETENP increases the con-
gestion load on the network at times by failing to reduce the sending
rate when congestion occurs. However, CETENP is essentially
forced into a congestion response when congestion is occurring and
persistent. Therefore, in a highly contentious scenario as shown in
figure 9, cwnd will be adjusted roughly as it is in stock TCP SACK.
In cases where corruption-based loss occurs in a period when con-
gestion is not occurring CETENP is more aggressive than stan-
dard TCP and therefore steals a small amount of bandwidth from
stock TCP SACK (as shown in the figure).

Figure 10 again shows the average performance of stock TCP
SACK connection as a function of the fraction of competing
CETEN connections, but with a 25 Mbps bottleneck in this case.
As above, the bottleneck utilization is nearly fully utilized in these
simulations. Also, in this set of simulations each connection’s
“fair share” is roughly 7 segments per RTT (again, taking into ac-
count the bandwidth, the RTT and the 150 packet drop-tail router
queue). The results when using a 25 Mbps bottleneck are differ-
ent than those found when using a 5 Mbps bottleneck above. In
this case, stock TCP SACK is able to absorb the aggressiveness
of CETENA — due to the larger average congestion window.
Losses in the regime illustrated in this figure do not automatically
trigger the RTO, as in the previous experiments. CETENP per-
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Figure 10: Stock TCP throughput as a function of the fraction
of CETEN flows in a network with a 25 Mbps bottleneck.

forms similarly to the previous friendliness experiments and does
not have a large impact on stock TCP SACK performance (± 1%
of ideal).

5. IMPLEMENTATION ISSUES
The previous section shows CETEN to be a promising method

for mitigating the impact of corruption-based loss on TCP perfor-
mance. However, there are several practical concerns to deploying
CETEN in production networks. In this section, we present a first
examination of some of these practical issues. This section is meant
as an overview of items that will require careful consideration to
implement CETEN. Future work will include a larger analysis of
this space.

5.1 Information Transmission
As discussed in § 2 CETEN requires a method to gather p and e.

To use a system similar to the variant used throughout this paper,
CETEN requires header space to encode the corruption survival
probability. This header space most likely needs to be in the IP
header and cannot be encrypted with IPsec [20] so that intermediate
nodes can access and update the survival probability. A header
option may be a viable approach (or an IPv6 extension header [8]).
Alternatively, CETEN could re-use some of the current bits from
the IP header (e.g., the IP ID field – also proposed by a number of
researchers, such as [31]). Additionally, a TCP option to encode
the survival probabilities and transmit them to the TCP sender in
acknowledgments would also be required.

Additional methods to gather the needed information are out-
lined in § 2 and deserve consideration, as well — especially in
the context of the practical that middleboxes introduce (outlined
in § 2.3).

5.2 Router Assistance
CETEN requires assistance from routers and base stations in the

network path between the sender and receiver. The additional re-
quirements on routers are twofold: (i) additional state will poten-
tially need to be kept by the router/basestation to calculate survival
probabilities and (ii) additional processing will be required to cal-
culate and insert survival probabilities into packets traversing the
router/basestation.

The intermediate nodes in the network that intend to support
CETEN flows will have to track packets dropped due to corruption
– which is not a requirement of current routers. However, many

current production routers do keep counters that track the number
of corrupted packet arrivals and the number of total packet arrivals.
Furthermore, keeping such counters is not a terribly onerous addi-
tional requirement to place on intermediate nodes that do not cur-
rently keep such information.

The second requirement on intermediate nodes is the processing
time needed to update the survival probability in incoming pack-
ets. To soften this requirement somewhat, we note that (as dis-
cussed in § 5.4) global deployment of CETEN in all intermediate
nodes is not necessary. Therefore, we believe that the majority of
intermediate nodes will not implement CETEN because their con-
nected links are not prone to corruption. While this removes con-
cerns about CETEN’s computational overhead in core routers, the
nodes that do support CETEN will still have to accommodate all the
CETEN-aware traffic traversing the node. Because each CETEN-
aware node generates a corruption rate averaged over a relatively
long period of time, the aggregate corruption rate of a particular,
fixed network path will change only slowly over time. An individ-
ual TCP endpoint, therefore, need not query the network path with
every data packet and would only need to send queries “every so
often”, greatly reducing CETEN-imposed demands on the nodes
along the path. For instance, a requirement that a router deal with
one CETEN request per connection every 10 seconds would not
tax a router nearly as much as a CETEN scheme that requested a
survival probability sample on every packet. Finally, we note that
[13] shows that routers generally take very little time to generate
ICMP messages, indicating that router’s have the some ability to
cope with requests (at least at a low rate). However, the cost may
increase if the router has to process such requests for every TCP
connection traversing its link(s).

5.3 Deriving the Corruption Rate
Another area of future work involves the exact method for arriv-

ing at the corruption rate at a particular intermediate node, includ-
ing determining reasonable timescales over which to compute e.
Is it enough to just calculate the corruption rate every “so often”?
Should the intermediate node implement some sort of moving av-
erage? How long of a history should the node keep? Similarly,
thought is required into how the TCP sender should use the e esti-
mate from the network. Should the TCP sender just use the given
e? Should the TCP sender use some form of moving average on the
e samples received? Over what timescales should p be estimated
by the TCP sender? Should p be a cumulative estimate since the
beginning of the connection or some sort of average of a number of
p samples? These sorts of open questions are left as future work,
but are likely important to answer to fully understand CETEN.

Additionally, non-point-to-point networks need further consider-
ation. For instance, in some shared access systems, e will vary be-
tween various end-hosts. Should the basestation just keep a single
aggregate e in this case? Or, should e be tracked on a per-host ba-
sis? The answer to these questions is likely to be highly dependent
on the underlying link layer technology — showing the necessity
of further testing of CETEN in more realistic environments.

5.4 Incremental Deployment
CETEN as described in this paper (i.e., not CETENO) does not

require all intermediate nodes to be CETEN-aware, which eases the
task of incremental deployment. An intermediate node whose links
experience only negligible corruption will simply multiply the sur-
vival probability in an arriving packet by roughly 1.0 – effectively
leaving the cumulative path state unchanged. Also, when using
CETEN, not all nodes that attach to corruption-prone links need to
support CETEN for the scheme to be beneficial. The mitigation
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provided by CETEN is proportional to the number of intermedi-
ate hosts connected to corruption-prone links that support CETEN.
Therefore, even a single CETEN-savvy intermediate node at a point
of heavy corruption can be beneficial to TCP performance.

5.5 Security Implications
As discussed thus far, CETEN is vulnerable to an “attack” by

the data receiver. If the receiver were to inform the sender that all
the drops on the path were caused by corruption and not conges-
tion, then the receiver could induce the sender into transmitting at
an inappropriately high rate (to the point of effectively turning off
congestion control). Such an attack would allow a receiver to ob-
tain more than its share of the network resources at the expense of
other connections sharing the path. This attack is similar in spirit
to the schemes discussed in [30].

Unfortunately, this avenue of attack is fundamental to the design
of CETEN since the receiver is the only entity in the path that can
characterize the corruption status of the last link in the path. We
believe that heuristics can be designed to detect egregious inflation
of the corruption rate by the receiver. For instance, the sender could
compare the reported corruption rate with the estimated total loss
rate to attempt to detect cheating. Additionally, the sender could
initialize the corruption survival probability to some random value
rather than 1.0 in an effort to prevent the receiver from knowing
where the value started; this would make it no longer straightfor-
ward for the receiver to estimate the loss rate and apply the correct
transform on the probability to report that all losses were due to
corruption. However, the system will likely retain a vulnerability to
subtle gaming no matter what mechanisms are implemented given
the fundamental requirement to trust the receiver to characterize the
last hop in the path.

As alluded to in § 2, gathering e reports from the intermediate
nodes in the network opens these nodes up to an additional av-
enue for a denial-of-service attack. CETEN requires that the in-
termediate nodes do a small amount of work on behalf of the end-
points. However, an attacker could potentially leverage this “small
amount” of work into a larger problem for the intermediate node by
bombarding the node with requests for information.

6. CONCLUSIONS AND FUTURE WORK
In this paper we sketch the CETEN mechanism in theoretical

and practical terms and discuss preliminary experiments that show
CETEN to be a promising idea. Both variants of CETEN show per-
formance gains over stock TCP SACK without sacrificing fairness
to like connections. While CETENA cannot fully utilize a bottle-
neck in some situations, it does improve the utilization over stock
TCP SACK. CETENP does not improve performance as much as
CETENA, but competes more fairly with non-CETEN traffic.

The work presented in this paper is preliminary. In a number of
ways the simulations presented in this paper are idealistic in that
they allow TCP to converge and the various network properties are
somewhat constant. As an initial step this is a reasonable approach.
However, additional simulations are needed to explore the param-
eter space, including: experiments with various MDF functions,
with more complex and realistic traffic patterns and with more re-
alistic corruption models. In addition, future work also needs to
include tackling issues such as how often the transport should sam-
ple the corruption rate of the path, how the routers should calculate
their corruption rate (and on what timescales) and how to mitigate
the practical security concerns introduced by CETEN. Finally, the
thorny issues discussed in § 5 require further study.

Finally, we note a more general class of future work on thinking
about how much information the internal nodes should provide to

the endpoints in a network. The end-to-end argument [29] suggests
that the network be very simple and the “smarts” be located at the
network edges. However, several recent proposals have suggested
that internal nodes provide the endpoints with various pieces of in-
formation (e.g., ECN [28], XCP [18], QuickStart [16], CETEN).
An overarching architectural question is how much of this infor-
mation should be provided? And, if such information is provided,
then what else might be useful for the network to provide (e.g.,
information about packet reordering or asymmetry)?

Acknowledgments
Rajesh Krishnan, Craig Partridge and James Sterbenz developed
the original CETEN algorithm (given in [21]) and provided useful
feedback and assistance on the CETEN schemes developed for this
paper. Mike Cauley provided key insight that led to the develop-
ment of CETENA. We have given talks on CETEN at various
places and received much useful feedback from a group of people
too large to name. The anonymous CCR reviewers provided use-
ful comments on this paper. The last author’s work was funded by
NSF grant number 0205519 and NASA’s Glenn Research Center.
Our thanks to all!

7. REFERENCES
[1] M. Allman, W. Eddy, and S. Ostermann. Estimating Loss

Rates with TCP. ACM Performance Evaluation Review,
31(3), Dec. 2003.

[2] B. Arazi. A Commonsense Approach to the Theory of Error
Correcting Codes. MIT Press, 1988.

[3] A. Bakre and B. R. Badrinath. I-TCP: Indirect TCP for Mo-
bile Hosts. In Proceedings of the 15th International Confer-
ence on Distributed Computing Systems (ICDCS), May 1995.

[4] H. Balakrishnan and R. H. Katz. Explicit Loss Notifica-
tion and Wireless Web Performance. In Proceedings of IEEE
Globecom Internet Mini-Conference, Nov. 1998.

[5] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. Katz.
A Comparison of Mechanisms for Improving TCP Perfor-
mance over Wireless Links. In ACM SIGCOMM, Aug. 1996.

[6] H. Balakrishnan, S. Seshan, E. Amir, and R. Katz. Improving
TCP/IP Performance Over Wireless Networks. In ACM Mo-
biCom, Nov. 1995.

[7] J. Bennett, C. Partridge, and N. Shectman. Packet Reordering
is Not Pathological Network Behavior. IEEE/ACM Transac-
tions on Networking, Dec. 1999.

[8] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6)
Specification, Jan. 1996. RFC 1883.

[9] W. Eddy. Improving Transmission Control Protocol Perfor-
mance with Path Error Rate Information. Master’s thesis,
Ohio University, Mar. 2004.

[10] K. Fall and S. Floyd. Simulation-based Comparisons of
Tahoe, Reno, and SACK TCP. Computer Communications
Review, 26(3), July 1996.

[11] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-
Based Congestion Control for Unicast Applications. In ACM
SIGCOMM, Sept. 2000.

[12] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An Ex-
tension to the Selective Acknowledgement (SACK) Option
for TCP, July 2000. RFC 2883.

[13] R. Govindan and V. Paxson. Estimating Router ICMP Gener-
ation Delays. In Proceedings of Passive and Active Measure-
ment, Mar. 2002.

ACM SIGCOMM Computer Communications Review Volume 34, Number 5: October 200485



[14] M. Handley, J. Padhye, S. Floyd, and J. Widmer. TCP
Friendly Rate Control (TFRC): Protocol Specification, Jan.
2003. RFC 3448.

[15] V. Jacobson. Congestion Avoidance and Control. In ACM
SIGCOMM, 1988.

[16] A. Jain and S. Floyd. Quick-Start for TCP and IP, Oct. 2002.
Internet-Draft draft-amit-quick-start-02.txt.

[17] R. Jain. The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simula-
tion and Modeling. Wiley, 1991.

[18] D. Katabi, M. Handley, and C. Rohrs. Congestion Control
for High Bandwidth-Delay Product Networks. In ACM SIG-
COMM, Aug. 2002.

[19] C. Kent and J. Mogul. Fragmentation Considered Harmful. In
ACM SIGCOMM, Oct. 1987.

[20] S. Kent and R. Atkinson. Security Architecture for the Inter-
net Protocol, Nov. 1998. RFC 2401.

[21] R. Krishnan, M. Allman, C. Partridge, and J. P. Sterbenz.
Explicit Transport Error Notification (ETEN) for Error-Prone
Wireless and Satellite Networks. Technical Report TR-8333,
BBN Technologies, Mar. 2002.

[22] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Se-
lective Acknowledgement Options, Oct. 1996. RFC 2018.

[23] A. Medina, M. Allman, and S. Floyd. Measuring Interac-
tions Between Transport Protocols and Middleboxes. In ACM
SIGCOMM/USENIX Internet Measurement Conference, Oct.
2004.

[24] J. C. Mogul and S. Deering. Path MTU Discovery, Nov. 1990.
RFC 1191.

[25] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
TCP Throughput: A Simple Model and its Empirical Valida-
tion. In ACM SIGCOMM, Sept. 1998.

[26] J. Postel. Internet Control Message Protocol, Sept. 1981. RFC
792.

[27] J. Postel. Transmission Control Protocol, Sept. 1981. RFC
793.

[28] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of
Explicit Congestion Notification (ECN) to IP, Sept. 2001.
RFC 3168.

[29] J. Saltzer, D. Reed, and D. Clark. End-to-End Arguments in
System Design. In Proceedings of the Second International
Conference on Distributed Computing Systems, pages 509–
512, Aug. 1981.

[30] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson. TCP
Congestion Control with a Misbehaving Receiver. Computer
Communication Review, 29(5):71–78, Oct. 1999.

[31] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical
Network Support for IP Traceback. In ACM SIGCOMM, Sept.
2000.

[32] W. Stallings. Data and Computer Communications. MacMil-
lan, 4 edition, 1994.

[33] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. J.
Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, and
V. Paxson. Stream Control Transmission Protocol, Oct. 2000.
RFC 2960.

APPENDIX

A. ALTERNATE CORRUPTION MODELS
The body of this paper utilizes a uniform random process to cre-

ate corruption-based losses for studying CETEN. While not realis-
tic, we believe that the key trends and insights gained from these
simulations are likely to hold across alternate corruption scenar-
ios. As evidence, we used ns’ two-state Markov corruption model
to examine CETEN in the face of bursty corruption loss. In this
model, all segments arriving during the “on” period are corrupted,
while all segments arriving in the “off” period are not corrupted.
The length of each “on” and “off” period is measured in time and
determined using an exponential process with means of X and Y
(defined below) respectively.

We repeated the simulations presented in § 4.1 with four sets
of simulations with the average “on” period, X , defined based on
the bottleneck serialization time corresponding to 1, 4, 8 and 16
segments (or, 2.4 ms, 9.6 ms, 19.2 ms and 38.4 ms). The average
“off” period, Y , for a given simulation is then calculated to provide
the desired corruption rate, R, as follows:

Y = (X + f)

„

1 − R

R

«

(4)

With f = 0 in the above equation, the link spends the proper frac-
tion of time in the “on” and “off” states for the given R. However,
the actual measured corruption-based packet loss rate is higher than
R (for all X values we use). The key observation is that each
“on” period does not directly correspond to a given number of seg-
ments. For instance, consider an “on” period to be randomly cho-
sen as 2.4 ms — exactly the serialization time of a single segment.
Chances are low that a single segment will arrive just as the “on”
period starts. Chances are much greater that when the “on” pe-
riod starts, the latter portion of some segment will be corrupted,
followed by the corruption of the earlier parts of the following seg-
ment. That is, when the average “on” period is N segments then
chances are that N + 1 segments will be corrupted. Therefore, in
determining the average length of the “off” period we need to take
this into account by defining f as the serialization time of a single
segment (or, 2.4 ms in our simulations).

Figure 11 shows the performance of single TCP flow through
networks with different corruption burstiness properties. As in fig-
ure 3 from § 4.1, all points shown are the result of 30 random
simulations. Further, the corruption rate observed is verified to be
within 10% of the desired corruption rate. The results in the figure
show the same basic trends that are present in the case when using
the uniformly distributed corruption model. CETENA obtains
the best performance, followed by CETENP , with stock SACK
TCP showing the worst performance. In addition, we also note that
each TCP variant’s performance drops off as the corruption rate in-
creases. Finally, the shape of the dropoff is different depending on
the corruption pattern employed — indicating that the burstiness of
the loss does have an impact on TCP dynamics.

While there are differences between the Markov-based corrup-
tion model and the uniform-based corruption model used in the rest
of this paper, we believe the results based on the uniform corruption
model are reasonable to gain an initial understanding of the general
trends CETEN provides. That said, the results in this appendix
clearly show that work on the particular implications of CETEN
in networks with specific link layer technologies is a rich area for
future work.
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(a) Avg. Corruption Time = 2.4 ms (≈ 1 segment).
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(b) Avg. Corruption Time = 9.6 ms (≈ 4 segments).
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(c) Avg. Corruption Time = 19.2 ms (≈ 8 segments).
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(d) Avg. Corruption Time = 38.4 ms (≈ 16 segments).

Figure 11: Throughput of a single TCP flow as a function of the corruption rate for various corruption models based on two-state
Markov models.
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