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Abstract 

The more information about current network conditions available to 
a transport protocol, the more efficiently it can use the network to 
transfer its data. In networks such as the Internet, the transport proto- 
col must often form its own estimates of network properties based on 
measurements performed by the connection endpoints. We consider 
two basic transport estimation problems: determining the setting of 
the retransmission timer (RTO) for a reliable protocol, and estimating 
the bandwidth available to a connection as it begins. We look at both 
of these problems in the context of TCP, using a large TCP measure- 
ment set [Pax97b] for trace-driven simulations. For RTO estimation, 
we evaluate a number of different algorithms, finding that the perfor- 
mance of the estimators is dominated by their minimum values, and 
to a lesser extent, the timer granularity, while being virtually unaf- 
fected by how often round-trip time measurements are made or the 
settings of the parameters in the exponentially-weighted moving av- 
erage estimators commonly used. For bandwidth estimation, we ex- 
plore techniques previously sketched in the literature [Hoe96, AD981 
and find that in practice they perform less well than anticipated. We 
then develop a receiver-side algorithm that performs significantly 
better. 

In this paper we examine two other basic transport estimation 
problems: determining the setting of the retransmission timer (RTO), 
and estimating the bandwidth available to a connection as it begins. 
We look at both problems in the context of TCP, using trace-based 
analysis of a large collection of TCP packet traces. The appeal of 
analyzing TCP in particular is that it is the dominant protocol in use 
in the Internet today [TMW97]. However, analyzing the behavior of 
actual TCP implementations also introduces complications, because 
there are a variety of different TCP implementations that behave in 
a variety of different ways [Pax97a]. Consequently, in our analy- 
sis we endeavor to distinguish between findings that are specific to 
how different TCPs are implemented today, versus those that apply 
to general TCP properties, versus those that apply to general reliable 
transport protocols. 

Our analysis is based on the Na subset of TCP trace data col- 
lected in 1995 [Pax97b]. This data set consists of sender-side 
and receiver-side packet traces of 18,490 TCP connections among 
31 geographically-diverse Internet hosts. The hosts were intercon- 
nected with paths ranging from 64 kbps up to Ethernet speeds, and 
each connection transferred 100 KB of data, recorded using tcpdump. 
We modified tcpanaly [Pax97a] to perform our analysis. 

1 Introduction 

When operating in a heterogeneous environment, the more informa- 
tion about current network conditions available to a transport proto- 
col, the more efficiently it can use the network to transfer its data. 
Acquiring such information is particularly important for operation in 
wide-area networks, where a strong tension exists between needing 
to keep a large amount of data in flight in order to fill the bandwidth- 
delay product “pipe,” versus having to wait lengthy periods of time 
to attain feedback regarding changing network conditions, especially 
the onset of congestion. 

In a wide-area network, such as the Internet, that does not pro- 
vide any explicit information about the network path, it is up to the 
transport protocol to form its own estimates of current network con- 
ditions, and then to use them to adapt as efficiently as possible. A 
classic example of such estimation and adaptation is how TCP in- 
fers the presence of congestion along an Internet path by observing 
packet losses, and either cuts its sending rate in the presence of con- 
gestion, or increases it in the absence [JacS]. 

The rest of the paper is organized as follows. In § 2 we look at the 
problem of estimating RTO, beginning with discussions of the basic 
algorithm and our evaluation methodology. We analyze the impact of 
varying a number of estimator parameters, finding that the one with 
the greatest effect is the lower bound placed on RTO, followed by the 
clock granularity, while other parameters have little effect. We then 
present evidence that argues for the intrinsic difficulty of finding op- 
timal parameters, and finish with a discussion of the cost of retrans- 
mitting unnecessarily and ways to detect when it has occurred. In 
$ 3 we look at the problem of estimating the bandwidth available to 
a connection as it starts up. We discuss our evaluation methodology, 
which partitions estimates into different regions reflecting their ex- 
pected impact, ranging from no impact, to preventing loss, attaining 
steady state, optimally utilizing the path, or reducing performance. 
We then assess a number of estimators, finding that sender-side esti- 
mation such as previously proposed in the literature is fraught with 
difficulty, while receiver-side estimation can work considerably bet- 
ter. 3 4 summarizes the analysis and possible future work. 

2 Estimating RTO 
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For an acknowledgment-based reliable transport protocol, such as 
TCP, a fundamental question is how long, in the absence of receiving 
an acknowledgment (ACK), should a sender wait until retransmit- 
ting? This problem is similar to that of estimating the largest possible 
round-trip time (RTT) along an end-to-end network path. However, 
it differs from R’IT estimation in three ways. First, the goal is not 
to accurately estimate the truly maximal possible RTT, but rather a 
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good compromise that balances avoiding unnecessary retransmission 
timeouts due to not waiting long enough for an ACK to arrive, ver- 
sus being slow to detect that a retransmission is necessary. Second, 
the sender really needs to estimate the feedback time, which is the 
round-trip time from the sender to the receiver plrrs the amount of 
time required for the receiver to generate an ACK for newly received 
data. For example, a receiver employing the delayed acknowledg- 
ment algorithm [Bra891 may wait up to 500 msec before transmitting 
an ACK. Thus, estimating a good value for the retransmission timer 
not only involves estimating a property of the network path, but also 
a property of the remote connection peer. Third, if loss is due to con- 
gestion, it may behoove the sender to wait longer than the maximum 
feedback time, in order to give congestion more time to drain from 
the network-if the sender retransmits as soon as the feedback time 
elapses, the retransmission may also be lost, whereas sending it later 
would be successful. 

It has long been recognized that the setting of the retransmission 
timer cannot be fixed but needs to reflect the network path in use, and 
generally requires dynamic adaptation because of how greatly RlTs 
can vary over the course of a connection [Nag84, DDK+90]. The 
early TCP specification included a notion of dynamically estimating 
RTO, based on maintaining an exponentially-weighted moving aver- 
age (EWMA) of the current R’IT and a static variation term [PosSl]. 
This estimator was studied by Mills in [Mil83], which characterizes 
measured Internet RlTs as resembling a Poisson distribution over- 
all, but with occasional spikes of much higher RTTs, and suggests 
changing the estimator so that it more rapidly adapts to increasing 
RlTs and more slowly to decreasing RI%. (To our knowledge, this 
modified estimator has not been further evaluated in the literature.) 
[Mi183] also noted that the balance between responding rapidly in 
the face of true loss versus avoiding unnecessary retransmissions ap- 
pears to be a fundamental tradeoff, with no obvious optimal solution. 

Zhang [Zha86] discusses a number of deficiencies with the stan- 
dard TCP RTO estimator: ambiguities in measuring RI’% associated 
with retransmitted packets; the conservative RTO policy of retrans- 
mitting only one lost packet per round-trip; the difficulty of choosing 
an initial estimate; and the failure to track rapidly increasing R’lTs 
during times of congestion. Karn and Partridge [KP87] addressed 
the first of these, eliminating ambiguities in measuring RTTs. The 
introduction of “selective acknowledgments” (SACKS) [MMFR96] 
addressed the second issue of retransmitting lost packets too slowly. 
Jacobson [Jac88] further refined TCP RTO estimation by introducing 
an EWMA estimate of RIT variation, too, and then defining: 

RTO = SR7T + R RlTKAR (1) 

where SRZT is a smoothed estimate of R’IT (as before) and R2TVAR 
is a smoothed estimate of the variation of R’IT. In [Jac88], k = 2, but 
this was emended in a revised version of the paper to k = 4 [JK92]. 

While this estimator is in widespread use today, to our knowledge 
the only systematic evaluation of it against measured TCP conncc- 
tions is our previous study [Pax97b], which found that, other than 
for over-aggressive misimplementations, the estimator appears suf- 
ficiently conservative in the sense that it only rarely results in an 
unnecessary timeout. 

The widely-used BSD RTO implementation [WS95] has several 
possible limitations: (1) the adaptive RIT and RIT variation estima- 
tors are updated with new measurements only once per round-trip, 
so they adapt fairly slowly to changes in network conditions; (2) the 
measurements are made using a clock with a 500 msec granular- 
ity, which necessarily yields coarse estimates (though [Jac88] intro- 
duces some subtle tricks for squeezing more precision out of these 
estimates); and (3) the resulting RTO estimate has a large minimum 
value of 1 second, which may make it inherently conservative. 

With the advent of higher precision clocks and the TCP “timcs- 
tamp” option [JBB92], all three of these limitations might be re- 
moved. It remains an open question, however, how to best reengineer 
the RTO estimator given these new capabilities: we know the current 

estimator is sufficiently conservative, but is it too conservative? If 
so, then how might we improve it, given a relaxation of the above 
limitations? These are the questions we attempt to answer. 

2.1 The Basic RTO Estimation Algorithm 

In Jacobson’s algorithm, two state variables SRTT and Ri‘7TAR es- 
timate the current R’IT and a notion of its variation. These values 
are used in Eqn 1 with k = 4 to attain the RTO. Both variables are 
updated every time an RlT measurement R’ITmeas is taken. Since 
only one segment and the corresponding ACK is timed at any given 
time, updates occur only once per RlT (also referred to as once “per 
flight”). SRiT is updated using an EWMA with a gain of cri: 

SRZTt (1 - al)SRZT+ crlRTTmeas (2) 

and Jacobson [ Jac88] recommends (~1 = $, which leads to efficient 
implementation using fixed-point arithmetrc and bit shifting. Simi- 
larly, R77’VAR is updated based on the deviation ISRTT- R’lTmeas 1 
using ~2 = a. 

Any time a packet retransmitted due to the RTO expiring is itself 
lost, the TCP sender doubles the current value of the RTO. Doing so 
both diminishes the sending rate in the presence of sustained conges- 
tion, and ameliorates the possible adverse effects of underestimating 
the RTO and retransmitting needlessly and repeatedly. 

SRm and RTTVAR are initialized by the first RTTmeas measure- 
ment using SRZT t RlTmeas and RZ7TAR t :RTTmeas. Prior 
to the first measurement, RTO = 3 sec. 

Two important additional considerations are that all measure- 
ment is done using a clock granularity of G seconds, i.e., the 
clock advances in increments of G,’ and the RTO is bounded by 

RTomi n and RTOmax. In the common BSD implementation of 
TCP, G = 0.5 set, RTOmin = 2G = 1 set, and RTOmax = 64 sec. 
As will be shown, the value of RTOmin is quite significant. Also, 
since the granularity is coarse, the code for updating R77’VAR sets a 
minimum bound on RlTVAR of G, rather than the value of 0 set that 
can often naturally arise. 

Three oft-proposed variations for implementing the RTO estima- 
tor are to time every segment’s R’lT, rather than only one per flight; 
USC smaller values of G; and lower RTOmin in order to spend less 
time waiting for timeouts. RFC 1323 [JBB92] explicitly supports the 
first two of these. and our original motivation behind this part of our 
study was to evaluate whether these changes are worth pursuing. 

2.2 Assessing Different RTO Estimators 

There are two fundamental properties of an RTO estimator that we 
investigate: (1) how long does it wait before retransmitting a lost 
packet? and (2) how often does it expire mistakenly and unnecessar- 
ily trigger a retransmit? A very conservative RTO estimator might 
simply hardwire RTO = 60 set and never make a mistake, satisfy- 
ing the second property, but doing extremely poorly with regards to 
the first, leading to unacceptable delays; while a very aggressive es- 
timator could hardwire RTO = 1 msec and reverse this relationship, 
flooding the network with unnecessary retransmissions. 

Our basic approach to assess these two properties is to use trace- 
driven simulation to evaluate different estimators, using the follow- 
ing methodology, which mirrors the RTO estimator implementation 
in [WS95]: 

1. For each data packet sent, if the RTO timer is not currently 
active, it is started. The timer is also restarted when the data 
packet is the beginning of a retransmission sequence. 

‘The BSD timer implementation also uses a “heartbeat” timer that expires 
every G seconds with a phase independent of when the timer is actually set. 
We included this behavior in our simulations. 
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2. For each data packet retransmitted in the TCP trace due to a 
timeout, we assess whether the timeout was unavoiduble, mean- 
ing that either the segment being retransmitted was lost, or all 
ACKs sent after the segment’s arrival at the receiver (up un- 
til the arrival of the retransmission) were lost. This check is 
necessary because some of the TCPs in the N2 dataset used ag- 
gressive RTO estimators that often fired prematurely in the face 
of high RlTs [Pax97a], so these retransmissions are not treated 
as normal timeout events. 

3. If the timeout was unavoidable, then the retransmission is clas- 
sified as a “first” timeout if this is the first time the segment is 
retransmitted, or as a “repeated” timeout otherwise. The estima- 
tor is charged the current RTO setting as reflecting the amount 
of time that passed prior to retransmitting (consideration (1) 
above), with separate bookkeeping for “first” and “repeated” 
timeouts (for reasons explained below). The RTO timer is also 
backed off by doubling it. 

4. If the timeout was avoidable, then it reflects a problem with 
the actual TCP in the trace, and this deficiency is not charged 
against the estimator we are evaluating. 

5. For each arrival of an ACK for new data in the trace, the ACK 
arrival time is compared with the RTO, as computed by the 
given estimator. If the ACK arrived after the RTO would have 
fired we consider the expiration a “bad’ timeout, reflecting that 
the feedback time of the network path at that moment exceeded 
the RTO. 

If the ACK covers all outstanding data the RTO timer is turned 
off. 

If the ACK also yielded an R’IT measurement (because it ac- 
knowledged the segment currently being timed, or because ev- 
ery segment is being timed), SRTT and RTTVAR are updated 
based on the measurement and the RTO is recomputed. 

Finally, the RTO timer is restarted. 

6. The sending or receiving of TCP SYN or FIN packets is not 
assessed, as these packets have their own retransmission timers, 
and if interpreted as simple ACK packets can lead to erroneous 
measurements of RTT. 

Note this approach contains a subtle but significant difficulty. Sup- 
pose that in the trace packet P is lost and 3 seconds later the TCP’s 
real-life RTO expires and P is retransmitted. We treat this as a “first 
timeout,” and charge the estimator with the RTO. R, it computed for 
P. Suppose R = 100 msec. From examining the trace it is im- 
possible to determine whether retransmitting P after waiting only 
IO0 msec would have been successful. It could be that waiting any 
amount of time less than 3 seconds was in fact too short an interval 
for the congestion leading to P’s original loss to have drained from 
the network. Conversely, suppose P is lost after being retransmitted 
3 seconds later. It could be that the first loss and the second are in 
fact uncorrelated, in which case retransmitting after waiting only R 
seconds would yield a successful transmission. 

The only way to assess this effect would be to conduct live experi- 
ments, rather than trace-driven simulation, which we leave for future 
work. Therefore, we assess not whether a given retransmission was 
effective, meaning that the retransmitted packet safely arrived at the 
receiver, but only whether the decision to retransmit was correct, 
meaning that the packet was indeed lost, or a11 feedback from the re- 
ceiver was lost. Related to this consideration, only the effectiveness 
of an RTO estimator at predicting timely “first” timeouts is assessed. 
For repeated timeouts it is difficult to gauge exactly how many of the 
potential repeated retransmissions would have been necessary. 

Given these considerations, for a given estimator and a trace i let 
T; be the total time required by the estimator to wait for unavoid- 
able first timeouts. Let g; be the number of “good’ (necessary) first 

Minimum RTO W B 1 

1,000 msec II 144.564 I 8.4 I 0.63% ] 
-750 msec 
500 msec 
250 msec 

RTO = 1,000 msec 
RTO = 500 msec 

1211566 
102,264 
92,866 
92,077 

229,564 
136,514 
85.878 

6.5 
4.8 
3.5 
3.1 

15.6 
8.2 
4.5 

Table 1: Effect of varying RTOmin, G = 1 msec 

timeouts, and b; the total number of “bad” timeouts, including multi- 
ple bad timeouts due to backing off the timer (since we can soundly 
assess that all of these repeated retransmissions were indeed unnec- 
essary). If bi + gi > 0, that is, trace i included some sort of timeout, 
then define pi = $&, the normalized number of bad timeouts in 
the trace; otherwise de’fine pi = 0. Note that pi may not be a par- 
ticularly good metric when considering transfers of varying length. 
However, this study focuses only on transfers of 100 KB. 

For the jth good timeout, let RTO! be the RTO setting of the ex- 
piring timer, and R’IT: be the most recently observed RTT (even 
if it was not an R’IT that would have been measured for pur- 
poses of updating the SRTT and RTTVAR state variables). Let 
<i = RTOi /RTTi , so [f reflects the cost of the timeout in units 
of RlTs. We can then define an average, normalized timeout cost of 
$i = Ej [<!I, or 0 if trace i does not include any good timeouts. 

For a collection of traces, we then define W = ci Ti as the total 

time spent waiting for (good) first timeouts; $ = E;:,;>e[$;] as 
the mean normalized timeout cost per connection that experienced at 
least one good timeout; and B = Ei[pi] as the mean proportion of 
timeouts that are bud, per connection, including connections that did 
not include any timeouts (because we want to reward estimators that, 
for a particular trace, don’t generate any bad timeouts). 

W can be dominated by a few traces with a large number of time- 
out retransmissions, for which the total time waiting for first time- 
outs can become very high, so it is biased towards highlighting how 
bad things can get. E is impartial to the number of timeouts in a 
trace, and so better reflects the overall performance of an estimator. 
B likewise better reflects how well an estimator avoids bad timeouts 
overall. For some estimators, there may be a few particular traces 
on which they retransmit unnecessarily a large number of times, as 
noted below. 

Finally, of the 18,490 pairs of traces in Nz, 4,057 pairs were elim- 
inated from our analysis due to packet filter errors in recording the 
traces, the inability to pair packets across the two traces (this can 
occur due to packet filter drops or IP ID fields changed in flight by 
header compression glitches [Pax97c]), or ~cpanaly’s inability to de- 
terminc which retransmissions were due to timeouts. This leaves us 
with 14,433 traces to analyze, with a total of 67,073 timeout retrans- 
missions. Of those, 53,110 are “first” timeouts, and 34% of the traces 
have no timeout retransmissions. 

2.3 Varying the Minimum RTO 

It turns out that the setting of RTOmin, the lower bound on RTO, 
can have a major effect on how well the RTO estimator performs, 
so we begin by analyzing this effect. We first note that the usual 
setting for RTOmin is two clock “ticks” (i.e., RTOmm = 2G), be- 
cause, given a “heartbeat” timer, a single tick translates into a time 
anywhere between 0 and G sec. Accordingly, for the usual coarse- 
grained estimator of G = 0.5 set, RTOrnm is 1 set, which we will 
see is conservative (since a real BSD implementation would use a 
timeout between 0.5 set and 1 set). But for G = 1 msec, the two- 
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Granularity W Ii?\ B 
500 msec 11 272,885 I 19.2 I 0.36% 

[WS95] (500 msec) 
250 msec 
100 msec 
50 msec 
20 msec 
10 msec 
1 msec 

245,668 15.4 0.23% 
167,360 10.2 0.67% 
142,940 8.4 0.95% 
143,156 8.4 0.84% 
143,832 8.4 0.70% 
144,175 8.4 0.67% 
144.564 8.4 0.63% 

Table 2: Effect of varying granularity G, RTOmin = 1 set 

tick minimum is only 2 msec, and so-setting RTOmin to larger values 
can have a major effect. 

Table 1 shows W, w and J3 for different values of RTOmin, for 
G = 1 msec. We see that W runs from 144,564 seconds for a mini- 
mum of 1 set to about 64% as much when using no minimum. The 
column for v shows that the 1 set minimum means that a typical 
RTO costs a bit more than 8 RTTs, but much of this expense dis- 
appears as we decrease the minimum. B, on the other hand, shows 
that for a 1 se.c minimum, on average only about 1 in 150 timeouts is 
bad, while for no minimum, nearly 1 in 20 is (these bad timeouts are 
not clustered among a particular small subset of the traces). Clearly, 
adjusting the minimum RTO provides a “knob” for directly trading 
off timely response with premature timeouts, with no obvious “sweet 
spot” yielding an optimal balance between the two. 

As noted above, “delayed” acknowledgments in TCP can result 
in elevating R’lTs by up to 500 msec, and in a number of com- 
mon implementations, frequently elevate R?Ts by up to 200 msec. 
Accordingly, it is not clear that a minimum RTO of two ticks for 
G = 1 msec is sound. However, for the bulk of our subsequent anal- 
ysis, we consider estimators with no minimum bound, both to high- 
light the contribution to estimator efficiency of factors other than the 
quite-dominant minimum RTO, and to keep in mind that transport 
protocols different from TCP might not introduce such a minimum. 

For comparison, we include three static timers that use a constant 
setting for RTO (except they double the RTO on repeated timeouts). 
The table highlights the heavy cost of not using an adaptive timer. 
The constant estimators generate about 10 times as many bad time- 
outs ache adaptive estimators with similar relative performance fig- 
ures (W). The values of B don’t tell the whole story for the static 
timers, however, because their bad timeouts are clustered among rel- 
atively few traces. For example, RTO = 2,000 msec results in a bad 
timeout in 538 traces, while for RTOmin = 250 msec, which has a 
similar value of B, spreads its bad timeouts over more than twice as 
many traces. 

2.4 Varying Measurement Granularity 

With the above caution regarding the considerable importance of 
RTOmin in mind, we now look at the effect of varying G. In Table 2, 
G ranges from 500 msec down to 1 msec. In order to compare the 
different granularities on an even footing, we hold RTOmin = 1 set 
constant, rather than having the relative differences between the 
granularities overwhelmed by using RTOmin = 2G. We include one 
additional row, “[WS95],” which is the estimator as implemented in 
[WS95]. This implementation includes fixed-point arithmetic and 
bit-shifting in order to estimate SRZT at an effective granularity of 
62.5 msec and RlTKAR at a granularity of 125 msec, though RTO 
itself is computed with a granularity of 500 msec. 

We first note that for G 5 100 msec, the performance for good 
timeouts, both absolute (W) and relative (v) is essentially identical, 
regardless of how fine the granularity becomes. But we steadily gain 
in avoiding bad timeouts (minimizing B) as the granularity becomes 
finer. The reason for the gain is that the more coarse granularities 

Parameters 
rws951 . _ 

[WS951-every 
take-first (al, (~2 = 0, RTQ,, = 18) 

take-first (a1 ( a2 = 0) 
very-slow (al = &, ~2 = f) 

slow-every (al = &, a2 = &) 
slow ((xl = &, aa = Q, 

std(a1 = :,a2 = f) 
std-every (al = Q, 02 = t) 

fast (a1 = *,a2 = a, 
take-last (a1,aa = 1) 

take-last-every (al, a2 = 1) 
- 

W 
245,668 
241,100 
158,199 
131,180 
113,903 
102,544 
96,740 
92,077 
94,081 
90,212 
93,490 
97,098 

145,571 

B $1 

Table 3: Effect of varying EWMA parameters (~1, (~2 

will often take no action in the face of a minor change in R’IT, while 
the finer granularity estimator will adapt to reflect the change, and 
this gives it a slight edge. 

Above G = 100 msec, however, we start trading off reduced per- 
formance for avoiding bad timeouts. We can cut the average rate of 
bad timeouts by nearly a factor of two by using G = 500 msec, but at 
a cost of more than a factor of two in performance. We also note that 
the [WS95] estimator clearly performs better than G = 500 msec, - 
with both W and B lower. It gains by performing better on some 
very-large-RTT traces, because it is able to better reflect relatively 
small R’IT changes due to its finer effective granularities for SRTT 
and RTTVAR. 

2.5 Varying the EWMA Parameters 

Table 3 shows the estimator’s performance when varying Cal (per 
Eqn 2) and (~2, holding G = 1 msec and RTOmin = 0 msec fixed, 
except where noted. The first two rows are the [WS95] implemen- 
tation, which uses G = 500 msec, with the second row reflecting a 
variant that derives an R’IT measurement from every ACK arriving 
at the sender. We see that the more frequent SRlT and R’ITVAR up- 
dates have little effect on the estimator’s performance, only making 
it slightly more aggressive. 

The remaining estimators all use G = 1 msec. The take-first ex- 
treme of (~1 = 02 = 0 simply uses the first R’IT measurement 
to initialize both SRZT t RTT and RTTVAR t $RlT, yielding 
RTO t 3RlT. It never changes SR7T, RZTKAR, or RTO again 
(other than to back off RTO in the face of repeated retransmis- 
sions, and undo the backing off when the retransmission epoch ends). 
The first variant of it reflects using RTOin = 1 set, the second, 
RTOmin = 0 sec. At the other extreme, we have take-lust, which 
always sets SRTT t R’IT and R77’KAR t ISRZTprev - RTTJ. 
The take-last-every variant is the same except every packet is timed 
rather than just one packet per round trip, and the final variant raises 
the minimum R’IT to 1 sec. 

In between these extremes we run the gamut from very-slow, 
which uses one-tenth the usual parameters (which are given for the 
std estimator), to fast, which uses twice the parameters, with some 
time-every-packet variants. 

From the table we see that the settings of the EWMA parameters 
make little difference in how well the estimator performs. Indeed, 
if our goal is to minimize the rate of bad timeouts and still remain 
aggressive, we might pick the exceedingly simple take-jirst estima- 
tor, which only barely adapts to the network path conditions;’ or we 

2Even though take-first and take-last show overall decent performance 
compared to the other RTO estimators, these. RTO estimators could perform 
extremely poorly over network paths that exhibit large, sudden changes in 
RTT. 
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RTTVAR factor 

‘~1 

k=2 78,565 2.5 13.64% 
RTOmin = 750 msec, k = 6 128,266 6.7 0.50% 
RTomin = 750 msec 121,566 6.5 0.76% 
take-$rstzsom~ec, k = 6 163,799 6.4 0.70% 
RTOmin = 500 msec, k = 6 112,514 5.1 0.69% 
RTOmin = 500 msec 102,264 4.8 1.02% 
RTOrnin = 250 msec, k = 6 106,139 4.0 1.29% 

l-0-L = 250 msec 92.866 3.5 2.27% IK 

Table 4: Effect of varying R77VAR factor, k 

might pick slow, which on average incurs 25% less normalized de- 
lay per timeout, and occupies a sweet spot that locally minimizes 
B. As we found for [WS95], timing every packet makes little dif- 
ference over timing only one packet per RlT, even though by timing 
every packet we run many more measurements through the EWMAs 
per unit time. This in turn causes the EWMAs to adapt SRZT and 
Ri7’KAR more quickly to current network conditions, and to more 
rapidly lose memory of conditions further in the past, similar in ef- 
fect to using larger values for err and (~2. 

We note that as the timer more quickly adapts, B steadily in- 
creases, with take-last-every generating on average one bad timeout 
in every five, indicating correlations in RTT variations that span mul- 
tiple round-trips. We can greatly diminish this problem by raising 

RTTmin to 1 set, but only by losing a great deal of the estimator’s 
timely response, and we are better off instead using the correspond- 
ing take-first variant. 

We also evaluated varying the EWMA parameters for RTOmm = 

500 msec. We find that w increases by roughly 50%, with the vari- 
ation among the estimators further diminishing, while B falls by a 
factor of 4-8, further illustrating the dominant effect of the RTO min- 
imum. 

Finally, a number of the paths in N2 contain slow, well-buffered 
links, which lead to steady, large increases in the RTT (up to many 
seconds). We might expect take-first to do quite poorly for these 
connections, since the first measured RTI has little to do with subse- 
quent R’ITs, but in fact take-Jrst does quite well. The key is the last 
part of step 5 in 3 2.2 above: the RTO timer is restarted with each 
arriving ACK for new data. Consequently, when data is flowing, 
the RTO has an implicit extra R’IT term [Lud99], and for take-first 
this suffices to avoid bad timeouts even for RlTs that grow by two 
orders of magnitude. Indeed, take-jirst does better for such connec- 
tions than estimators that track the changing R’IT! It does so because 
more adaptive estimators wind up waiting much longer after the last 
arriving ACK before RTO expires, while take-first retransmits with 
appropriate briskness in this case. But this advantage is particular to 
the highly-regularized feedback of such connections. It does, how- 
ever, suggest the notion of a “feedback timeout,” discussed briefly in 
5 4. 

2.6 Varying the RTTVAR Factor 

The last RTO estimation parameter we consider is k, the multiplier of 
RTTKAR when computing RTO, per Eqn 1. For the standard imple- 
mentation, k = 4. Table 4 shows the effects of varying k from 2-16, 
for G = 1 msec and RTOmm = 0 sec. The adapt estimator starts 
with k = 4 but doubles it every time it incurs a bad timeout. 

%[ ; ,._._.. :-y , 
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Ratio of Extra Wait Necessary : X 

Figure 1: Extra waiting time necessary to avoid bad RTO 

k clearly provides a knob for trading off waiting time for unnec- 
essary timeouts, with no obvious sweet spot. This balance changes a 
bit, however, when we increase RTOmin, as shown in the second half 
of the table. For example, we find that RTOmin = 250 msec, k = 4 
performs strictly better than the no-minimum k = 6 variant, and 

RTomin = 250 msec, k = 6 performs better than the k = 8 vari- 
ant. Even the extremely simple take-jirst estimator, if using k = 6 
and RTOmin = 250 msec, performs a bit better than the regular 
RTOmin = 750 msec estimator. 

2.7 Can We Estimate RTO Better? 

Having evaluated the effects of different estimator parameters and, 
for the most part, only found tradeoffs and little in the way of com- 
pelling “sweet spots,” we now turn to the question of whether there 
are indeed opportunities to devise still better estimators. A key con- 
sideration for answering this question is: when we underestimate, by 
how much is it? If, for example, underestimates tend to be off by less 
than R’IT, then that would suggest a modification to Eqn 1 in which 
SRZT has a factor of 2 applied to it. 

Let A denote the amount of additional waiting time needed to 
avoid a bad RTO. Figure 1 plots the cumulative distribution of the 
ratio of A to R77’KAR (solid), the maximum RTI seen so far (dot- 
ted), and RTO (dashed), for the usual G = 1 msec estimator. The 
ratio of A to R77’KAR ranges across several orders of magnitude, in- 
dicating that finding a particular value of k in Eqn 1 that efficiently 
takes care of most of the remaining bad timeouts is unlikely. 

Also shown is that A is generally less than the current RTO and 
also the maximum RTT seen so far; this suggests adding one of those 
values to RTO to make it sufficiently conservative to avoid bad time- 
outs. However, doing so has much the same effect as other estimator 
variants that wait longer based on other factors (e.g., the value of k). 
For example, changing the standard k = 4 estimator shown in Ta- 
ble 4 to use twice the computed RTO (i.e., add in an additional RTO 
term) lowers B from 4.71% to 0.57%, but increases E from 3.1 to 
5.7-a bit better than just using k = 12, but not compellingly better. 

For RTOmin = 0.5 set, the plot is very similar, with slightly 
more separation between the RTO and MAX RTT lines. Thus, Fig- 
ure 1 suggests a fundamental tradeoff between aggressiveness and 
suffering bad timeouts. 

A related question is: if a packet is unnecessarily retransmitted, 
does it reflect a momentary increase in R’IT, or a sustained increase? 
We find that about 62% of the bad timeouts were followed by RlTs 
less than the current RTO, so the bad timeout reflected a transient 
R’IT increase. Another 24% were followed by exactly one more ele- 
vated RTT, though a bit more than 2% were followed by 10 or more 
elevated RTTs. Thus, most of the time a significant RTT increase is 
quite transient-but there is non-negligible tail-weight for sustained 
RTT increases. 
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2.8 Impact of Bad Timeouts 

We finish our study of RTO estimators with brief comments concem- 
ing the impact of bad timeouts. 

Any time a TCP times out unnecessarily, it suffers not only a loss 
of useful throughput, but, often more seriously, unnecessarily cuts 
ssthresh to half the current, sustainable window, and begins a new 
slow start. In addition, because the TCP is now sending retransmit- 
ted packets, unless it uses the TCP timestamp option, it cannot safely 
measure RlTs for those packets (per Karn’s algorithm [KP87]), and 
thus it will take a long time before the TCP can adapt its R’IT esti- 
mate in order to improve its broken RTO estimate. (See [Pax97a] for 
an illustration of this effect.) 

Bad timeouts can therefore have a major negative impact on a TCP 
connection’s performance. However, they do not have much of an 
adverse impact on the network’s performance, because by definition 
they occur at a time when the network is not congested to the point 
of dropping the connection’s packets. This in turn leads to the ob- 
servation that if we could undo the deleterious effects upon the TCP 
connection of cutting ssthresh and entering slow start, then a more 
aggressive RTO estimator would be more attractive, as TCP would be 
able to sustain bad timeouts without unduly impairing performance 
or endangering network stability. 

When TCP uses the timestamp option, it can unambiguously de- 
termine that it retransmitted unnecessarily by observing a later ACK 
that echoes a timestamp from a packet sent prior to the retransmis- 
sion. (A TCP could in principle also do so using the SACK option.) 
Such a TCP could remember the value of ssthresh and cwnd prior to 
the last retransmission timeout, and. restore them if it discovers the 
timeout was unnecessary. 

Even without timestamps or SACK, the following heuristic might 
be considered: whenever a TCP retransmits due to RTO, it measures 
AT, the time from the retransmission until the next ACK arrives. If 
AT is less than the minimum R7T measured so far, then arguably the 
ACK was already in transit when the retransmission occurred, and 
the timeout was bad. If the ACK only comes later than the minimum 
R’IT, then likely the timeout was necessary. 

We can assess the performance of this heuristic fairly simply. For 
our usual G = 1 msec estimator, a total of 8,799 good and bad 
timeouts were followed by an ACK arriving with AT less than the 
minimum measured R’IT. Of these, fully 75% correspond to good 
timeouts, indicating that, surprisingly, the heuristic generally fails. 
The failure indicates that sometimes the smallest RlT seen so far 
occurs right after a timeout, which we find is in fact the case, per- 
haps because the lull of the timeout interval gives the network path a 
chance to drain its load and empty its queues. 

However, if the threshold is instead f = a of the minimum R’IT, 
then only 20% of the corresponding timeouts are good (these com- 
prise only 1% of all the good timeouts). For f = 3, the proportion 
falls to only 2.5%. With these reduced thresholds the chance of de- 
tecting a bad timeout falls from 74% to 68% or 59%, respectively. 

We evaluated the modilied heuristic and found it works well: for 
f = i, B drops from 4.71% to 2.39%, a reduction of nearly a factor 
of two, and enough to qualify the estimator as a “sweet spot.” 

3 Estimating Bandwidth 

We now turn to the second estimation problem, determining the 
amount of bandwidth available to a new connection. Clearly, if a 
transport protocol se.nder knows the available bandwidth, it would 
like to immediately begin sending data at that rate. But in the ab- 
sence of knowing the bandwidth, it must form an estimate. For TCP, 
this estimate is currently made by exponentially increasing the send- 
ing rate until experiencing packet loss. The loss is taken as an im- 
plicit signal that the rate had grown too large, so the rate is effectively 
halved and the connection continues in a more conservative fashion. 

In the context of TCP, the goal in this section is to determine the ef- 
ficacy of different algorithms a TCP connection might use during its 
start-up to determine the appropriate sending rate without pushing 
on the network as hard as does the current mechanism. In a more 
genera1 context, the goal is to explore the degree to which the timing 
structure of flights of packets can be exploited in order to estimate 
how fast a connection can safely transmit. 

We assume familiarity with the standard TCP congestion control 
algorithms [Jac88, Ste97, APS99]: the state variable cwnd bounds 
the amount of unacknowledged data the sender can currently inject 
into the network. and the state variable ssthresh marks the cwnd size 
at which a connection transitions from the exponential increase of 
“slow start” to the linear increase of “congestion avoidance.” Ideally, 
ssthresh gives an accurate estimate of the bandwidth available to the 
connection, and congestion avoidance is used to probe for additional 
bandwidth that might appear in a conservative, linear fashion. 

A new connection begins slow start by setting cwnd to 1 segment? 
and then increasing cwnd by 1 segment for each ACK received. If the 
receiver acknowledges every k segments, and if none of the ACKs 
are lost, then cwrld will increase by about a factor of 7 = 1 + i 
every R’lT. Most TCP receivers currently use a “delayed acknowl- 
edgment” policy for generating ACKs [Bra891 in which k = 2 and 
hence y = $, which is the value we assume subsequently. 

Note that if during one round-trip a connection has N segments 
in flight, then during slow start it is possible, during the next RTT, to 
overflow a drop-tail queue along the path such that (y - 1)N = N/K 
segments are lost in a group, if the queue was completely full carry- 
ing the N segments during the first round-trip. Such loss will in gen- 
eral significantly impede performance, because when multiple seg- 
ments are dropped from a window of data, most current TCP imple- 
mentations will require at least one retransmission timeout to resend 
all dropped segments [FF96, Hoe961. However, during congestion 
avoidance, which can be thought of as a connection’s steady-state, 
TCP increases cwnd by at most one segment per RTT, which ensures 
that cwnd will overflow a queue by at most one segment. TCP’s fast 
retransmit and fast recovery algorithms [Jac90, Ste97, APS99] pro- 
vide an efficient method for recovering from a single dropped seg- 
ment without relying on the retransmission timer [FF96]. 

Hoe [Hoe961 describes a method for estimating ssthresh by mul- 
tiplying the measured RlT with an estimate of the bottleneck band- 
width (based on the packet-pair algorithm outlined in [Kes91]) at the 
beginning of a transfer. [Hoe961 showed that correctly estimating 
ssthresh would eliminate the large loss event that often ends slow 
start (as discussed above). Given that Hoe’s results were based on 
simulation, an important follow-on question is to explore the degree 
to which these results are applicable to actual, measured TCP con- 
nections. 

There are several other mechanisms which mitigate the problems 
caused by TCP’s slow start phase, and therefore lessen the need to 
estimate ssthresh. First, routers implementing Random Early Detec- 
tion (RED) [FJ93, BCC+98] begin randomly dropping segments at 
a low rate as their average queue size increases. These drops implic- 
itly signal the connection to reduce its sending rate before the queue 
overflows. Currently, RED is not widely deployed. RED also does 
not guarantee avoiding multiple losses within a window of data, es- 
pecially in the presence of heavy congestion. However, RED also 
has the highly appealing property of not requiring the deployment of 
any changes to current TCP implementations. 

Alternate loss recovery techniques that do not rely on TCP’s re- 

3Strictly speaking, cwnd is usually managed in terms of bytes and not seg- 
ments (full-sized data packets), but conventionally it is discussed in terms of 
segments for convenience. The distinction is rarely important. Also, [APS99] 
allows an initial slow start to begin with cwnd set to 2 segments, and an ex- 
perimental extension to the TCP standard allows an initial slow start to begin 
with cwnd set to 3 or possibly 4 segments [AFP98]. We comment briefly on 
the implications of this change below. 
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transmission timer have been developed to diminish the impact of 
multiple losses in a flight of data. SACK-based TCPs [MM96, 
MMFR96, FF96] provide the sender with more complete informa- 
tion about which segments have been dropped by the network than 
non-SACK TCP implementations provide. This allows algorithms to 
quickly recover from multiple dropped segments (generally within 
one RTT following loss detection). One shortcoming of SACK-based 
approaches, however, is that they require implementation changes 
at both the sender and the receiver. Another class of algorithms, 
referred to as “NewReno” [Hoe96, FF96, FH99], does not require 
SACKS, but can be used to effectively recover from multiple losses 
without requiring a timeout (though not as quickly as when using 
SACK-based algorithms). In addition, NewReno only requires im- 
plementation changes at the sender. The estimation algorithms stud- 
ied in this paper all require changes to the sender’s TCP implemen- 
tation. So, we assume that the sender TCP implementation will have 
some form of the NewReno loss recovery mechanism. 

3.1 Methodology 

In this section we discuss a number of algorithms for estimating 
ssthresh and our methodology for assessing their effectiveness. We 
begin by noting a distinction between available bandwidth and bot- 
tleneck bandwidth. In [Pax97b] we define the first as the maximum 
rate at which a TCP connection exercising correct congestion control 
can transmit along a given network path, and the second as the upper 
bound on how fast any connection can transmit along the path due to 
the data rate of the slowest forwarding element along the path. 

Our ideal goal is to estimate available bandwidth in terms of the 
correct setting of ssthresh such that we fully utilize the bandwidth 
available to a given connection, but do not exceed it (more precisely: 
only exceed it using the linear increase of congestion avoidance). 
Much of our analysis, though, is in terms of bottleneck bandwidth, 
as this is both an upper bound on a good ssthresh estimate, and a 
quantity that is more easily identifiable from the timing structure of 
a flight of packets, since for any two data packets sent back-to-back 
along an uncongested path, their interarrival time at the receiver di- 
rectly reflects the bottleneck bandwidth along the path.4 

Note that in most TCP implemetitations ssthresh is initialized to 
an essentially unbounded value, while here we concentrate on lower- 
ing this value in an attempt to improve performance by avoiding loss 
or excessive queueing. Thus, all of the algorithms considered in this 
section are conservative, yet they also (ideally) do not impair a TCP’s 
performance relative to TCPs not implementing the algorithm. How- 
ever, if an estimator yields too small a value of ssthresh, then the TCP 
will indeed perform poorly compared to other, unmodified TCPs. 

As noted above, one bottleneck bandwidth estimator is “packet 
pair” [Kes91]. In [Pax97b] we showed that a packet pair algo- 
rithm implemented using strictly sender-side measurements per- 
forms poorly at estimating the bottleneck bandwidth using real traf- 
fic. We then developed a more robust method, Packet Bunch Mode 
(PBM), which is based on looking for modalities in the timing struc- 
ture of groups of back-to-back packets [Pax97b, Pax97c]. PBM’s 
effectiveness was assessed by running it over the NPD datasets (in- 
cluding the JVM dataset referred to earlier), arguing that the algorithm 
was accurate because on those datasets it often produced estimates 
that correspond with known link rates such as 64 kbps, Tl, El, or 
Ethernet. 

PBM analyzes an entire connection trace before generating any 
bottleneck bandwidth estimates. It was developed for assessing net- 
work path properties and is not practical for current TCP implemcn- 
tations to perform on the fly, as it requires information from both the 
sender and receiver (and is also quite complicated). However, for our 
purposes what we need is an accurate assessment of a given network 

4Providing the path isn’t “multi-channel” or subject to routing changes 
[Pax97b]. 

path’s bottleneck bandwidth, which we assulne that PBM provides. 
Thus, we use PBM to calibrate the efficacy of the other ssthresh es- 
timators we evaluate. 

Of the 18,490 traces available in n/z, we removed 7,447 (40%) 
from our analysis for the following reasons: 

Traces marred by packet filter errors [Pax97a] or major clock 
problems [Pax98]: 15%. Since these problems most likely do 
not reflect network conditions along the path between the two 
hosts in the trace, removing these traces arguably does not in- 
troduce any bias in our subsequent analysis. 

Traces in which the first retransmission in the trace was “avoid- 
able,” meaning had the TCP sender merely waited longer, an 
ACK for the retransmitted segment would have arrived: 20%. 
Such retransmissions are usually due to TCPs with an initial 
RTO that is too short [Pax97a, PAD+99]. We eliminate these 
traces because the retransmission results in ssthresh being set 
to a value that has little to do with actual network conditions, 
so we are unable to soundly assess how well a larger ssthresh 
would have worked. Removing these traces introduces a bias 
against connections with particularly high R’lTs, as these are 
the connections most likely to engender avoidable retransmis- 
sions. 

Traces for which the PBM algorithm failed to produce a single, 
unambiguous estimate: 4%. We need to remove these traces 
because our analysis uses the PBM estimate to calibrate the dif- 
ferent estimation algorithms we assess, as noted above. Remov- 
ing these traces introduces a bias against network conditions 
that make PBM itself fail to produce a single estimate: multi- 
channel paths, changes in bottleneck bandwidth over the course 
of a connection, or severe timing noise. 

After removing the above traces, we are left with 11,043 connec- 
tions for further analysis. We use trace-driven simulation to assess 
how well each of the bandwidth estimation algorithms perform. We 
base our evaluation on classifying the algorithm’s estimate for each 
trace into one of several regions, representing different levels of im- 
pact on performance. 

For each trace, we define three variables, B, L and E. B is the 
bottleneck bandwidth estimate made using the PBM algorithm. L is 
the loss point, meaning the transmission rate in effect when the first 
lost packet was sent (so, if the first lost segment was sent with cwnd 
corresponding to W bytes, then L = WIRTT bytes/second). If the 
connection does not experience loss, L’ is the bandwidth attained 
based on the largest cwnd observed during the connecti0n.s When 
L > B or L’ > B, the network path is essentially free of competing 
traffic, and the loss is presumed caused by the connection itself over- 
flowing a queue in the network path. Conversely, if L or L’ is less 
than B, the path is presumed congested. Finally, E is the bandwidth 
estimate made by the ssrhresh estimation algorithm being assessed. 

In addition, define seg(z) = (Z . RlT)/segmen: size representing 
the size of the congestion window, in segments, needed to achieve a 
bandwidth of z bytes/second, for a given TCP segment size and R’IT. 
(Note that as defined, seg(z) is continuous and not discrete.) 

3.1.1 Connections With Loss 

Given the above definitions, and a connection which contains loss, 
we assess an estimator’s performance by determining which of the 
following six regions it falls into. Note that we analyze the regions in 
the order given, so an estimate will not be considered for any regions 
subsequent to the first one it matches. 

5Strictly speaking, it’s the largest flight observed during the connection, 
which might be smaller than cwnd due to the connection running out of data 
to send, or exhausting the (32~64KB) receiver window. 
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No Estimate Made. The estimator failed to produce an ssthresh 
estimate before the first segment loss occurred in the trace. 

No Impact. The estimate satisfies E 1 715. This means that E is 
a sufficiently large overestimate that the connection will behave 
no differently using that estimate than it would if no estimate 
were made. 

Some Loss Prevention. When L 5 E < yL holds, the given 
ssrhresh estimate prevents some, but not all, loss of data pack- 
ets. While the estimate is greater than the loss point, it reduces 
the size of the last slow start flight by N, = seg(yL - E) seg- 
ments. Therefore, up to iV, segment drops may be prevented. 

Steady-State. When $ 5 E < L holds, we classify the ssthresh 
estimate as “steady-state.” During congestion avoidance, which 
defines TCP’s steady-state behavior [la&$ MSM097], cwnd 
decreases by half upon loss detection and then increases lin- 
early until another loss occurs. So, given the loss point of L, 
cwnd can be expected to oscillate between $ and L after the 
connection’s second loss event.6 By making an estimate be- 
tween 4 and L, the estimator has found the range about which 
the connection will naturally oscillate, assuming the loss point 
is stationary. 

Optimal. When the analysis reaches this point, we know that 
E < L since none of the above conditions hold. If seg(E) 2 
seg(Bj - 1 also holds, then the ssrhresh estimate reduces the 
queueing requirement, as follows. Since E is very close to or 
larger than the bottleneck bandwidth, yet less than t, we know 
that the loss point is greater than the bottleneck bandwidth, yet 
the ssthresh estimate is no less than the bottleneck bandwidth or 
one segment less than the bottleneck bandwidth. (We consider 
one segment less than the bottleneck bandwidth to be within 
the range because both slow start and congestion avoidance will 
take a single RlT to increase cwnd to correspond with B-and 
we prefer to reach that point via congestion avoidance rather 
than slow start, so we don’t overshoot it.) 

Thus, assuming the connection lasts long enough, the queue 
will still be filled to L. However, we will fill the queue more 
slowly and smoothly than with slow start. Furthermore, when 
we exceed the queue during congestion avoidance, it is only by 
one segment, whereas during slow start we will exceed the ca- 
pacity of the queue by as much as y times the capacity.’ When a 
connection falls into this region, the queue length is initially re- 
duced by iVp = (L - E) . RTT bytes. Since this region reduces 
queueing, prevents loss, yet fully utilizes the network path, we 
deem it “optimal.” 

Reduce Performance. Finally, if none of the above conditions hold 
then E < % and E < B (these bounds are not tight). We there- 
fore set ssthresh too low and force cwnd growth to continue 
linearly, rather than exponentially. When an estimator under- 
estimates min( 4, B) by more than half in 50+% of the con- 
nections in which performance would be reduced, we consider 
this to be an especially bad estimate. In this case, the reported 
percentage of connections experiencing reduced performance is 
marked with a “*“. 

hThe size of cacti when detecting the first loss event is roughly yL. 
Therefore, the first halving of cwnd causes it to be approximately SL. Each 
subsequent loss event should only overflow the queue slightly and therefore 
cwr~d will be reduced to !j. 

‘Some implementations of congestion avoidance add a constant of 
Q times the segment sire to cwnd for every ACK received during conges- 
tion avoidance. This non-standard behavior has been shown to lead to some- 
times overflowing the queue by more than a single segment every time c~nd 
approaches L [PAD+99]. 

1 Algorithm 1 No 1 No 11 Prv. 1 Stdy. ) Opt. 1 Tot. 11 Red. I 

1 PBM’ 
( Est. ] Imp. 11 Loss 1 State 1 11 Pert. 1 
I 23% I 46% II 9% I 10% I 11% I 31% II 0% 1 

TSSF 42% 1% 1% 3% 0% 4% 52%’ 
20% 6% 9% 2% 17% 2% 
37% 5% 4% 0% 9% 1%’ 
32% 8% 10% 2% 19% 4%’ 

(5,;57.2 

TCSA- n 2 1 
38% 

1 
24% 

11 
9% 

1 
13% 

1 
3% 25% 13% 

1 62% 1 14% 11 6% 1 11% I 1% ( 19% II 5% 
TCSA’ 70% 10% 6% 9% 2% 17% 2% 
Recvmin 11% 32% 6% 13% 4% 23% 344b* 
Recvavg 11% 52% 10% 14% 9% 34% 3% 

Recvmed 11% 48% 10% 14% 10% 34% 7%. 
Recvmax 11% 65% 7% 8% 8% 23% 0%. 

Table 5: Connections with Loss (8,257 traces) 

3.1.2 Connections Without Loss 

The following regions use L’ to assess the impact of ssthresh estima- 
tion on connections in the dataset that do not experience loss. Each 
trace is placed into one of the following four regions. (Again, note 
that we analyze the regions in the order given, so an estimate will not 
be considered for any regions subsequent to the first one it matches.) 

No Estimate Made. The estimator failed to produce an ssrhresh 
estimate. 

Unknown Effect. When E > L’ holds, the estimate does not limit 
TCP’s ability to open cwnd, as it is above the maximum cwnd 
used by the connection. Since we do not have a good measure 
of the limit of the network path, nothing more can be. assessed 
about the performance of the estimator. 

Optimal. When seg(E) > seg(B) - 1 holds, the estimate is greater 
than the bottleneck bandwidth and therefore does not limit per- 
formance. However, we also know that E < L’ due to the 
above region. Therefore, the estimate reduces the initial queue- 
ing requirement similar to the “optimal” region in 5 3.1.1. 

Reduce Performance. At this point, E < min(L’, B - seg-‘(1)) 
holds, indicating that the estimate failed to provide exponen- 
tial window growth to L’, which is a known safe sending rate. 
Furthermore, our failure to reach L’ is not excused by provid- 
ing exponential cwnd growth long enough to fill the pipe (B 
bytes/second). We again mark with a “*” those connections for 
which the reduction is often particularly large. 

3.2 Benchmark Algorithm 

As noted above, we use PBM as our benchmark in terms of accu- 
rately estimating the bottleneck bandwidth. For ssthresh estimation, 
we use a revised version of the algorithm, PBM’, to provide some 
sort of upper bound on how well we might expect any algorithm to 
perform. (It is not a strong upper bound, since it may be that other al- 
gorithms estimate the available bandwidth considerably better than 
does PBM’, but it is the best we currently have available.) The differ- 
ence between PBM’ and PBM is that PBM’ analyzes the trace only 
up to the point of the first loss, while PBM analyzes the trace in its 
entirety. Thus, PBM’ represents applying a detailed, heavyweight, 
but accurate algorithm on as much of the trace as we are allowed to 
inspect before perforce having to make an ssthresh decision. 

As shown in Tables 5 and 6, the PBM’ estimate yields ssthresh 
values that rarely hurt performance, regardless of whether the con- 
nection experiences loss. Each column lists the percentage of traces 
which, for the given estimator, fell into each of the regions discussed 
in 5 3.1.1. The Tot. column gives the percentage of traces for which 
the estimator improved matters by attaining either the prevent loss, 
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steady-state, or optimal regions. This column can be directly com- 
pared with the last column (reduce performance) to assess how a 
given estimator trades off improvement in some cases with damage 
in others. 

We see that PBM’ provides some benefit (steady state, prevention 
of loss, or optimal) to 31% of the connections that experience loss, 
and, when no loss occurs, the estimate falls in the optimal region 
for 44% of the connections. The remaining estimates are overesti- 
mates, in the case when the connection experiences loss, or have an 
unknown impact (but, do not harm performance) in the connections 
that do not have dropped segments. This indicates that much of the 
time the available bandwidth is less than the raw bottleneck band- 
width that PBM measures, which accords with the finding given in 
[Pax97b]. 

3.3 Sender-Side Estimation Algorithms 

The following is a description of the sender-side bandwidth estima- 
tion algorithms, and the corresponding ssthresh estimates, investi- 
gated in this paper. TCP’s congestion control algorithms work on the 
principle of “self-clocking” [Jac88]. That is, data segments are in- 
jected into the network and arrive at the receiver at the rate of the bot- 
tleneck link, and consequently ACKs are generated by the receiver 
with spacing that reflects the rate of the bottleneck link. Therefore, 
sender-side estimation techniques measure the rate of the returning 
ACKs to make a bandwidth estimate. These algorithms assume that 
the spacing injected into the data stream by the network will arrive 
intact at the receiver and will be preserved in the returning ACK flow, 
which may not be true due to fluctuations on the return channel al- 
tering the ACK spacing (e.g., ACK compression [ZSC91, Mog921). 
These algorithms have the advantage of being able to directly adjust 
the sending rate. In the case of TCP, they can directly set the ssthresh 
variable as soon as the estimate is made. However, a disadvantage 
of these algorithms is their reliance on the ACK stream accurately 
reflecting the arrival spacing of the data stream. 

3.3.1 ‘hacking Slow Start Flights 

The first technique we investigate is a TCP-specific algorithm that 
tracks each slow start “flight.” The ACKs for a given flight are used 
to obtain an estimate of ssthresh. While this algorithm is TCP spe- 
cific, the general idea of measuring the spacing introduced by the 
network in all segments transmitted in one RTT should be applica- 
ble to other transport protocols. We parameterize the algorithm by 
n, the number of ACKs used to estimate the bottleneck bandwidth. 
For our analysis, we used n = 3. Let F be the current flight size, in 
segments. The Tracking Slow Start Flights (TSSF) algorithm is then: 

l Initialize the current segment S to the first data segment sent, 
and F to the initial value of cwnd in segments. 
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Figure 2: Delayed ACK leading to timing “lull” 

Table 6: Connections without Loss (2,786 traces) 

l For the current S and F, check whether S’s ACK and the n - 1 
subsequent arriving ACKs are all within the sequence range of 
the flight. If so, then we use this flight to make an estimate. 
Otherwise, we continue to the next flight. However, if any of 
the ACKs arrive reordered or are duplicates, the algorithm ter- 
minates. When looking forward for the n- 1 subsequent ACKs, 
the algorithm ignores any ACKs for a single segment, as they 
were presumably delayed. 

l To find the next flight, advance S by F segments. If N, is the 
number of ACKs for new data that arrive between the old value 
of S and its new value, then the size of the next flight is F + N, 
(the slow start increase). 

l When we find a suitable flight, we estimate the bandwidth as 
the amount of data ACKed between the first and the nth ACK, 
divided by the time between the arrivals of these ACKs. 

As the second rows of Tables 5 and 6 show, the performance of 
the TSSF algorithm is quite poor. The overwhelming problem with 
this estimator is underestimating the bandwidth, which would cause 
a reduction in performance. 

The underestimation is caused in part by TCP’s delayed acknowl- 
edgment algorithm. RFC 1122 [Bra891 encourages TCP receivers 
to refrain from ACKing every incoming segment, and to instead ac- 
knowledge every second incoming segment, though it also requires 
that the receiver wait no longer than 500 msec for a second segment 
to arrive before sending an ACK. Many TCP implementations use 
a 200 msec “heartbeat” timer for generating delayed ACKs. When 
the timer goes off, which could be any time between 0 and 200 msec 
after the last segment arrived, if the receiver is still waiting for a sec- 
ond segment it will generate an ACK for the single segment that has 
arrived. Using this mechanism can fail to preserve in the returning 
ACK stream the spacing imposed on the data stream by the bottle- 
neck link. The time the receiver spends waiting on a second segment 
to arrive increases the time between ACKs, which is assumed by the 
sender to indicate the segments were further spaced out by the net- 
work, which leads to an underestimate of the bandwidth. 

Furthermore, once a delayed ACK timer effect is injected into the 
ACK stream, the flight is effectively partitioned into two mini-flights 
for the duration of slow start, since data segments are sent in re- 
sponse to incoming ACKs. The sequence-time plot in Figure 2 il- 
lustrates this effect. In the plot, which is recorded from the sender’s 
perspective, outgoing data segments are indicated with solid squares 
drawn at the upper sequence number of the segment, while incoming 
ACKs are drawn with hollow squares at the sequence number they 
acknowledge. 

The first flight shown, which consists of two segments, elicits a 
single ACK that arrives at time T = 2.0. But the flight of three 
segments that this ACK triggers elicits two ACKs, one for two seg- 
ments arriving at T = 2.6, but another for just one segment at time 
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T = 2.8. The latter reflects a delayed ACK. The next flight of five 
packets then has a lull of about 200 msec in the middle of it. This 
lull is duly reflected in the ACKs for that flight, plus an additional de- 
layed ACK occurs from the first sub-flight of three segments (times 
T = 3.3 through T = 3.5). The resulting next flight of 8 seg- 
ments is further fractured, reflecting not only the lull introduced by 
the new delayed ACK, but also that from the original delayed ACK, 
and the general pattern repeats again with the next flight of 12 seg- 
ments. None of the ACK flights give a good bandwidth estimate, nor 
is there much hope that a later flight might. 

This mundane-but-very-real effect significantly complicates any 
TCP sender-side bandwidth estimation. While for other transport 
protocols the effect might be avoidable (if ACKs are not delayed), 
the more general observation is that sender-side estimation will sig- 
nificantly benefit from information regarding just when the packets 
it sent arrived at the receiver, rather than trying to infer this timing 
by assuming that the receiver sends its feedback promptly enough to 
generate an “echo” of the arrivals. 

3.3.2 Closely-Spaced ACJSs 

The ssthresh estimation algorithms in [Hoe961 and [AD981 are based 
on the notion of measuring the time between “closely spaced ACKs” 
(CSAs). By measuring CSAs, these algorithms attempt to consider 
ACKs that are sent in response to closely spaced data segments, 
whose interarrival timing at the receiver then presumably reflects 
the rate at which they passed through the bottleneck link. However, 
neither paper defines exactly what constitutes a set of closely-space 
ACKs. 

We explore a range of CSA definitions by varying two parameters. 
The first, v, is the fraction of the RT’f within which the consecutive 
ACKs of the closely-spaced group must arrive in order to be consid- 
ered “close.” We examined v values of 0.0125, 0.025, 0.05, 0.1 and 
0.2. The second parameter, n, is the number of ACKs that must be 
close in order to make an estimate. We examined n = 2,3,4,5. The 
bandwidth estimate is made the first time n ACKs arrive (save the 
first) within v . RlT set of their predecessors. This algorithm has 
the advantage of being easy to implement. Also, it does not depend 
on any of the details of TCP’s congestion control algorithms, which 
makes the algorithm easy to use for other transport protocols. A dis- 
advantage of the algorithm is that it is potentially highly dependent 
on the above two constants. 

Our goal was to find a “sweet spot” in the parameter space that 
works well over a diverse set of network paths. Rows 3-6 of Tables 5 
and 6 show the effectiveness of several of the points in the parameter 
space. Values of u and n outside this range performed appreciably 
worse than those shown. 

We chose n = 3, v = 0.1 as the sweet spot in the parameter space. 
However, the choice was not clear cut, as both n = 2, v = 0.05 and 
n = 2, v = 0.1 provide similar effectiveness. All of the parameter 
values shown, including the chosen sweet spot, reduce performance 
for a large number of connections that do not experience loss and 
yield no performance benefit in over 60% of the connections that did 
experience loss (due to an inability to form an estimate or overesti- 
mating). 

3.3.3 ‘hacking Closely-Spaced ACKs 

The ssrhresh estimation algorithm in [AD981 assumes that the ar- 
rivals of closely-spaced ACKs are used to form tentative ss~hresh 
estimates, with a final estimate being picked when these settle down 
into a form of consistency. We used a CSA estimator with n = 3 and 
v = 0.1 (the sweet spot above) to assess the effectiveness of their 
proposed approach. For their scheme, we take multiple samples and 
use the minimum observed sample to set ssrhresh. We continue esti- 
mating until the point of loss, or we observe a sample within 10% of 
the minimum sample observed so far (in which case we are presumed 

to have converged). We show the effectiveness of using the “tracking 
closely-spaced ACKs” (TCSA) algorithm in Tables 5 and 6. As with 
the CSA method described above, the TCSA algorithm does not have 
a performance impact on the connection in over 75% of the connec- 
tions with loss. Furthermore, the number of connections for which 
the performance would be reduced is increased by roughly a factor 
of 2 for both connections that experienced loss and those that did not 
when comparing TCSA with CSA. 

Since TCSA shows an increase in the number of connections 
whose performance would be reduced, it clearly often estimates too 
low, so we devised a variant, TCSA’, that does not depend on the 
minimum observation (which is likely to be an underestimate). We 
compare each CSA estimate, E;, with estimate Ei-1 (for i > 1). If 
these two samples are within 10% of each other, then we use the av- 
erage of the two bandwidth estimates to set ssthresh. Tables 5 and 6 
show that TCSA’ is comparable to TCSA in most ways. The excep- 
tion is that the number of underestimates that would reduce perfor- 
mance is decreased when using TCSA’, so it would be the preferred 
algorithm. 

3.4 Receiver-Side Estimation Algorithm 

The problems with sender-side estimation outlined above led to the 
evaluation of the following receiver-side algorithm for estimating the 
bandwidth. Estimating the bandwidth at the receiver removes the 
problems that can be introduced in the ACK spacing by delay fluctu- 
ations along the return path or due to the delayed ACK timer. 

A disadvantage of this algorithm is that the receiver cannot prop- 
erly control the sender’s transmission rate.8 However, the receiver 
could inform the sender of the bandwidth estimate using a TCP op- 
tion (or some other mechanism, for a transport protocol other than 
TCP). For our purposes, we assume that this problem is solved, and 
note that alternate uses for the estimate by the receiver is an area for 
future work. 

The receiver-side algorithm outlined below is TCP-specific. Its 
key requirement is that the receiver can predict which new segments 
will be transmitted back-to-back in response to the ACKs it sends, 
and thus it can know to use the arrivals of those segments as good 
candidates for reflecting the bottleneck bandwidth. Any transport 
protocol whose receiver can make such a prediction can use a related 
estimation technique. In particular, by using a timestamp inserted by 
the sender, the receiver could determine which segments were sent 
closely-spaced without knowledge of the specific algorithm used by 
the sender. This is an area for near-term future work. 

For convenience, we describe the algorithm assuming that se- 
quence numbers are in terms of segments rather than bytes. Let A; 
denote the segment acknowledged by the ith ACK sent by the re- 
ceiver. Let Di denote the highest sequence number the sender can 
transmit after receiving the ith ACK. If we number the ACK of the 
initial SYN packet as 0, then A0 = 0. Assuming that the initial con- 
gestion window after the arrival of ACK 0 is one segment, we have 
DO = 1. To accommodate initial congestion windows larger than 
one segment [AFP98], we increase DO accordingly. 

The basic insight to how the algorithm works is that the receiver 
knows exactly which new segments the arrival of one of its ACKs at 
the sender will allow. These segments are presumably sent back to 
back, so the receiver can then form a bandwidth estimate based on 
their timing when they arrive at the receiver. 

*The TCP receiver could attempt to do so by adjusting the advertised win- 
dow to limit the sender to the estimated ssfhresh value, even also increasing it 
linearly to reflect congestion avoidance. But when doing so, it diminishes the 
efficacy of the “fast recovery” algorithm [Ste97, APS99], because it will need 
to increase the artificially limited window, and, according to the algorithm, an 
ACK that does so will he ignored from the perspective of sending new data 
in response to receiving it. 
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Any time the receiver sends the j + 1st ACK, it knows that upon 
receipt of the ACK by the sender, the flow control window will slide 
Aj+l - Aj segments, and the congestion window will increase by 
1 segment, so the total number of packets that the sender can now 
transmit will be Aj+l - Aj + 1. Furthermore, their sequence num- 
bers will be Dj + 1 through Dj+l, so it can precisely identify their 
particular future arrivals in order to form a sound measurement. Fi- 
nally, we take the first K such measurements (or continue until a data 
segment was lost), and from them form our bandwidth estimate. For 
our assessment below, we used K = 50. 

(We note that the algorithm may form poor estimates in the face of 
ACK loss, because it will then lose track of which data packets are 
sent back-to-back. We tested an oracular version of the algorithm 
that accounts for lost ACKs, to serve as an upper bound on the effec- 
tiveness of the algorithm. We found that the extra knowledge only 
slightly increases the effectiveness of the algorithm.) 

This algorithm provides estimates for more connections than any 
of the other algorithms studied in this paper, because every ACK 
yields an estimate. Tables 5 and 6 show the receiver-based algo- 
rithm using four different methods for combining the K bandwidth 
estimates. The first “Recv” row of each table shows the effective- 
ness of using the minimum of the h: measurements as the estimate. 
This yields an underestimate in a large number of the connections, 
decreasing performance (34% of the time when the connection expe- 
riences loss and 83% of the time when no loss is present). The next 
row shows that averaging the samples improves the effectiveness 
over using the minimum: the number of connections with reduced 
performance is drastically reduced when the connection experiences 
loss, and halved in the case when no loss occurs. However, the flip 
side is the number of cases when we overestimate the bandwidth in- 
creases when loss is present in the connection. Taking the median 
of the K samples provides similar benefits to using the average, ex- 
cept the number of connections experiencing reduced performance 
increases by a factor of 2 over averaging when loss occurs. Finally, 
using the maximum of the K estimates further increases the number 
of overestimates for connections experiencing loss. However, using 
the maximum also reduces the number of underestimates to nearly 
none, regardless of whether the connection experiences loss. Of the 
methods investigated here, using the maximum appears to provide 
the most effective ssthresh estimate. However, we note that alternate 
algorithms for combining the K estimates is an area for near-term 
future work. 

Finally, we varied the number of bandwidth samples, K, used to 
obtain the average and maximum estimates reported above to deter- 
mine how quickly the algorithms converge. We find that when aver- 
aging the estimates, the effectiveness increases slowly but steadily as 
we increase K to 50 samples. However, when taking the maximum 
sample as the estimate, little benefit is derived from observing more 
than the first 5-10 samples. 

4 Conclusions and Future Work 

Our assessment of different RTO estimators yielded several basic 
findings. The minimum value for the timer has a major impact on 
how well the timer performs, in terms of trading off timely response 
to genuine lost packets against minimizing incorrect retransmissions. 
For a minimum RTO of 1 set, WC also realize a considerable gain 
in performance when using a timer granularity of 100 msec or less, 
while still keeping bad timeouts below 1%. On the other hand, vary- 
ing the EWMA constants has little effect on estimator performance. 
Also, an estimator that simply takes the first RTT measurement and 
computes a fixed RTO from it often does nearly as well as more 
adaptive estimators. Related to this finding, it makes little difference 
whether the estimator measures only one RTI per Right or measures 
an R’IT for every packet. This last finding calls into question some 
of the assumptions in RFC 1323 [JBB92], which presumes that there 

is benefit in timing every packet. Given that such benefit is elusive, 
the other goals of [JBB92] currently accomplished using timestamp 
options should be revisited, to consider using a larger sequence num- 
ber space instead. We finished our RTO assessment by noting that 
timestamps, SACKS, or even a simple timing heuristic can be used 
to reverse the effects of bad timeouts, making aggressive RTO algo- 
rithms more viable. 

Our assessment of various bandwidth estimation schemes found 
that using a sender-side estimation algorithm is problematic, due to 
the failure of the ACK stream to preserve the spacing imposed on 
data segments by the network path, and we developed a receiver-side 
algorithm that performs considerably better. A lingering question is 
whether the complexity of estimating the bandwidth is worth the per- 
formance improvement, given that only about a quarter of the con- 
nections studied would benefit. However, in the context of other uses 
or other transports, estimating the bandwidth using the receiver-side 
algorithm may prove compelling. 

Our study was based on data from 1995, and would benefit con- 
siderably from verification using new data and live experiments. For 
RTO estimation, a natural next step is to more fully explore whether 
combinations of the different algorithm parameters might yield a sig- 
nificantly better “sweet spot.” Another avenue for future work is to 
consider a bimodal timer, with one mode based on estimating RlT 
for when we lack feedback from the network, and the other based 
on estimating the variation in the feedback interarrival process, so 
we can more quickly detect that the receiver feedback stream has 
stalled. For bandwidth estimation, an interesting next step would 
be to assess algorithms for using the estimates to ramp up new con- 
nections to the available bandwidth more quickly than TCP’s slow 
start. Finally, both these estimation problems merit further study in 
scenarios where routers use RED queueing rather than drop-tail, as 
RED deployment should lead to smaller R’IT variations and a source 
of implicit feedback for bandwidth estimation. 
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