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Abstract 

Previous research indicates that packet reordering is not a 
rare event on some Internet paths. Reordering can cause 
performance problems for TCP's fast retransmission al- 
gorithm, which uses the arrival of duplicate acknowl- 
edgments to detect segment loss. Duplicate acknowl- 
edgments can be caused by the loss of a segment or by 
the reordering of segments by the network. In this pa- 
per we illustrate the impact of reordering on TCP perfor- 
mance. In addition, we show the performance of a con- 
servative approach to "undo" the congestion control state 
changes made in conjunction with spurious retransmis- 
sions. Finally, we propose several alternatives to dynami- 
cally make the fast retransmission algorithm more tolerant 
of the reordering observed in the network and assess these 
algorithms. 

1 Introduction 

Previous research indicates that packet reordering is not a 
rare event over some Intemet paths. A network path that 
persistently reorders segments will degrade the perfor- 
mance of traffic utifizing TCP, the Intemet's most widely 
used transport protocol [MC00]. [BPS99] shows that seg- 
ment reordering over the MAE-East exchange is not a 
rare event and eliminating reordering is a difficult prob- 
lem. [Pax97] reports on the reordering observed in TCP 
transfers on a mesh of 35 measurement hosts. This study 
shows that 0.1%-2.0% of all segments (data and ACK) 
experience reordering in the network. In addition, the 
prevalence of reordering vaned across different network 
paths (for instance 15% of the segments transmitted by 
one particular host were reordered). 

TCP receivers generate cumulative acknowledgments 
that indicate the highest in-order piece of data that has 
arrived [Pos81]. For example, assume that three seg- 
ments are transmitted into the network, ,-q,-S.~, and that 
the second two segments are reordered. When segment 
Sx arrives, the receiver will transmit an acknowledgment 
(ACK) for St.  The next segment to arrive is Ss, which is 
out of order. However, the TCP receiver ACKs only the 
last in-order segment received - $1 in our example. When 

segment $2 arrives the last in-order piece of  data that has 
been received becomes Ss, and therefore the ACK trans- 
mitted will contain Sa. 

TCP uses two basic mechanisms to detect segment loss. 
First, ff an ACK for a given segment is not received in 
a certain amount of time the retransmission timer ex- 
pires and the presumed lost data segment is retransmit- 
ted [PosSl]. Alternatively, TCP can use the fast retrans- 
mit algorithm [JacS8, APS99]. Fast retransmit uses dupli- 
cate ACKs (a cumulative acknowledgment for the same 
segment as the last ACK received) to infer that a partic- 
ular data segment was dropped by the network. In an 
attempt to disambiguate duplicate ACKs caused by loss 
from those caused by reordering events, the fast retrans- 
mit algorithm calls for the TCP sender to wait until three 
duplicate ACKs have arrived before retransmitting a seg- 
ment. 

Reordering has a negative effect on TCP performance 
for several reasons: 

A network that reorders data segments such that 3 or 
more duplicate ACKs are triggered at the receiver 
will cause the TCP sender to use fast retransmit to 
resend a data segment that was not lost, hence wast- 
ing bandwidth. 

TCP assumes that loss is an indication of network 
congestion [Jac88], and so a sender perceiving re- 
ordering as loss will also incorrectly reduce the data 
transmission rate when sending a spurious retrans- 
mission. In this paper we address this problem by 
examining a number of  algorithms that vary the num- 
ber of duplicate ACKs required to trigger the fast re- 
transmit algorithm (and hence adjust the congestion 
control state) based on the observed reordering. 

Segment reordering causes interruptions to TCP's 
ACK clock [Jac88], thereby causing its transmission 
to be more bursty. TCP's standard congestion con- 
trol algorithms [APS99] do not allow TCP to send 
segments in response to duplicate ACKs before fast 
retransmit is triggered. By not sending segments in 
response to these duplicate ACKs, TCP effectively 
stores permission to send new data. Therefore, if an 
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ACK covering new data arrives before fast retrans- 
mit is triggered then the burst of  data sent on this 
ACK will be larger than if reordering had not oc- 
curred. This problem may be mitigated by the use of  
the limited transmit algorithm [ABF01], which calls 
for the TCP sender to transmit new data segments 
upon the arrival of  the first two duplicate ACKs. An- 
other method that may reduce the size of  these bursts 
is using a max-burst parameter, as outlined in [FF96]. 
This method places an upper bound on the number of  
segments a TCP sender can transmit in response to a 
single incoming acknowledgment. 

To mitigate the problem of  burstiness we extend the 
limited transmit algorithm [ABF01] to allow the TCP 
sender to transmit new data segments upon receipt 
of  duplicate ACKs before determining that a retrans- 
nat  is necessary. This extension is especially impor- 
tam after we introduce algonthms that increase the 
number of  duplicate ACKs required to trigger fast 
retransmit. Further discussion of  our extensions to 
the Limited Transmit algorithm is given in § 6.1. 

Reordering of  acknowledgments can also cause 
bursty TCP behavior. ACKs that convey no new 
information are discarded by the TCP sender and 
therefore can not be used to clock out new data seg- 
ments. However, the next ACK that atTives and con- 
veys new acknowledgment information will trigger 
a larger than desirable burst of  data segments to be 
transmitted. (This phenomenon is discussed in more 
detail in § 6.1.) 

• Segment reordering can also prohibit TCP from sam- 
piing the round-trip time (RTF) as frequently as in 
an ordered stream. The R T r  is sampled and aver- 
aged to calculate the retransmission timeout (RTO) 
used by TCP to achieve reliable delivery, as outlined 
in [PAO0], RTF timing has traditionally taken the 
form of starting a timer before a given segment, 5 ,  
is transmitted and then stopping the timer when an 
ACK covering segment S arrives. Reordexing can 
falsely inflate the RTF estimate when no unneces- 
sary retransmissions are sent, which can potentially 
hurt performance in that TCP would have to wait 
longer before sending a legitimate retransmission. In 
the case when a segment is retransmitted needlessly 
because of  reordering, the corresponding K I T  sam- 
ple must be marked as invalid [KP87]. For exam- 
ple, if  segment S is sent twice then the RTF sam- 
ple is ambiguous in that the sender can never be sure 
whether the ACK is in response to the first or sec- 
ond transmission of segment S. The exception to 
this rule is the case when the TCP connection is us- 
ing the fimestamp option [JBB92] (however, the use 
of  timestamps in the Interact appears to be limited 

[All00]). 

Traditional RTO timers have been based on course- 
grained clocks (e.g., 500 ms). In addition, [AP99] 
shows that large minimum RTOs are required to pro- 
tect against spurious retransmissious. [PAO0] speci- 
fies that the minimum RTO should be 1 second. We 
believe that with such a lower bound on the RTO the 
slight timing problems introduced by reordering will 
have only small effects on the RTO estimate. There- 
fore this problem is not further studied in this paper, 
although an investigation of  this effect in real net- 
works is an area for future work. 

The investigation presented in this paper uses the in- 
formation provided by the recently standardized duplicate 
selective acknowledgment (DSACK) option [FMbflN30] 
to make TCP more robust in the face o f  reordering. We 
present simulation results using various techniques for 
changing the way TCP senders decide to retransmit data 
segments. This paper is intended to be a preliminary in- 
vestigation on these algorithms and further testing over 
real networks is encouraged to determine the efficacy of 
the various mechanisms introduced in this paper in the 
face of  more realistic reordering patterns. 

The remainder of  this paper is organized as follows. § 2 
outlines the simulation environment we used in our inves- 
tigation, including an outline of  the changes we made to 
the ns simulator. § 3 discusses various methods that allow 
a TCP sender to detect spurious retransmissions. § 4 pro- 
vidas a brief  illustration of  the problem network reorder- 
ing causes for TCP connections. § 5 examines a simple 
scheme to use the DSACK option to improve TCP perfor- 
mance in the face of  packet reordering. § 6 discusses sev- 
eral methods for making TCP's  retransmissiou decisions 
mere adaptive, therefore making TCP more robust to net- 
work reordering. Our results are given in § 7. Finally, our 
conclusions and an outline of future work in this area is 
given in § 8. 

2 Simulation Environment 

We used ns-2.1bT-snapshot-20000816 as the basis for our 
investigation. We added a number of  new features to the 
simulator and patched several bugs. We used the sackl 
variant of  TCP outlined in [FF96] with extensions to sup- 
port DSACK for all experiments outlined in this paper. 
Appendix A outlines the changes we made to the sackl 
TCP variant and the scoreboard in order to make both 
work correctly in the face of  rcordexed segments. 

2 .1  N e t w o r k  T o p o l o g y  a n d  S e t u p  

Figure 1 illustrates the topology used in our experiments. 
The sending host, S, and destination host, D,  are each 
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Figure 1: Simulated network topology. 

connected to a router via I0 Mbps networks. The two 
reuters, R1 and R2, are connected to each other over a 
5 Mbps link with a one-way delay of  50 ms. All our 
simulations use 1500 byte segments, currently a common 
packet size on the I.ntemet [AU00]. The sender uses the 
the sack l  variant of  TCP with a maximum congestion 
window of  500 segments to simulate the use of  autotuned 
socket buffers [SMM98]. The TCP sender never reaches 
the advertised window in our experiments indicating that 
the characteristics of  the network path are dictating the 
performance o f  the Iransfer. The window size used also 
guarantees that a single TCP flow is able to congest the 
network such that packets are dropped by the bottleneck 
reuters. Finally, the TCP sender uses a clock granularity 
of  500 ms for the retransmission timer. The  TCP receiver 
uses the sack l  TCP sink with delayed ACKs. The de- 
layed ACK timer is implemented as a heartbeat timer with 
200 ms granularity. The reuters in our topology use maxi- 
mum queue sizes o f  65 segments and a drop-tail queueing 
strategy. 

2.2 Reordering R o u t e r  

The stock version o f  ns  does not  provide a good way to 
introduce segment reordering for experimentation. We 
implemented a command that can be used in simulation 
scx'/pts to swap two segments in a router's queue at a given 
time. As outlined in the following sections, we varied the 
number o f  random queue swaps and the frequency that we 
forced reordering. The disadvantage o f  our method o f  in- 
troducing reordering is that a queue must have formed for 
the reordering to happen. However, this is consistent with 
the finding in [BPS99] that shows a relationship between 
rreordenng and congestion. Our topology has been engi- 
neered such that a persistent queue is formed by  our TCP 
traffic, so that reordering happens as we expect. 

We are not  familiar with a good model  o f  reordering as 
it happens in real networks, however we believe that fu- 
ture research should attempt to create such a model for 
use in future simulation studies. Our approach is de- 
signed to create reordering events in two dimensions. In- 
formally, these two notions are: (i) how often reordering 
takes place, and ( i i )  how many packets are involved in the 

reordering event. We believe that this method of  introduc- 
ing reordering into our traffic is sufficient to explore TCP 
behavior when faced with a range o f  reordering behavior. 

2 . 3  T r a f f i c  P a t t e r n  

All o f  the experiments in this paper are conducted using 
a single bulk TCP transfer. While  not  a par t icul~ly  re- 
alistic traffic pattern, such a transfer allows us to gauge 
the ideal performance o f  the algorithms we investigate in 
a controlled manner. Clearly additional experiments in- 
volving these algorithms in real networks with more  re- 
alistic traffic patterns and reordering patterns is necessary 
before widespread use o f  these algorithms is suggested. 
Additionally, the lack o f  competing traffic in our simula- 
tions causes all reordering to be applied to one connection. 
This is likely the worst-case scenario. Reordering events 
would not  be as harmful to TCP senders i f  the reordered 
segments were all f rom different connections. 

Note that we do not consider short transfers in this pa- 
per. While most  of  the connections on the Intelrnet are 
shozt-lived flows [TMW97], we do not  expect  the algo- 
rithres discussed in this paper to be useful to short data 
transfers, as short transfers do not  have time to increase 
their congestion window before terminating. Mechanisms 
that examine past reordering events in an attempt to make 
TCP more robust against future events are therefore not 
likely to have a large impact  on short transfers. How- 
ever, an area of  future work may be to gauge the ability 
and the efficacy of  sharing reordering information across 
TCP connections (similar to the sharing congestion con- 
trol state, as proposed in the literature [Tou97, BRS99]).  

3 Detecting Spurious Retransmits 

The first key i tem required to mitigate the impact o f  re- 
ordering on TCP performance is the abifity for  the TCP 
sender to detect spurious relransmissious. Several meth- 
ods for determining when TCP has sent a needless retrans- 
mission have been proposed, as follows: 

. 

. 

The  Eifel algorithm ILK00] uses the TCP timestamp 
option [JBB92] or  two bits f rom the TCP reserved 
field to disambiguate an original transmission f rom a 
relransmission. Eifel  is robust to up to a congestion 
window's worth o f  lost acknowledgments. When us- 
ing the reserved bits, the algorithm requires negoti- 
ation of  Eifel during the initial three-way handshake 
used to initiate every TCP  connection. 

The D S A C K  option [FIvIMP00] allows a TCP re- 
ceiver to report to the sender any duplicate segments 
that arrive. Using D S A C K  information and a his- 
tory of  which segments have been retransmitted, the 
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sender can determine when a retransmission is likely 
spurious. A single DSACK notification is sent in 
one acknowledgment for each duplicate data seg- 
ment that arrives. Because DSACKs are only sent 
once, DSACK is not robust to ACK loss. That is, if  
an ACK containing DSACK information is dropped 
or corrupted by the network, the information about 
that particular segment is lost and the sender will 
never detect the spurious retransmission. 

3. A new option could be designed that reported the 
arrival of duplicate data segments in a more ro- 
bust fashion than DSACK. For instance, the receiver 
could report the information in several acknowledg- 
ments, much like SACK information is currently 
lxansmitted. Such an option would increase the prob- 
ability of  the TCP sender obtaining all avaJJahle in- 
formation about spurious retransmissions. 

4. [AP99] proposes a method for timing the ACK of  
a retransmltted segment. If  the ACK returns in less 
than ~ • RTTm~n, where RTT,  n~n is the minimum 
RTT observed thus far in the connection, the retrans- 
mission is likely spurious. This method has been 
shown to be effective in determining whether a re- 
transmission based on the RTO was required, but has 
not yet been evaluated on retransmissions triggered 
by the fast retransmit algorithm. 

There are real-world tradeoffs in choosing a mechanism 
to detect needless retransmissions, however investigating 
these ~adeoffs is outside the scope of  this paper. The goal 
of this paper is to investigate appropriate behavior after a 
spurious retransmission has been detected, and any of the 
above mechanisms would have worked for the purpose of 
this investigation. We therefore chose to use the DSACK 
option because it is the only alternative that has been stan- 
dardized at the time of  this study. 

4 The Impact of Reordering 

This section provides a simplistic evaluation of the impact 
of  reordering on bulk TCP transfers. Our goal in this sec- 
tion is to illustrate that reordering does in fact hurt perfor- 
mance, and to provide a baseline for subsequent sections. 
Also note that the absolute results presented in this section 
are less important than the qualitative results. In different 
environments with a different (more realistic) traffic mix, 
we would expect different results. The goal of  this sec- 
tion is to illustrate the pattern caused by various levels of  
reordering. 

Figure 2 shows the average throughput of  a 10 minute 
TCP connection with periodic reordering events. Fig- 
ure 2(a) illustrates the throughput as a function of  the 

number of random queue swaps performed roughly ev- 
ery 1 or 8 seconds (the actual interval was randomly de- 
tern'fined using a Poisson process with a mean of 1 or 
8 seconds). Figure 2(b) shows the throughput impact as a 
function of the average interval between reordering events 
(each consisting of  12 random queue swaps). Each point 
on both plots is the mean of  30 simulations. 
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Figure 2: Performance of  standard SACK-based TCP 
when faced with packet reordering. 

As shown in figure 2(a), the throughput is indirectly 
proportional to the number of  packets swapped in the 
queue. Also, as the number of swaps grows the through- 
put stabilizes. This shows that after a certain point the 
reon~ering nearly always causes a needless fast relransmit 
(and halving of  cwnd). Once a spurious fast retransmit is 
triggered, the sending rate is reduced in a uniform fashion. 
After this point, therefore, reordering has little additional 
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effect. In addition, these plots indicate that throughput 
drops as the frequency of  the reordering events increases. 
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Figure 3: Number  o f  unnecessary retransmissions when 
faced with packet  reordering. 

Figure 3 shows the number  of  unnecessary retransmis- 
sions sent during our simulations. Figure 3(a) shows 
the number  o f  spurious retransmits as a function o f  the 
number  of  random queue swaps. The  queue swaps are 
performed roughly every 1 and 8 seconds for compari-  
son. Meanwhile,  Figure 3Co) shows the number  o f  need- 
lessly retransmitted segments as a function o f  the average 
time between reordering events (each o f  which consists 
o f  12 randem queue swaps). Again, each data point  rep- 
resents an average o f  30 simulations. The  plots show that 
the number  o f  spurious retransmissious increase with the 

number  o f  queue swaps per  reordering event. This con- 
firms the reason for  the drop in throughput shown in Fig- 
ure 2. Additionally, Figure 3 shows that as the interval 
between reordering events is reduced, the nmnber  of  spu- 
rious reWansmissions increases as expected. 

5 "Undoing" Bad Congestion Con- 
trol Decisions 

As discussed in § 3, a number  o f  possible  methods for  
detecting spurious retransrnissions exist. As mentioned, 
we  chose to use a conservative algori thm based on the 
D S A C K  option because D S A C K  is currently a standards 
track mechan i sm while  the other methods are still being 
researched. Further, we  believe that the results shown in 
this paper  are likely to be  similar using alternate methods 
for  detecting spurious retransmits.  

Using the D S A C K  option [FMMPO0], a TCP  sender 
is informed about  duplicate segments that arrive at the 
receiver. Duplicate  segments  can be  caused b y  either 
a spurious retransmission sent by  the T C P  sender  or  b y  
some quirk in the network that causes packet  replication. 
[Pax97] shows that packet  replication by  the network is 
exceedingly rare. A D S A C K  therefore has a high proba- 
bility of  reporting a spurious retransmission. As an addi- 
tional check, the TCP sender should ensure that the seg- 
ment  reported as arriving multiple times was actually re- 
transmitted. Once a T C P  sender determines that a spu- 
rious retransmission has occurred using the D S A C K  in- 
formation, the effect the retransmit  had on the congest ion 
control state can be corrected. 

We utifize the following changes to T C P ' s  conges-  
tion conlxol state processing (as generally outlined in 
[FMMP00]): 

• Upon  detection o f  a packet  loss (i.e,, congestion indi- 
cation), we  save the value of  the congest ion window 
(cwnd) as cwnd~re~ before reducing the congestion 
window. 

• Upon  the arrival o f  a D S A C K  and the determination 
that the duplicate was caused by  a spurious retrans- 
mission, the sender notes this until the "loss" recov- 
ery event is finished. 

• Once the " loss"  recovery event  is completed,  we  
check to make  sure that no real loss was detected. 
I f  all retransmits were  found to be  spurious, the slow 
start threshold (ssthresh) is set  to cwndpre,j .  This 
causes the T C P  sender to use slow start to increase 
cwnd to its value pr ior  to the spurious retransmis- 
sion. t 

Iw© have chosen to modify s~tht~sh insured of modifying cwnd di- 
rectly to prevent the injection of a (potentially) large burst of segments 
into the network. 
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We changed the ns sackl model to perform as described 
above when using DSACK. In addition, the SACK algo- 
rithm in ns made several assumptions that did not allow 
for the graceful handling of DSACK, which required sev- 
eral changes to the algorithm as outlined in Appendix A. 
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Figure 4: Throughput of  TCP with DSACK as a function 
of the number of queue swaps. 
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Figure 5: Number of spurious re~ansmits with and with- 
out DSACK as a function of the number of queue swaps. 

The above modifications allow a TCP sender to miti- 
gate the throughput problems caused by spurious retrans- 
missions. Figure 4 shows the throughput obtained by 
a DSACK enabled TCP as a function of the number of 
queue swaps performed. The plot shows that even under 
persistent reordering (approximately one event per sec- 
ond) DSACK allows TCP to maintain throughput. The 
decrease in throughput is roughly 1% in the worst case 
shown on the plot. 

The cost of the additional performance is that TCP with 
DSACK is much more aggressive in comparison to TCP 
without DSACK. Figure 5 shows the mtmber of spttri- 

ous retransmissions performed with and without DSACK 
when reordering is introduced at intervals of approxi- 
mately one second. As shown, using DSACK increases 
the number of bad retransmissions by roughly a factor 
of six. This is caused by DSACK TCP's ability to keep 
the congestion window large when compared to standard 
SACK TCP, therefore causing it to experience more re- 
ordering than a typical SACK TCP sender that is forced 
to slow down in response to each mistake. These spu- 
rious retransmissions waste network resources and could 
contribute to congestion collapse [FF99]. The next sec- 
tion explores a number of ways to mitigate this problem 
in DSACK while retaining the performance benefits. 

6 Avoiding Mistakes 

While the algorithm in § 5 enables TCP to effectively re- 
cover from unneeded congestion control adjustments, it 
is not sufficient to solve the entire reordering problem. 
By reopening cwnd without attempting to prevent further 
unnecessary relransmissions, we are effectively allowing 
TCP to inject potentially large amounts of useless data 
into the network (as shown in figure 5). These useless 
packets could lead toward congestion collapse. Without 
DSACK, TCP is requiRd to reduce the sending rate and 
effectively "pays the price" for sending unnecessary re- 
transmissions. I f  the disadvantage of sending spurious re- 
transmission is eliminated, however, some new algorithm 
is required to attempt m prevent future relransmissious 
caused by reordering. 

The ideal solution is obviously for the sending TCP to 
know precisely how much reordering is present in the net- 
work path at any given time so retransmissions can be 
appropriately triggered. However, given the characteris- 
tics of IP, this is difficult to determine in the general case, 
Therefore, TCP must empirically measure the amount of 
reordering perceived in the network path and adjust the 
retransmission algorithms accordingly, 

The fast retransmit algorithm provides protection 
against reordering events that cause slight reordering such 
that the receiver does not generate 3 duplicate acknowl- 
edgments (e.g., two successive packets being swapped in 
the network). By waiting until the arrival of the third du- 
plicate ACK to trigger a retransmission the TCP sender 
can successfully disambiguate loss from reordering in 
these cases. We experiment with compensating for re- 
ordering by making the threshold that Uriggers fast re- 
transmit a variable, dupthresh, and adjusting the variable 
based on the amount of reordering measured in the net- 
work path. 

This is a more delicate process than it first seems. If  the 
adjusted value is not large enough, TCP will continue to 
send urmecessary retransmissions. On the other hand, if 
the threshold becomes too large, fast reeransmit may not 
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be triggered at all and loss will be recovered via the (often 
costly) RTO timer. The next several subsections outline 
various algorithms for adjusting dupthresh. The point o f  
this paper is not necessarily to provide a compelling case 
for one of  these algorithms over the others. The goal is to 
explore (via simulation) the advantages and disadvantages 
of  each scheme. We believe that experimentation over the 
Internet is required before making a decision on which of  
these algorithms is "the best". 

6.1 Extending the Limited Transmit Algo- 
r i t h m  

Before we consider changing the duplicate ACK thresh- 
old required to trigger fast retransmit, we must  extend the 
Limited Transmit algorithm [ABF01] to ensure that the 
ACK clock is preserved during a reordering or loss event. 
Limited Transmit calls for  sending a new (previously un- 
sent) segment upon receipt  of  each of  the first two dupfi- 
care ACKs in the hopes o f  ensuring that even when op- 
erating with a small cwnd we can generate enough dupli- 
cate ACKs to trigger fast retransmit and not rely on the 
retransmission diner. Our version o f  Limited Transmit 
adds transmission of  new data on every second duplicate 
ACK that arrives after the first two. This keeps the ACK 
clock going while reducing the sending rate in case con- 
gestion has occurred (by sending only half as much data as 
the incoming ACKs are acknowledging). This scheme is 
similar to the rate-halving congestion control mechanism 
[MSML99]. 

In addition to keeping data and ACK packets in the net- 
work path so that feedback continues this extension re- 
duces the potential burst caused by increasing the thresh- 
old to enter fast retransmit (as will be discussed below). 
For  instance, assume it takes the receipt of  10 duplicate 
acknowledgments to trigger fast retransmit to properly 
disambiguate loss f rom reordering. Say the sender re- 
ceives 9 duplicate ACKs and then a new cumulative ACK 
(i.e., there was a reordering event). I f  we were to use 
TCP without extending Limited Transmit we would burst 
on the order of  10 packets into the network when the 
non-duplicate ACK arrives. However, with our extension 
to limited transmit the TCP sender would burst roughly 
5 segments into the network. The Limited Transmit ex- 
tension does not completely prevent bursts, but amelio- 
rates them to some degree. 

We also note that depending on how well the algo- 
rithms presented in the following subsections actually dis- 
ambiguate reordering and loss in real networks the com- 
munity may  wish to revisit this algorithm and send new 
data on every duplicate ACK before fast rewansmit is trig- 
gered rather than on every second duplicate ACK (which 
we believe to be the conservative first approach). Trans- 
mitting on each duplicate ACK would likely eliminate the 

bursting problem a larger duplicate ACK threshold creates 
in the general case. 

6.2 Constant Increase of the Duplicate ACK 
Threshold 

The first mechanism we introduce is to simply increase 
dupthresh by some value K every time we detect a spu- 
rious fast retransmit. This algorithm has the advantage of  
being simple to implement. An associated disadvantage is 
that it may take a number  o f  '~nistakes" before TCP de- 
termines the appropriate value o f  dupthresh for  the current 
network conditions. The  actual performance o f  the algo- 
r i thm depends on the amount  o f  reordering happening in 
the network, the value o f  K and the value of  cwnd. For 
the experiments presented in this paper, we used K ---- 1. 

6.3 Increasing Threshold Based on Length 
of Reordering Event 

The  next algorithm attempts to use the length o f  the 
reordering event as the basis for  increasing dupthresh. 
The TCP sender first determines the number  o f  duplicate 
ACKs that would have disambiguated reordering f rom 
loss, C. The  average o f  C and dupthresh is then used as 
the new value o f  dupthresh, with the additional guarantee 
that dupthresh is incremented by at least 1. The  advantage 
o f  this scheme is that a TCP sender may converge to the 
optimal value ofdupthresh after fewer  mistakes than when 
simply increasing dupthresh by some fixed constant as 
proposed in the last subsection. The  disadvantage is that a 
single, lengthy reordering event may inflate dupthresh un- 
reasonably and thus cause a later time~ut, while increas- 
ing by only a small constant on each mistake makes such 
pathological behavior less likely to cause the TC P  con- 
nection to experience an RTO on the next  real packet loss. 

6.4 Us ing  a D u p l i c a t e  A C K  T h r e s h o l d  a n d  

a T i m e r  

Additionally, we tested a method first outlined in [Pax97] 
that calls for the use o f  3 duplicate ACKs in addition to 
a small amount of  time to trigger re~ransmits. I f  an ac- 
knowledgment for  the segment believed to have been lost 
arrives before the timer fires, the pending retransmission 
is cancelled. We base the amount o f  time we wait on the 
amount of  t ime that would have been required to obtain 
enough duplicate ACKs to disambignate reordering from 
loss in previously experienced reordering events. At face 
value this method is essentially the same as the mech- 
anism outlined in the previous subsections (gauging the 
number of  duplicate ACKs we need to observe). How- 
ever, using the passage of  t ime rather than the arrival of  
duplicate ACKs may be more robust to ACK loss, as well 
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as to the size of  the reordering event. The disadvantage 
of this method is that it requires an additional timer for 
each TCP connection, which is more overhead than the 
previously discussed methods. 

6.S Using a Running Average of the Dupli- 
cate ACK Threshold 

This algorithm keeps an exponentially weighted moving 
average (EWMA) of  the length of  perceived reordering 
events, and adjusts dupthresh accordingly. Each time a 
pure reordering event of length N duplicate ACKs is de- 
tected, the EWMA is updated, as follows: 

{ ~ , - N + ( 1 - a ) - a v g  i f N > a v g  
avg = (,',- z )  . N + (1 - a . z )  . avg otherwise 

(1) 
Where the EWMA gain, ,~, and the mulfiplicative 

factor, z, varied in our simulations. We then update 
dupthresh based on the new avg, as follows: 

dupthreah = kavg + o.sJ (2) 

At initialization, dupthresh and avg are set to 3 dupli- 
cate ACKs. 

6.6 Reducing the Duplicate ACK Threshold 

In our simulations, when a TCP sender uses the RTO to 
trigger a retransmission we take this as an indication that 
the current estimate of  the amount of  reordering in the net- 
work is invalid and reset dupthvesh to 3 duplicate ACKs. 
When the RTO fires either (i) TCP's current estimate of  
dupthresh is outdated such that enough duplicate ACKs 
did not arrive to trigger fast retransmit before the RTO ex- 
pired, or (ii) the amount of  ACK loss was sufficient to 
prevent the fast retransmit algorithm from detecting loss. 
In either case dupthresh requires adjustment so that TCP 
can continue to operate effectivly. The method we use 
(reduce duprhresh back to 3) is conservative in that it is 
no worse than current TCP implementations. However, 
we envision additional adjustment techniques may lead to 
better overall performance and should be studied in future 
work (e.g., reducing dupthresh by half when the RTO ex- 
pires). 

In addition, ff a TCP stack varies its duplicate ACK 
threshold to compensate for reordering and subsequently 
experiences actual packet loss causing cwnd to be reduced 
below dupthresh, the sender may be unable to generate 
enough duplicate ACKs to trigger a fast retransmit. In 
order to avoid this situation, dupthresh must always be 
less than cwnd. In our simulations, we cap dupthresh at 
90% of cwnd, with a maximum of  cwnd - 1 segments. 

While we did not vary these constants in our simula- 
tions we did not notice any performance impact from their 
choice. 

7 Results 

Figure 6 shows the throughput (number of data bytes 
per second) as a function of the number of  queue swaps 
performed approximately every 1 second for the various 
dupthresh compensation schemes outlined above. The 
TCP connection is 10 minutes long, as in the previous 
experiments. As shown on the plot. all the compensa- 
tion schemes except tracking dupthresh with an EWMA 
(<z = 1; z ---- i~) improve throughput slightly over the 
case when no dupthresh compensation is employed (de- 
noted "DSACK-No mitigation" on the plot). Using an 
EWMA hurt performance slightly when the reordering 
was heavy. All lines shown on the plot are within approx- 
imately 1% of  each other; therefore we conclude that the 
impact any particular compensation scheme has on per- 
formance is minimal and that the performance increase 
comes from the ability to revert to the previous conges- 
tion control state when a retransmission is determined to 
be spurious. 
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Figure 6: Throughput as a function of  the number 
of queue swaps for various dupthresh compensation 
schemes. 

Figure 7 (with the F-axis plotted on a log-scale) shows 
the effects of  the algorithms described above on unneces- 
sary retrausmissions. Each of  these algorithms reduces 
the number of  unnecessary retransmissions when com- 
pared to reverting the congestion window without any at- 
tempt to compensate for premature fast relransmits caused 
by the reordering. Furthermore all algorithms except the 
algorithm using an EWMA (again o~ ffi 1; z = i~) gener- 
am fewer unnecessary retransmissions than stock na sackl 
TCP (without any capacity for correcting bogus changes 
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Figure 7: Median number of spurious relransmissions as 
a function of the number of queue swaps. 

to the congestion control state). Finally, all schemes for 
adjusting dupthresh reduce the number of unnecessary re- 
transmissions when compared to using DSACK to revert 
the congestion control state without attempting to change 
dupthmsh. 

The plot shows that the best algorithm, in terms of 
avoiding needless retransmits, is the time-delayed fast re- 
transmit algorithm. The time-delayed fast retransmit algo- 
rithm and the increase-by-N algorithm arc similar in that 
they attempt to retransmit at the same point and only dif- 
fer in the triggering event. The former algorithm uses the 
passage of a ce~tin amount of time, while the latter uses 
the receipt of a certain number of duplicate ACKs. The 
simulation results show that using a time.out is more ro- 
bust than using the receipt of a given number of duplicate 
ACKs. This is explained because ACKs can be lost or 
the algorithm may be slightly off in predicting the num- 
ber of duplicate ACKs that should be used to trigger fast 
retransmit. However, using a timeout has the advantage 
that these events do not hinder the firing of the fast re- 
transmission. 

The figure also shows that the increase-by-N algo- 
rithm performs fewer needless retransmissions than the 
increase-by-1 algorithm. The difference shows that in- 
creasing dupthresh by 1 duplicate ACK per needless re- 
transmit provides a slower convergence time than increas- 
ing by the desired amount at one time. Using an EWMA 
to track the appropriate dupthresh is not nearly as effec- 
tive as the other schemes in these simulations. Below we 
consider the implications of choosing different values for 
the c~ and z on the performance of the EWMA. 

Figure 8 shows the median deviation of each scheme 
from its median performance. Under our model of re- 
ordering, these algorithms performed with varying de- 
grees of consistency in their effectiveness at preventing 
unnecessary retransmissions. The algorithms that pre- 
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Figure 8: Median deviation of unnecessary retransmis- 
sions. 

vented more unnecessary fast retransmits on median also 
performed less consistently, with a median deviation ap- 
proaching half of the median number of  unnecessary re- 
transmissions. In addition to allowing more needless 
retransmissions, the EWMA tracking of dupthresh also 
shows wider variation than the other schemes. 
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Figure 9: Unnecessary retransmissions as a function of a 
for various values of z. 

Figure 9 illustrates the number of  spurious retransmis- 
sions as a function of  ¢x for various values of z. As the 
figure shows, the different values e r a  have very little im- 
pact on the dupthreah estimate formed. The plot does 
show, however, that the difference between the gain for 
increasing and decreasing the EWMA makes a signifi- 
cant difference in the number of  spurious reu~ansmits vrig- 
gered. When the rate of increase and decrease is the same 
(z ---- 1), the plot shows over 550 needless retransmis- 
sions over the course of the simulation. Meanwhile, when 
increasing sixteen times as fast as decreasing the num- 
ber of unneeded retransmissions drops to roughly 275. 
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However, even when z = 1/16 the number of  spurious 
retransmits is significantly higher than any of  the other 
methods we used to adjust dupthresh, which all triggered 
under 100 unnecessary relransmits in our simulations. 

8 Conclusions and Future Work 

The simulation results presented in this paper suggest 
methods that can be used to effectively mitigate the per- 
formance impact reordering imposes upon TCP. In many 
cases, a TCP capable of  restoring its congestion control 
state upon discovery that a spurious retransmit has oc- 
curred performs nearly as well under heavy reordering 
conditions as a standard TCP without reordering. The ap- 
proach of  simply restoring congestion control state each 
time a spurious retransmit is detected, however, leads to 
an undesirable increase in the number of  unnecessary re- 
transmissions injected into the network. We determined 
that some method of  preventing the spurious retransmits 
apriori is desirable and showed several methods that look 
promising for estimating the proper value for dupthresh. 

Suppression of  spurious retransmits was found to be 
effectively controlled by modifying the conditions under 
which the fast retransmit algorithm is initiated. Adjust- 
ment of  the duplicate acknowledgment threshold used to 
Irigger fast retransmit and the insertion of  a small delay 
before transmitting the "lost" packet were found to be ef- 
fective means of  reducing the frequency of  spurious re- 
transmissions under the variety of  reordering conditions 
studied in the investigation presented in this paper. Mean- 
while, our simulations involving an EWMA estimate of  
the proper duplicate ACK threshold show that the method 
does not work nearly as well as the other methods. 

Future work in this area includes: 

• The simulated results presented in this paper need 
verification in the real network. Our model of  re- 
ordering, as mentioned in Section 2, is simplistic and 
may not accurately represent the behavior of  physical 
networks. While it is sufficient to validate the meth- 
ods outlined here as proof-of-concept ideas, quanti- 
tative results regarding the absolute efficacy of  these 
algorithms using this simulation model is not ad- 
vised. 

* Further, a realistic model of reordenng based on em- 
pirical observations would improve the accuracy of  
future simulations. While the prevalence of  reorder- 
ing in the network has been documented, our present 
understanding of the qualities of reordering is incom- 
plete. 

• The possibility of  proactively avoiding spurious re- 
Wansmits should be researched. The algorithms in 

this paper are reactive, correcting a spurious retrans- 
mission that has already occurred and taking steps 
to prevent future mistakes. It would be desirable 
to avoid the unnecessary reU-ansmission in the first 
place. 
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our purposes. This initialization was modified to cor- 
reedy  calculate the amount o f  outstanding data at the 
beginning of  loss recovery in all cases. 

• As oudined in [FF96], the SACK algorithm decre- 
ments the pipe variable (the sender's estimate o f  the 
number of  segments currently in the network) by  
2 segments whenever a partial ACK is received. Par- 
tial ACKs are assumed to indicate that the original 
transmission and the retransmission have both left 
the network, However,  when reordering is present 
a partial ACK may not  be associated with a retrans- 
m i r e d  segment. Therefore,  we limit the number o f  
times the algorithm is allowed to decrement pipe by 
2 segments to the number  o f  segments re~ansmit- 
ted. Otherwise, pipe is decremented by  1 segment 
for  each partial ACK that arrives. 

• As outlined above, reordering may cause a number 
of  "normal" looking ACKs during "loss" recovery. 
Per  the above restriction, the sender will decrease 
pipe by 1 segment for  most  of  these ACKs. How- 
ever, when the receiver is using delayed ACKs the 
incoming ACKs may  indicate that more than one 
segment has left the network. Therefore,  we intro- 
duced a new rule whereby i f  the incoming ACK does 
not contain SACK information and the scoreboard 
is empty the ACK is taken at face value and pipe is 
decremented by  the number  o f  new segn~nts cumu- 
latively ACKed. 

• The  scoreboard data structure required numerous 
changes to cope with D S A CK  information. 

A TCP SACK Changes 

After introducing segment reordering into the traffic pat- 
tern used in our simulations, we found several problems 
with the ns sack] implementation. These changes do not 
have any impact on transfers that do not experience packet 
reordering, as the validation tests included with n.v still 
succeed with our ¢hanges. The following are the changes 
we made: 

We only consider an ACK to be a "duplicate ACK" 
(for the purposes o f  triggering fast retransmit) when 
it contains new SACK information. This has the ef- 
fect o f  preventing DSACKs f rom triggering fast re,- 
transmit. 

The initialization o f"p ipe"  in ns made some assump- 
tions about limited transmit that, while usually cor- 
rect without our modifications, were insufficient for 
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