
On Making TCP More Robust to Packet Reordering

E t h a n B l a n t o n M a r k A l l m a n

O h i o U n i v e r s i t y B B N T e c h n o l o g i e s / N A S A G R C

eblanton@irg, cs. ohiou, edu mal iman@bbn, com

Abstract

Previous research indicates that packet reordering is not a
rare event on some Internet paths. Reordering can cause
performance problems for TCP's fast retransmission al-
gorithm, which uses the arrival of duplicate acknowl-
edgments to detect segment loss. Duplicate acknowl-
edgments can be caused by the loss of a segment or by
the reordering of segments by the network. In this pa-
per we illustrate the impact of reordering on TCP perfor-
mance. In addition, we show the performance of a con-
servative approach to "undo" the congestion control state
changes made in conjunction with spurious retransmis-
sions. Finally, we propose several alternatives to dynami-
cally make the fast retransmission algorithm more tolerant
of the reordering observed in the network and assess these
algorithms.

1 Introduction

Previous research indicates that packet reordering is not a
rare event over some Intemet paths. A network path that
persistently reorders segments will degrade the perfor-
mance of traffic utifizing TCP, the Intemet's most widely
used transport protocol [MC00]. [BPS99] shows that seg-
ment reordering over the MAE-East exchange is not a
rare event and eliminating reordering is a difficult prob-
lem. [Pax97] reports on the reordering observed in TCP
transfers on a mesh of 35 measurement hosts. This study
shows that 0.1%-2.0% of all segments (data and ACK)
experience reordering in the network. In addition, the
prevalence of reordering vaned across different network
paths (for instance 15% of the segments transmitted by
one particular host were reordered).

TCP receivers generate cumulative acknowledgments
that indicate the highest in-order piece of data that has
arrived [Pos81]. For example, assume that three seg-
ments are transmitted into the network, ,-q,-S.~, and that
the second two segments are reordered. When segment
Sx arrives, the receiver will transmit an acknowledgment
(ACK) for St. The next segment to arrive is Ss, which is
out of order. However, the TCP receiver ACKs only the
last in-order segment received - $1 in our example. When

segment $2 arrives the last in-order piece of data that has
been received becomes Ss, and therefore the ACK trans-
mitted will contain Sa.

TCP uses two basic mechanisms to detect segment loss.
First, ff an ACK for a given segment is not received in
a certain amount of time the retransmission timer ex-
pires and the presumed lost data segment is retransmit-
ted [PosSl]. Alternatively, TCP can use the fast retrans-
mit algorithm [JacS8, APS99]. Fast retransmit uses dupli-
cate ACKs (a cumulative acknowledgment for the same
segment as the last ACK received) to infer that a partic-
ular data segment was dropped by the network. In an
attempt to disambiguate duplicate ACKs caused by loss
from those caused by reordering events, the fast retrans-
mit algorithm calls for the TCP sender to wait until three
duplicate ACKs have arrived before retransmitting a seg-
ment.

Reordering has a negative effect on TCP performance
for several reasons:

A network that reorders data segments such that 3 or
more duplicate ACKs are triggered at the receiver
will cause the TCP sender to use fast retransmit to
resend a data segment that was not lost, hence wast-
ing bandwidth.

TCP assumes that loss is an indication of network
congestion [Jac88], and so a sender perceiving re-
ordering as loss will also incorrectly reduce the data
transmission rate when sending a spurious retrans-
mission. In this paper we address this problem by
examining a number of algorithms that vary the num-
ber of duplicate ACKs required to trigger the fast re-
transmit algorithm (and hence adjust the congestion
control state) based on the observed reordering.

Segment reordering causes interruptions to TCP's
ACK clock [Jac88], thereby causing its transmission
to be more bursty. TCP's standard congestion con-
trol algorithms [APS99] do not allow TCP to send
segments in response to duplicate ACKs before fast
retransmit is triggered. By not sending segments in
response to these duplicate ACKs, TCP effectively
stores permission to send new data. Therefore, if an

ACM SIGCOMM 20 Computer Communication Review

ACK covering new data arrives before fast retrans-
mit is triggered then the burst of data sent on this
ACK will be larger than if reordering had not oc-
curred. This problem may be mitigated by the use of
the limited transmit algorithm [ABF01], which calls
for the TCP sender to transmit new data segments
upon the arrival of the first two duplicate ACKs. An-
other method that may reduce the size of these bursts
is using a max-burst parameter, as outlined in [FF96].
This method places an upper bound on the number of
segments a TCP sender can transmit in response to a
single incoming acknowledgment.

To mitigate the problem of burstiness we extend the
limited transmit algorithm [ABF01] to allow the TCP
sender to transmit new data segments upon receipt
of duplicate ACKs before determining that a retrans-
nat is necessary. This extension is especially impor-
tam after we introduce algonthms that increase the
number of duplicate ACKs required to trigger fast
retransmit. Further discussion of our extensions to
the Limited Transmit algorithm is given in § 6.1.

Reordering of acknowledgments can also cause
bursty TCP behavior. ACKs that convey no new
information are discarded by the TCP sender and
therefore can not be used to clock out new data seg-
ments. However, the next ACK that atTives and con-
veys new acknowledgment information will trigger
a larger than desirable burst of data segments to be
transmitted. (This phenomenon is discussed in more
detail in § 6.1.)

• Segment reordering can also prohibit TCP from sam-
piing the round-trip time (RTF) as frequently as in
an ordered stream. The R T r is sampled and aver-
aged to calculate the retransmission timeout (RTO)
used by TCP to achieve reliable delivery, as outlined
in [PAO0], RTF timing has traditionally taken the
form of starting a timer before a given segment, 5 ,
is transmitted and then stopping the timer when an
ACK covering segment S arrives. Reordexing can
falsely inflate the RTF estimate when no unneces-
sary retransmissions are sent, which can potentially
hurt performance in that TCP would have to wait
longer before sending a legitimate retransmission. In
the case when a segment is retransmitted needlessly
because of reordering, the corresponding K I T sam-
ple must be marked as invalid [KP87]. For exam-
ple, if segment S is sent twice then the RTF sam-
ple is ambiguous in that the sender can never be sure
whether the ACK is in response to the first or sec-
ond transmission of segment S. The exception to
this rule is the case when the TCP connection is us-
ing the fimestamp option [JBB92] (however, the use
of timestamps in the Interact appears to be limited

[All00]).

Traditional RTO timers have been based on course-
grained clocks (e.g., 500 ms). In addition, [AP99]
shows that large minimum RTOs are required to pro-
tect against spurious retransmissious. [PAO0] speci-
fies that the minimum RTO should be 1 second. We
believe that with such a lower bound on the RTO the
slight timing problems introduced by reordering will
have only small effects on the RTO estimate. There-
fore this problem is not further studied in this paper,
although an investigation of this effect in real net-
works is an area for future work.

The investigation presented in this paper uses the in-
formation provided by the recently standardized duplicate
selective acknowledgment (DSACK) option [FMbflN30]
to make TCP more robust in the face o f reordering. We
present simulation results using various techniques for
changing the way TCP senders decide to retransmit data
segments. This paper is intended to be a preliminary in-
vestigation on these algorithms and further testing over
real networks is encouraged to determine the efficacy of
the various mechanisms introduced in this paper in the
face of more realistic reordering patterns.

The remainder of this paper is organized as follows. § 2
outlines the simulation environment we used in our inves-
tigation, including an outline of the changes we made to
the ns simulator. § 3 discusses various methods that allow
a TCP sender to detect spurious retransmissions. § 4 pro-
vidas a brief illustration of the problem network reorder-
ing causes for TCP connections. § 5 examines a simple
scheme to use the DSACK option to improve TCP perfor-
mance in the face of packet reordering. § 6 discusses sev-
eral methods for making TCP's retransmissiou decisions
mere adaptive, therefore making TCP more robust to net-
work reordering. Our results are given in § 7. Finally, our
conclusions and an outline of future work in this area is
given in § 8.

2 Simulation Environment

We used ns-2.1bT-snapshot-20000816 as the basis for our
investigation. We added a number of new features to the
simulator and patched several bugs. We used the sackl
variant of TCP outlined in [FF96] with extensions to sup-
port DSACK for all experiments outlined in this paper.
Appendix A outlines the changes we made to the sackl
TCP variant and the scoreboard in order to make both
work correctly in the face of rcordexed segments.

2 .1 N e t w o r k T o p o l o g y a n d S e t u p

Figure 1 illustrates the topology used in our experiments.
The sending host, S, and destination host, D, are each

ACM SIGCOMM 21 Computer Communication Review

r - - ' - - - - - 1

10Mbps I R | I

l m s M b ~ O ~r~

[1t21
I I 1ms

Figure 1: Simulated network topology.

connected to a router via I0 Mbps networks. The two
reuters, R1 and R2, are connected to each other over a
5 Mbps link with a one-way delay of 50 ms. All our
simulations use 1500 byte segments, currently a common
packet size on the I.ntemet [AU00]. The sender uses the
the sack l variant of TCP with a maximum congestion
window of 500 segments to simulate the use of autotuned
socket buffers [SMM98]. The TCP sender never reaches
the advertised window in our experiments indicating that
the characteristics of the network path are dictating the
performance o f the Iransfer. The window size used also
guarantees that a single TCP flow is able to congest the
network such that packets are dropped by the bottleneck
reuters. Finally, the TCP sender uses a clock granularity
of 500 ms for the retransmission timer. The TCP receiver
uses the sack l TCP sink with delayed ACKs. The de-
layed ACK timer is implemented as a heartbeat timer with
200 ms granularity. The reuters in our topology use maxi-
mum queue sizes o f 65 segments and a drop-tail queueing
strategy.

2.2 Reordering R o u t e r

The stock version o f ns does not provide a good way to
introduce segment reordering for experimentation. We
implemented a command that can be used in simulation
scx'/pts to swap two segments in a router's queue at a given
time. As outlined in the following sections, we varied the
number o f random queue swaps and the frequency that we
forced reordering. The disadvantage o f our method o f in-
troducing reordering is that a queue must have formed for
the reordering to happen. However, this is consistent with
the finding in [BPS99] that shows a relationship between
rreordenng and congestion. Our topology has been engi-
neered such that a persistent queue is formed by our TCP
traffic, so that reordering happens as we expect.

We are not familiar with a good model o f reordering as
it happens in real networks, however we believe that fu-
ture research should attempt to create such a model for
use in future simulation studies. Our approach is de-
signed to create reordering events in two dimensions. In-
formally, these two notions are: (i) how often reordering
takes place, and (i i) how many packets are involved in the

reordering event. We believe that this method of introduc-
ing reordering into our traffic is sufficient to explore TCP
behavior when faced with a range o f reordering behavior.

2 . 3 T r a f f i c P a t t e r n

All o f the experiments in this paper are conducted using
a single bulk TCP transfer. While not a par t icul~ly re-
alistic traffic pattern, such a transfer allows us to gauge
the ideal performance o f the algorithms we investigate in
a controlled manner. Clearly additional experiments in-
volving these algorithms in real networks with more re-
alistic traffic patterns and reordering patterns is necessary
before widespread use o f these algorithms is suggested.
Additionally, the lack o f competing traffic in our simula-
tions causes all reordering to be applied to one connection.
This is likely the worst-case scenario. Reordering events
would not be as harmful to TCP senders i f the reordered
segments were all f rom different connections.

Note that we do not consider short transfers in this pa-
per. While most of the connections on the Intelrnet are
shozt-lived flows [TMW97], we do not expect the algo-
rithres discussed in this paper to be useful to short data
transfers, as short transfers do not have time to increase
their congestion window before terminating. Mechanisms
that examine past reordering events in an attempt to make
TCP more robust against future events are therefore not
likely to have a large impact on short transfers. How-
ever, an area of future work may be to gauge the ability
and the efficacy of sharing reordering information across
TCP connections (similar to the sharing congestion con-
trol state, as proposed in the literature [Tou97, BRS99]).

3 Detecting Spurious Retransmits

The first key i tem required to mitigate the impact o f re-
ordering on TCP performance is the abifity for the TCP
sender to detect spurious relransmissious. Several meth-
ods for determining when TCP has sent a needless retrans-
mission have been proposed, as follows:

.

.

The Eifel algorithm ILK00] uses the TCP timestamp
option [JBB92] or two bits f rom the TCP reserved
field to disambiguate an original transmission f rom a
relransmission. Eifel is robust to up to a congestion
window's worth o f lost acknowledgments. When us-
ing the reserved bits, the algorithm requires negoti-
ation of Eifel during the initial three-way handshake
used to initiate every TCP connection.

The D S A C K option [FIvIMP00] allows a TCP re-
ceiver to report to the sender any duplicate segments
that arrive. Using D S A C K information and a his-
tory of which segments have been retransmitted, the

ACM SIGCOMM 22 Computer Communication Review

sender can determine when a retransmission is likely
spurious. A single DSACK notification is sent in
one acknowledgment for each duplicate data seg-
ment that arrives. Because DSACKs are only sent
once, DSACK is not robust to ACK loss. That is, if
an ACK containing DSACK information is dropped
or corrupted by the network, the information about
that particular segment is lost and the sender will
never detect the spurious retransmission.

3. A new option could be designed that reported the
arrival of duplicate data segments in a more ro-
bust fashion than DSACK. For instance, the receiver
could report the information in several acknowledg-
ments, much like SACK information is currently
lxansmitted. Such an option would increase the prob-
ability of the TCP sender obtaining all avaJJahle in-
formation about spurious retransmissions.

4. [AP99] proposes a method for timing the ACK of
a retransmltted segment. If the ACK returns in less
than ~ • RTTm~n, where RTT, n~n is the minimum
RTT observed thus far in the connection, the retrans-
mission is likely spurious. This method has been
shown to be effective in determining whether a re-
transmission based on the RTO was required, but has
not yet been evaluated on retransmissions triggered
by the fast retransmit algorithm.

There are real-world tradeoffs in choosing a mechanism
to detect needless retransmissions, however investigating
these ~adeoffs is outside the scope of this paper. The goal
of this paper is to investigate appropriate behavior after a
spurious retransmission has been detected, and any of the
above mechanisms would have worked for the purpose of
this investigation. We therefore chose to use the DSACK
option because it is the only alternative that has been stan-
dardized at the time of this study.

4 The Impact of Reordering

This section provides a simplistic evaluation of the impact
of reordering on bulk TCP transfers. Our goal in this sec-
tion is to illustrate that reordering does in fact hurt perfor-
mance, and to provide a baseline for subsequent sections.
Also note that the absolute results presented in this section
are less important than the qualitative results. In different
environments with a different (more realistic) traffic mix,
we would expect different results. The goal of this sec-
tion is to illustrate the pattern caused by various levels of
reordering.

Figure 2 shows the average throughput of a 10 minute
TCP connection with periodic reordering events. Fig-
ure 2(a) illustrates the throughput as a function of the

number of random queue swaps performed roughly ev-
ery 1 or 8 seconds (the actual interval was randomly de-
tern'fined using a Poisson process with a mean of 1 or
8 seconds). Figure 2(b) shows the throughput impact as a
function of the average interval between reordering events
(each consisting of 12 random queue swaps). Each point
on both plots is the mean of 30 simulations.

6100O0

6OOOOO

$BO000

57O00O

530000

520000

I Secoad
8 Seconds

• t \

"x
"la.,.i"

~lt-.lt

i l "~ "e"~- ,~. . . m. .~ ~- .o.
~ - - -o. -<m-.~. .~. ,o-.~---,n-. a

i I I " D ' - ~ ' ' l ' ' m - I - 9

5 IO 15 20 25
Number of Queue Swaps

(a) Throughput as a function of the number of randomqueue swaps.

A

"1 245000
0 - 240000

235000

23000O

225000

l 220000

215OO0

21OOO0

r ~

/
i i

/
I

/
t

d

I I I I I I I I I

0 2 4 6 8 l0 12 14 16 18
Average Time Betweeu Reordering (seconds)

20

(b) Throughput as a function of the frequency of reordering.

Figure 2: Performance of standard SACK-based TCP
when faced with packet reordering.

As shown in figure 2(a), the throughput is indirectly
proportional to the number of packets swapped in the
queue. Also, as the number of swaps grows the through-
put stabilizes. This shows that after a certain point the
reon~ering nearly always causes a needless fast relransmit
(and halving of cwnd). Once a spurious fast retransmit is
triggered, the sending rate is reduced in a uniform fashion.
After this point, therefore, reordering has little additional

ACM SIGCOMM 23 Computer Communication Review

effect. In addition, these plots indicate that throughput
drops as the frequency of the reordering events increases.

85

80

7O

55

5O

45

i - P - P w 4

w "'I - - ~ " J ~ ~ ~ ~ - - w ~ ~ , ~ . - a t . . . P - ~ - - i . - ~

i p . . - a f • , o ,,4~

. p r . . , m ' ' ' a '

.~-'J
/

1 [

/
/ 1 Second

8 Seconds •
! I

5 10 15 20

Numb~ of Queue Swaps

(a) Unnecessary rewansmits as a function of number of random
queue swaps.

90

BO

70

4O

30
0

i

I I i I I I I I I

2 4 6 8 10 12 14 16 18 20

Average Th'ne Between li.emd~ring (seconds)

(b) Unnecessary retransmils as a function of the frequency of re-
ordering.

Figure 3: Number o f unnecessary retransmissions when
faced with packet reordering.

Figure 3 shows the number of unnecessary retransmis-
sions sent during our simulations. Figure 3(a) shows
the number o f spurious retransmits as a function o f the
number of random queue swaps. The queue swaps are
performed roughly every 1 and 8 seconds for compari-
son. Meanwhile, Figure 3Co) shows the number o f need-
lessly retransmitted segments as a function o f the average
time between reordering events (each o f which consists
o f 12 randem queue swaps). Again, each data point rep-
resents an average o f 30 simulations. The plots show that
the number o f spurious retransmissious increase with the

number o f queue swaps per reordering event. This con-
firms the reason for the drop in throughput shown in Fig-
ure 2. Additionally, Figure 3 shows that as the interval
between reordering events is reduced, the nmnber of spu-
rious reWansmissions increases as expected.

5 "Undoing" Bad Congestion Con-
trol Decisions

As discussed in § 3, a number o f possible methods for
detecting spurious retransrnissions exist. As mentioned,
we chose to use a conservative algori thm based on the
D S A C K option because D S A C K is currently a standards
track mechan i sm while the other methods are still being
researched. Further, we believe that the results shown in
this paper are likely to be similar using alternate methods
for detecting spurious retransmits.

Using the D S A C K option [FMMPO0], a TCP sender
is informed about duplicate segments that arrive at the
receiver. Duplicate segments can be caused b y either
a spurious retransmission sent by the T C P sender or b y
some quirk in the network that causes packet replication.
[Pax97] shows that packet replication by the network is
exceedingly rare. A D S A C K therefore has a high proba-
bility of reporting a spurious retransmission. As an addi-
tional check, the TCP sender should ensure that the seg-
ment reported as arriving multiple times was actually re-
transmitted. Once a T C P sender determines that a spu-
rious retransmission has occurred using the D S A C K in-
formation, the effect the retransmit had on the congest ion
control state can be corrected.

We utifize the following changes to T C P ' s conges-
tion conlxol state processing (as generally outlined in
[FMMP00]):

• Upon detection o f a packet loss (i.e,, congestion indi-
cation), we save the value of the congest ion window
(cwnd) as cwnd~re~ before reducing the congestion
window.

• Upon the arrival o f a D S A C K and the determination
that the duplicate was caused by a spurious retrans-
mission, the sender notes this until the "loss" recov-
ery event is finished.

• Once the " loss" recovery event is completed, we
check to make sure that no real loss was detected.
I f all retransmits were found to be spurious, the slow
start threshold (ssthresh) is set to cwndpre,j . This
causes the T C P sender to use slow start to increase
cwnd to its value pr ior to the spurious retransmis-
sion. t

Iw© have chosen to modify s~tht~sh insured of modifying cwnd di-
rectly to prevent the injection of a (potentially) large burst of segments
into the network.

ACM S I G C O M M 24 C o m p u t e r Commun i ca t i on Rev iew

We changed the ns sackl model to perform as described
above when using DSACK. In addition, the SACK algo-
rithm in ns made several assumptions that did not allow
for the graceful handling of DSACK, which required sev-
eral changes to the algorithm as outlined in Appendix A.

~ s o o o j, , . ' 1 s~.ond Z

607000 P', 8 Seconds •

J i g " D ' q i " ~ ' " m ' - ~ " a " a , e - - J -
- . nb _ _ o . _ w . . o , . . , o . , _ t , . i t " , . l l . . . O , . . a t . . . o . . . o . . . a , . . , o

605O00

6O4O00

6O2OOO

~ 6O1OOO

60OO0O

599000

L

• i t " ~ i ~ - I u . ~ i - i . . . ~ r . . i . . ~ . "
q ~ q i

I I I I

5 I0 15 20 25
Number of Queue Swaps

Figure 4: Throughput of TCP with DSACK as a function
of the number of queue swaps.

80O

70O

51111

10O

0

SACS
DSACK •

~ f . . | . - I , - # - ' ! - ' i - . 4 . . 8 . . 1 ~ . 4 , - i . . | . .) . . | - . i - . 4 ~ - . . t - t l - - | . . a . - , , t l . - |

/
m

i i . . i . . . t . . l l . . . i . . . i 1 , . . o . - i - - t - i - - i - - l , - - - i - - i - . - ! - - - - i - - - m - - - i - -.11- - - u - - l - ~ - i - 4

I I I I

0 5 10 15 20 25
Number of Queue Swaps

Figure 5: Number of spurious re~ansmits with and with-
out DSACK as a function of the number of queue swaps.

The above modifications allow a TCP sender to miti-
gate the throughput problems caused by spurious retrans-
missions. Figure 4 shows the throughput obtained by
a DSACK enabled TCP as a function of the number of
queue swaps performed. The plot shows that even under
persistent reordering (approximately one event per sec-
ond) DSACK allows TCP to maintain throughput. The
decrease in throughput is roughly 1% in the worst case
shown on the plot.

The cost of the additional performance is that TCP with
DSACK is much more aggressive in comparison to TCP
without DSACK. Figure 5 shows the mtmber of spttri-

ous retransmissions performed with and without DSACK
when reordering is introduced at intervals of approxi-
mately one second. As shown, using DSACK increases
the number of bad retransmissions by roughly a factor
of six. This is caused by DSACK TCP's ability to keep
the congestion window large when compared to standard
SACK TCP, therefore causing it to experience more re-
ordering than a typical SACK TCP sender that is forced
to slow down in response to each mistake. These spu-
rious retransmissions waste network resources and could
contribute to congestion collapse [FF99]. The next sec-
tion explores a number of ways to mitigate this problem
in DSACK while retaining the performance benefits.

6 Avoiding Mistakes

While the algorithm in § 5 enables TCP to effectively re-
cover from unneeded congestion control adjustments, it
is not sufficient to solve the entire reordering problem.
By reopening cwnd without attempting to prevent further
unnecessary relransmissions, we are effectively allowing
TCP to inject potentially large amounts of useless data
into the network (as shown in figure 5). These useless
packets could lead toward congestion collapse. Without
DSACK, TCP is requiRd to reduce the sending rate and
effectively "pays the price" for sending unnecessary re-
transmissions. I f the disadvantage of sending spurious re-
transmission is eliminated, however, some new algorithm
is required to attempt m prevent future relransmissious
caused by reordering.

The ideal solution is obviously for the sending TCP to
know precisely how much reordering is present in the net-
work path at any given time so retransmissions can be
appropriately triggered. However, given the characteris-
tics of IP, this is difficult to determine in the general case,
Therefore, TCP must empirically measure the amount of
reordering perceived in the network path and adjust the
retransmission algorithms accordingly,

The fast retransmit algorithm provides protection
against reordering events that cause slight reordering such
that the receiver does not generate 3 duplicate acknowl-
edgments (e.g., two successive packets being swapped in
the network). By waiting until the arrival of the third du-
plicate ACK to trigger a retransmission the TCP sender
can successfully disambiguate loss from reordering in
these cases. We experiment with compensating for re-
ordering by making the threshold that Uriggers fast re-
transmit a variable, dupthresh, and adjusting the variable
based on the amount of reordering measured in the net-
work path.

This is a more delicate process than it first seems. If the
adjusted value is not large enough, TCP will continue to
send urmecessary retransmissions. On the other hand, if
the threshold becomes too large, fast reeransmit may not

A C M S I G C O M M 2 5 C o m p u t e r C o m m u n i c a t i o n R e v i e w

be triggered at all and loss will be recovered via the (often
costly) RTO timer. The next several subsections outline
various algorithms for adjusting dupthresh. The point o f
this paper is not necessarily to provide a compelling case
for one of these algorithms over the others. The goal is to
explore (via simulation) the advantages and disadvantages
of each scheme. We believe that experimentation over the
Internet is required before making a decision on which of
these algorithms is "the best".

6.1 Extending the Limited Transmit Algo-
r i t h m

Before we consider changing the duplicate ACK thresh-
old required to trigger fast retransmit, we must extend the
Limited Transmit algorithm [ABF01] to ensure that the
ACK clock is preserved during a reordering or loss event.
Limited Transmit calls for sending a new (previously un-
sent) segment upon receipt of each of the first two dupfi-
care ACKs in the hopes o f ensuring that even when op-
erating with a small cwnd we can generate enough dupli-
cate ACKs to trigger fast retransmit and not rely on the
retransmission diner. Our version o f Limited Transmit
adds transmission of new data on every second duplicate
ACK that arrives after the first two. This keeps the ACK
clock going while reducing the sending rate in case con-
gestion has occurred (by sending only half as much data as
the incoming ACKs are acknowledging). This scheme is
similar to the rate-halving congestion control mechanism
[MSML99].

In addition to keeping data and ACK packets in the net-
work path so that feedback continues this extension re-
duces the potential burst caused by increasing the thresh-
old to enter fast retransmit (as will be discussed below).
For instance, assume it takes the receipt of 10 duplicate
acknowledgments to trigger fast retransmit to properly
disambiguate loss f rom reordering. Say the sender re-
ceives 9 duplicate ACKs and then a new cumulative ACK
(i.e., there was a reordering event). I f we were to use
TCP without extending Limited Transmit we would burst
on the order of 10 packets into the network when the
non-duplicate ACK arrives. However, with our extension
to limited transmit the TCP sender would burst roughly
5 segments into the network. The Limited Transmit ex-
tension does not completely prevent bursts, but amelio-
rates them to some degree.

We also note that depending on how well the algo-
rithms presented in the following subsections actually dis-
ambiguate reordering and loss in real networks the com-
munity may wish to revisit this algorithm and send new
data on every duplicate ACK before fast rewansmit is trig-
gered rather than on every second duplicate ACK (which
we believe to be the conservative first approach). Trans-
mitting on each duplicate ACK would likely eliminate the

bursting problem a larger duplicate ACK threshold creates
in the general case.

6.2 Constant Increase of the Duplicate ACK
Threshold

The first mechanism we introduce is to simply increase
dupthresh by some value K every time we detect a spu-
rious fast retransmit. This algorithm has the advantage of
being simple to implement. An associated disadvantage is
that it may take a number o f '~nistakes" before TCP de-
termines the appropriate value o f dupthresh for the current
network conditions. The actual performance o f the algo-
r i thm depends on the amount o f reordering happening in
the network, the value o f K and the value of cwnd. For
the experiments presented in this paper, we used K ---- 1.

6.3 Increasing Threshold Based on Length
of Reordering Event

The next algorithm attempts to use the length o f the
reordering event as the basis for increasing dupthresh.
The TCP sender first determines the number o f duplicate
ACKs that would have disambiguated reordering f rom
loss, C. The average o f C and dupthresh is then used as
the new value o f dupthresh, with the additional guarantee
that dupthresh is incremented by at least 1. The advantage
o f this scheme is that a TCP sender may converge to the
optimal value ofdupthresh after fewer mistakes than when
simply increasing dupthresh by some fixed constant as
proposed in the last subsection. The disadvantage is that a
single, lengthy reordering event may inflate dupthresh un-
reasonably and thus cause a later time~ut, while increas-
ing by only a small constant on each mistake makes such
pathological behavior less likely to cause the TC P con-
nection to experience an RTO on the next real packet loss.

6.4 Us ing a D u p l i c a t e A C K T h r e s h o l d a n d

a T i m e r

Additionally, we tested a method first outlined in [Pax97]
that calls for the use o f 3 duplicate ACKs in addition to
a small amount of time to trigger re~ransmits. I f an ac-
knowledgment for the segment believed to have been lost
arrives before the timer fires, the pending retransmission
is cancelled. We base the amount o f time we wait on the
amount of t ime that would have been required to obtain
enough duplicate ACKs to disambignate reordering from
loss in previously experienced reordering events. At face
value this method is essentially the same as the mech-
anism outlined in the previous subsections (gauging the
number of duplicate ACKs we need to observe). How-
ever, using the passage of t ime rather than the arrival of
duplicate ACKs may be more robust to ACK loss, as well

ACM SIGCOMM 26 Computer Communication Review

as to the size of the reordering event. The disadvantage
of this method is that it requires an additional timer for
each TCP connection, which is more overhead than the
previously discussed methods.

6.S Using a Running Average of the Dupli-
cate ACK Threshold

This algorithm keeps an exponentially weighted moving
average (EWMA) of the length of perceived reordering
events, and adjusts dupthresh accordingly. Each time a
pure reordering event of length N duplicate ACKs is de-
tected, the EWMA is updated, as follows:

{ ~ , - N + (1 - a) - a v g i f N > a v g
avg = (,',- z) . N + (1 - a . z) . avg otherwise

(1)
Where the EWMA gain, ,~, and the mulfiplicative

factor, z, varied in our simulations. We then update
dupthresh based on the new avg, as follows:

dupthreah = kavg + o.sJ (2)

At initialization, dupthresh and avg are set to 3 dupli-
cate ACKs.

6.6 Reducing the Duplicate ACK Threshold

In our simulations, when a TCP sender uses the RTO to
trigger a retransmission we take this as an indication that
the current estimate of the amount of reordering in the net-
work is invalid and reset dupthvesh to 3 duplicate ACKs.
When the RTO fires either (i) TCP's current estimate of
dupthresh is outdated such that enough duplicate ACKs
did not arrive to trigger fast retransmit before the RTO ex-
pired, or (ii) the amount of ACK loss was sufficient to
prevent the fast retransmit algorithm from detecting loss.
In either case dupthresh requires adjustment so that TCP
can continue to operate effectivly. The method we use
(reduce duprhresh back to 3) is conservative in that it is
no worse than current TCP implementations. However,
we envision additional adjustment techniques may lead to
better overall performance and should be studied in future
work (e.g., reducing dupthresh by half when the RTO ex-
pires).

In addition, ff a TCP stack varies its duplicate ACK
threshold to compensate for reordering and subsequently
experiences actual packet loss causing cwnd to be reduced
below dupthresh, the sender may be unable to generate
enough duplicate ACKs to trigger a fast retransmit. In
order to avoid this situation, dupthresh must always be
less than cwnd. In our simulations, we cap dupthresh at
90% of cwnd, with a maximum of cwnd - 1 segments.

While we did not vary these constants in our simula-
tions we did not notice any performance impact from their
choice.

7 Results

Figure 6 shows the throughput (number of data bytes
per second) as a function of the number of queue swaps
performed approximately every 1 second for the various
dupthresh compensation schemes outlined above. The
TCP connection is 10 minutes long, as in the previous
experiments. As shown on the plot. all the compensa-
tion schemes except tracking dupthresh with an EWMA
(<z = 1; z ---- i~) improve throughput slightly over the
case when no dupthresh compensation is employed (de-
noted "DSACK-No mitigation" on the plot). Using an
EWMA hurt performance slightly when the reordering
was heavy. All lines shown on the plot are within approx-
imately 1% of each other; therefore we conclude that the
impact any particular compensation scheme has on per-
formance is minimal and that the performance increase
comes from the ability to revert to the previous conges-
tion control state when a retransmission is determined to
be spurious.

I
6O8OOO

6o7/o0e

6o6ooo

~ o o o

6o4ooo

60300o

6o2ooo

60100O

6OOOOO

599(X]O

59B000
0

-_-o= _~_- : : : '_- ; ; l = . o l l

DSACK -- No mifigafim - - - + - -
L ~.~,~m,~t by I

]nc~nemt by N ------
Time-delayed F.R. " ~ - -

~ EWMA -~,--.-,

I I I I

$ 10 15 20 25

Numl~r of Queue Swapa

Figure 6: Throughput as a function of the number
of queue swaps for various dupthresh compensation
schemes.

Figure 7 (with the F-axis plotted on a log-scale) shows
the effects of the algorithms described above on unneces-
sary retrausmissions. Each of these algorithms reduces
the number of unnecessary retransmissions when com-
pared to reverting the congestion window without any at-
tempt to compensate for premature fast relransmits caused
by the reordering. Furthermore all algorithms except the
algorithm using an EWMA (again o~ ffi 1; z = i~) gener-
am fewer unnecessary retransmissions than stock na sackl
TCP (without any capacity for correcting bogus changes

ACM SIGCOMM 27 Computer Communication Review

I000

I

J

IO
0 25

, ; ,...,' . : .
..s~--nz.-R::.41:'.~-~--a----o--.e--o,--e,-,-~ = -----e--a-'a"-,a-ff=ll--II:~l]

Standnrd Sackl TCP
DSACK -- No Mitigatioa ---~---

l n~emea t by 1 -.--.m
Ira:re=Brant by N o

TimB-delayed Past ReWammit - - ~ - -
, , , EW~IL~k -.---

5 10 1.5 20

Number of Queue Swaps

Figure 7: Median number of spurious relransmissions as
a function of the number of queue swaps.

to the congestion control state). Finally, all schemes for
adjusting dupthresh reduce the number of unnecessary re-
transmissions when compared to using DSACK to revert
the congestion control state without attempting to change
dupthmsh.

The plot shows that the best algorithm, in terms of
avoiding needless retransmits, is the time-delayed fast re-
transmit algorithm. The time-delayed fast retransmit algo-
rithm and the increase-by-N algorithm arc similar in that
they attempt to retransmit at the same point and only dif-
fer in the triggering event. The former algorithm uses the
passage of a ce~tin amount of time, while the latter uses
the receipt of a certain number of duplicate ACKs. The
simulation results show that using a time.out is more ro-
bust than using the receipt of a given number of duplicate
ACKs. This is explained because ACKs can be lost or
the algorithm may be slightly off in predicting the num-
ber of duplicate ACKs that should be used to trigger fast
retransmit. However, using a timeout has the advantage
that these events do not hinder the firing of the fast re-
transmission.

The figure also shows that the increase-by-N algo-
rithm performs fewer needless retransmissions than the
increase-by-1 algorithm. The difference shows that in-
creasing dupthresh by 1 duplicate ACK per needless re-
transmit provides a slower convergence time than increas-
ing by the desired amount at one time. Using an EWMA
to track the appropriate dupthresh is not nearly as effec-
tive as the other schemes in these simulations. Below we
consider the implications of choosing different values for
the c~ and z on the performance of the EWMA.

Figure 8 shows the median deviation of each scheme
from its median performance. Under our model of re-
ordering, these algorithms performed with varying de-
grees of consistency in their effectiveness at preventing
unnecessary retransmissions. The algorithms that pre-

50
45
4O

8 35

I :
lO

5
o

o

- . " ' S t a n d a r d S a c k 1 T C P ,
N . I n c r e m e n t b y 1
- ~ . I n c r e m e n t b y N 4,
" N . T i m e - d e l a y e d F . R . =
- ~ . E W M A - - - - - - -

I I I I

5 i0 15 2 0

N u m b e r o f Q u e u e S w a p s

25

Figure 8: Median deviation of unnecessary retransmis-
sions.

vented more unnecessary fast retransmits on median also
performed less consistently, with a median deviation ap-
proaching half of the median number of unnecessary re-
transmissions. In addition to allowing more needless
retransmissions, the EWMA tracking of dupthresh also
shows wider variation than the other schemes.

6 0 0

5 0 0

"H

• 4 0 0

3 0 0

100

0 i i I I I

0.1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 1

X--~l
x=0.5 -"'~"

x=0.25
x=0.125 " -

_ _~ff i° -°62s - - -~

0 . 7 0 .S 0 . 9

Figure 9: Unnecessary retransmissions as a function of a
for various values of z.

Figure 9 illustrates the number of spurious retransmis-
sions as a function of ¢x for various values of z. As the
figure shows, the different values e r a have very little im-
pact on the dupthreah estimate formed. The plot does
show, however, that the difference between the gain for
increasing and decreasing the EWMA makes a signifi-
cant difference in the number of spurious reu~ansmits vrig-
gered. When the rate of increase and decrease is the same
(z ---- 1), the plot shows over 550 needless retransmis-
sions over the course of the simulation. Meanwhile, when
increasing sixteen times as fast as decreasing the num-
ber of unneeded retransmissions drops to roughly 275.

ACM SIGCOMM 28 Computer Communication Review

However, even when z = 1/16 the number of spurious
retransmits is significantly higher than any of the other
methods we used to adjust dupthresh, which all triggered
under 100 unnecessary relransmits in our simulations.

8 Conclusions and Future Work

The simulation results presented in this paper suggest
methods that can be used to effectively mitigate the per-
formance impact reordering imposes upon TCP. In many
cases, a TCP capable of restoring its congestion control
state upon discovery that a spurious retransmit has oc-
curred performs nearly as well under heavy reordering
conditions as a standard TCP without reordering. The ap-
proach of simply restoring congestion control state each
time a spurious retransmit is detected, however, leads to
an undesirable increase in the number of unnecessary re-
transmissions injected into the network. We determined
that some method of preventing the spurious retransmits
apriori is desirable and showed several methods that look
promising for estimating the proper value for dupthresh.

Suppression of spurious retransmits was found to be
effectively controlled by modifying the conditions under
which the fast retransmit algorithm is initiated. Adjust-
ment of the duplicate acknowledgment threshold used to
Irigger fast retransmit and the insertion of a small delay
before transmitting the "lost" packet were found to be ef-
fective means of reducing the frequency of spurious re-
transmissions under the variety of reordering conditions
studied in the investigation presented in this paper. Mean-
while, our simulations involving an EWMA estimate of
the proper duplicate ACK threshold show that the method
does not work nearly as well as the other methods.

Future work in this area includes:

• The simulated results presented in this paper need
verification in the real network. Our model of re-
ordering, as mentioned in Section 2, is simplistic and
may not accurately represent the behavior of physical
networks. While it is sufficient to validate the meth-
ods outlined here as proof-of-concept ideas, quanti-
tative results regarding the absolute efficacy of these
algorithms using this simulation model is not ad-
vised.

* Further, a realistic model of reordenng based on em-
pirical observations would improve the accuracy of
future simulations. While the prevalence of reorder-
ing in the network has been documented, our present
understanding of the qualities of reordering is incom-
plete.

• The possibility of proactively avoiding spurious re-
Wansmits should be researched. The algorithms in

this paper are reactive, correcting a spurious retrans-
mission that has already occurred and taking steps
to prevent future mistakes. It would be desirable
to avoid the unnecessary reU-ansmission in the first
place.

Acknowledgments

We would like to thank Sally Floyd for numerous helpful
tips and discussions, as well as the initial work of adding
DSACK notification to ns. We would also like to thank
Joseph Ishac, Hans Kruse, Reiner Ludwig, Shawn Oster-
mann and Craig Partridge for their suggestions and dis-
cussions during the development of this work. Finally, we
thank the anonymous CCR reviews for a number of sug-
gestions that improved this paper.

References
[ABF01]

[AliO0]

lAP99]

[APS99]

[BPS99]

[BRS99]

[FF96]

[FF99]

t-~VIMP00]

[JacS8]

Mark A]lman, Hari Balakrishnan, and Sally Floyd.
Enhancing TCP's Loss Recovery Using Limited
Transmit, January 2001. RFC 304.2.

Mark Allman. A Web Server's View of the Trans-
port Layer. Computer Communication Review,
30(5): 10-20, October 2000.

Mark Allman and Vern Paxson. On Estimating
End-to-End Network Path Properties. In ACM SIG-
COMM, September 1999.

Mark Allman, Vern Paxson, and W. Richard
Stevens. TCP Congestion Control, April 1999.
RFC 2581.

Jon Bennett, Craig Partridge, and Nicholas Sheot-
man. Packet Reordering is Not Pathological Net-
work Behavior. IEEE/ACM Transactions on Net-
working, December 1999.

Hari Balakrishnan, Hariharan Rahul, arid Srini-
vasari Seshan. An Integrated Congestion Manage-
ment Architecture for Internet Hosts. In ACM 51G-
COMM, September 1999.

Kevin Fall and Sally Floyd. Simulation-based
Comparisons of Tahoe, Reno, and SACK TCP.
Computer Communications Review, 26(3), July
1996.

Sally Floyd and Kevin Pall. Promoting the Use
of End-to-End Congestion Control in the Internet.
IEEF/ACM Tran~actiorts on Networking, 7(6), Au-
gust 1999.

Sally Floyd, Jamshid Mahdavi, Matt Mathis, and
Matt Podolsky. An Extension to the Selective
Acknowledgement (SACK) Option for TCP, July
2000. RFC 2883.

Van Jacobson. Congestion Avoidance and Control.
InACM SIGCOMM, 1988.

ACM SIGCOMM 29 Computer Communication Review

[JBB92]

[KP87]

ILK00]

[MC00]

[MSML99]

[PA00]

[Pax97]

[PosS1]

[SMM98]

[TMW97]

[Tou97]

Van Jacobsen, Robert Braden, and David Borman.
TCP Extensions for High Performance, May 1992.
RFC 1323.

Phil Kam and Craig Partridge. Improving Round-
Trip Time Estimates in Reliable Transport Proto-
cols. In ACM SIGCOMM, pages 2-7, August 1987.

Reiner Ludwig and Randy Katz. The Eifel Algo-
rithm: Making TCP Robust Against Spurious Re-
transmissions. Computer Communication Review,
30(1), January 2000.

Sean Mc reary and K. Claffy. Trends
in Wide Area IP Traffic Patterns A View
from Ames Iuternet Exchange, May 2000.
http://www.caida.org/outreaclVpapers/AIX0005/.

Matt Mathis, Jeff Semke, Jamshid Mahdavi, and
Kevin Lahey. The Rate-Halving Algorithm for
TCP Congestion Control, August 1999. Internet-
Draft draft-mathis-tcp-rateha]ving-00.txt (work in
progress).

Vern Paxson and Mark Allman. Computing TCP's
Rea'ansmission Timer, November 2000. RFC 2988.

Vern Paxson. End-to-End Internet Packet Dynam-
ics. ln ACM SIGCOMM, September 1997.

Jon Postel. Transmission Control Protocol,
September 1981. RFC 793.

Jeff Semke, Jamshid Mahdavi, and Matt Mathis.
Automatic TCP Buffer Tuning. In ACM SIG-
COMM, September 1998.

Kevin Thompson, Gregory Miller, and Rick Wilder.
Wide-Area Internet Traffic Pallcrns and Charac-
teristics. IEEE Network, 11(6):10-23, Novem-
ber/December 1997.

Joe Touch. TCP Control Block Intexdependence,
April 1997. R.FC 2140.

our purposes. This initialization was modified to cor-
reedy calculate the amount o f outstanding data at the
beginning of loss recovery in all cases.

• As oudined in [FF96], the SACK algorithm decre-
ments the pipe variable (the sender's estimate o f the
number of segments currently in the network) by
2 segments whenever a partial ACK is received. Par-
tial ACKs are assumed to indicate that the original
transmission and the retransmission have both left
the network, However, when reordering is present
a partial ACK may not be associated with a retrans-
m i r e d segment. Therefore, we limit the number o f
times the algorithm is allowed to decrement pipe by
2 segments to the number o f segments re~ansmit-
ted. Otherwise, pipe is decremented by 1 segment
for each partial ACK that arrives.

• As outlined above, reordering may cause a number
of "normal" looking ACKs during "loss" recovery.
Per the above restriction, the sender will decrease
pipe by 1 segment for most of these ACKs. How-
ever, when the receiver is using delayed ACKs the
incoming ACKs may indicate that more than one
segment has left the network. Therefore, we intro-
duced a new rule whereby i f the incoming ACK does
not contain SACK information and the scoreboard
is empty the ACK is taken at face value and pipe is
decremented by the number o f new segn~nts cumu-
latively ACKed.

• The scoreboard data structure required numerous
changes to cope with D S A CK information.

A TCP SACK Changes

After introducing segment reordering into the traffic pat-
tern used in our simulations, we found several problems
with the ns sack] implementation. These changes do not
have any impact on transfers that do not experience packet
reordering, as the validation tests included with n.v still
succeed with our ¢hanges. The following are the changes
we made:

We only consider an ACK to be a "duplicate ACK"
(for the purposes o f triggering fast retransmit) when
it contains new SACK information. This has the ef-
fect o f preventing DSACKs f rom triggering fast re,-
transmit.

The initialization o f"p ipe" in ns made some assump-
tions about limited transmit that, while usually cor-
rect without our modifications, were insufficient for

A C M S I G C O M M 30 Compu te r Commun ica t ion Rev iew

