
Estimating Loss Rates With TCP

Mark Al lman 1

International Compu te r Science Institute

mallman@icir, org

Wesley M. Eddy, Shawn Ostermann
Ohio University

{weddy, osterraann}@eecs, ohiou, edu

Abstract

Estimating loss rates along a network path is a problem that
has received much attention within the research community.
However, deriving accurate estimates of the loss rate from
TCP transfers has been largely unaddressed. In this paper, we
first show that using a simple count of the number of retrans-
missions yields inaccurate estimates of the loss rate in many
cases. The mis-estimation stems from flaws in TCP's retrans-
mission schemes that cause the protocol to spuriously retrans-
mit data in a number of cases. Next, we develop techniques
for refining the retransmission count to produce a better loss
rate estimate for both Reno and SACK variants of TCP. Fi-
nally, we explore two SACK-based variants of TCP with an
eye towards reducing spurious retransmits, the root cause of
the mis-estimation of the loss rate. An additional benefit of
reducing the number of needless retransmits is a reduction in
the amount of shared network resources used to accomplish
no useful work.

1 Introduction

Assessing network properties is a topic that has received a
great deal of attention in the literature. Among the measure-
ment techniques developed by the research community is a
set of methods to derive information about the dynamics of
a path from TCP [Pos81] connections. For instance, [Pax97]
assesses the dynamics of a number of paths through the analy-
sis of pairs of sender-side and receiver-side TCP traces, while
[JD02] details techniques for assessing the round-trip time of
a path by watching TCP segments from an arbitrary location
in the network, and [BPS99] uses TCP transfers to explore the
prevalence of packet reordering. These are but a sampling of
a rich range of papers in the literature.

This paper adds to the body of measurement techniques by de-
tailing and validating a method for estimating the loss rate ex-
perienced by a TCP connection by observing the connection's
segments close to the data sender (or in the sender-side TCP
implementation). Previous work in the literature has assessed
TCP segment losses by comparing segment traces from the
two endpoints of a TCP connection [Pax97] or by monitoring
only the data segments of a connection at some point in the
middle of the network [BV02]. Our goal is to monitor the

1Mark Allman was with BBN Technologies and supported by NASA's
Glenn Research Center when this research was conducted.

connection at only the sender-side and to be as accurate as
possible. Hence we leverage information from both the data
and ACK streams.

There are several attractive applications and properties of
TCP sender-side estimation of the loss rate, including:

• A proposal for Cumulative Explicit Transport Error No-
tification (CETEN) [KAPS02, EOA03] requires either
that the network provide explicit and fine-grained in-
formation about the level of congestion or that TCP be
able to estimate this based on the loss rate observed.
[KAPS02] notes the problems with using a simple count
of the number of retransmissions as an indication of the
level of network congestion. We explore this problem
empirically in § 3. While [KAPS02] uses explicit in-
formation from the network, a lighter weight scheme
whereby the sender could accurately assess the loss rate
of the network would be easier to deploy (as discussed
in [EOA03]).

• Measuring the loss rate of networks using tools likeping
(or the like) may provide an unrealistic estimate of the
loss rate a TCP application will actually experience for
several reasons. First, ping is generally rate-based and
therefore does not share TCP's sending pattern, which
inherently effects the loss probability of the segments.
In addition, it is hard to determine some "right" rate for
sending measurement probes into the network. If the rate
is too low the measurement is necessarily gross and may
not capture certain characteristics of the network. On the
other hand, if the rate is too high, the measurement traffic
will be disruptive and the measurement will end up being
biased by its own traffic. These issues are explored fur-
ther in [MA01]. While using some form of random sam-
piing may mitigate these disadvantages somewhat, such
a probing scheme still fails to capture TCP's burstiness
or its dependence on the feedback loop. Estimating the
loss rate using sender-side TCP information (or traces) is
attractive in that it derives a loss rate on timescales that
matter to applications and the estimate is formed using
an accepted network-friendly sending rate.

• Estimating loss rates based only on information avail-
able at the sending side of a TCP connection allows re-
searchers to measure networks in which they only con-
trol one side of a TCP connection. This makes wide-
scale measurement easier than the case when monitoring

12

points on both ends of the connection are necessary (e.g.,
as used in [Pax97]).

• Deriving loss rates using TCP can aid the research com-
munity in verifying and refining our TCP models (e.g.,
[MSMO97, PFTK98]) using sender-side only traces.

• Comparing loss rates with TCP's retransmission rate of-
fers insight into the effectiveness of TCP's retransmis-
sion strategies.

We present several techniques for determining the loss rate
experienced by a TCP connection. The first is a simple count
of the number of retransmissions. We then introduce Loss
Estimation Algorithms for TCP (LEAST) for TCP Reno
and TCP with selective acknowledgments (SACK) (LEAST,.
and LEAST, respectively) and present validations of both
algorithms. The measurements highlight the large difference
between the actual number of losses and the number of re-
transmits TCP uses to repair those losses. Finally, we test a
second SACK-based loss recovery algorithm with an eye to-
wards reducing the number of spurious retransmissions sent
(and, therefore, reducing the complexity of loss estimation
techniques).

This paper is organized as follows. § 2 outlines our exper-
imental environment, tools and methodology. § 3 discusses
the accuracy of using a simple count of the number of re-
transmissions as an estimate of the loss rate. § 4 discusses
our TCP Reno loss estimator (LEAST,.), while § 5 discusses
our SACK-based version of the loss estimator (LEAST~).
§ 6 discusses an implementation path for choosing which
L E A S T variant to use for a given transfer. § 7 discusses
a second SACK-based loss recovery algorithm that may aid
L E A S T by using more accurate accounting practices during
loss recovery. Finally, § 8 offers conclusions and suggests
future work.

2 Methodology

To evaluate LEAST, we use transfers conducted across the
NIMI measurement mesh [PMAM98, PAM00]. We use the
bulk transfer capacity [MA01] tool cap [All01] to conduct the
transfers. This section describes the TCP variants we tested,
our experimental methodology, and provides a high level de-
scription of the measurements taken.

2.1 TCP Variants
We used a number of TCP variants in our investigation as
follows:

• Reno. This version supports TCP's basic congestion
control algorithms: slow start, congestion avoidance,
fast retransmit and fast recovery [APS99].

• SACK. This version builds on TCP's standard conges-
tion control algorithms by using the selective acknowl-
edgment (SACK) option as specified in [MMFR96] and
the loss recovery algorithm outlined in [FF96]. SACKs
are used to enhance TCP's cumulative acknowledgment
scheme by allowing the receiver to provide fine-grained
feedback about exactly which segments have arrived.

• SACK+DSACK. This version builds on both the stan-
dard congestion control algorithms and the SACK en-
hancements by adding the use of the DSACK option
[FMMP00]. DSACKs allow the receiver to inform the
sender about segments that have arrived more than once.

Note: In our experiments we use only Reno and
SACK+DSACK transfers. Since the DSACK option does
not change any of TCP's on-the-network algorithmic dynam-
ics, we can ignore the DSACK information in our analysis to
study the SACK without DSACK case.

While real TCP implementations use byte-based sequence
numbers for reliability (and ordering), cap is based on seg-
ment numbers for simplicity. In this paper, we will discuss
our algorithms in terms of segment numbers. We believe
the transformation to byte counts is fairly straightforward, but
will require a bit of care in accounting for things like retrans-
mits that do not include exactly the same sequence space as
the original transmission and like problems.

Finally, TCP Reno is susceptible to a phenomenon called suc-
cessive fast retransmits [F1o95]. In this situation, spurious
retransmissions cause enough duplicate ACKs to trigger the
fast retransmit algorithm during recovery which (i) reduces
TCP's congestion window needlessly and (ii) often triggers
additional spurious retransmits. [FH99] outlines a "bugfix"
that prevents these successive fast retransmits from trigger-
ing. Our TCP Reno implementation does not use this bug fix
for two reasons. First, we believe that estimating the loss rate
without the bugfix is more difficult than when the bugfix is
implemented so we are testing our estimation techniques in
the worst case environment. Without using the bugfix, spu-
rious fast retransmits and the duplicate ACKs they trigger
are common. Therefore, the loss recovery process is messier
without bugfix [Flo95] and therefore we believe it provides
a more rigorous test of our loss estimation techniques. The
second reason for not using the bugfix is that we have no
information on its implementation status in real world TCP
implementations and therefore did not want to make an un-
realistic assumption that would hinder the application of our
techniques in real networks.

2.2 Platform
Our experiments involve a mesh of 14 NIMI hosts using the
cap bulk transfer capacity tool to take measurements. The
NIMI machines are hosted by research centers and universi-
ties. Of the 14 NIMIs used in our experiments, 8 are located in
the United States, 4 in Europe, 1 in the Far East and 1 in South
America. Both Reno and SACK+DSACK are implemented

13

1

0.9 I ~ °
0.8
0.7
0.6
0.5
0.4
0.3 0.2 ~ ' SACK

0.001 0.01 0.t
Fraction of Segments Lost (per connection)

(a)Loss rate.

1

0.9

~ 0.8

0.7

0.6

0.5
10 100 1000

Loss Distance (segments)

(b) Loss distance.

100130

1

0.9

B 0.8

0.7

0.6

?
R e n o - -

SACK
10 100

Loss Period (segments)

(c) Loss period.

1000

Figure 1: Per connection loss characteristics across NIMI mesh.

in cap. We scheduled a transfer between two randomly cho-
sen hosts at intervals chosen by a Poisson process with a mean
of 60 seconds. Each transfer consists of 5000 segments, us-
ing a packet size of 1500 bytes, an infinite advertised win-
dow (simulating automatic socket buffer tuning [SMM98])
and the TCP timestamp option [JBB92]. We collect packet
traces from both the sender and receiver and compare them
to obtain the actual loss rate for a given connection. We run
L E A S T across only the sender-side packet trace to assess the
algorithm's ability to estimate the loss rate along the path.

2.3 Measurements
We scheduled 16320 transfers between February 24, 2003 and
March 10, 2003. Of the scheduled transfers, we ended up
with a dataset of 5123 transfers. The final dataset consists
of 2546 valid Reno transfers and 2577 valid SACK+DSACK
transfers. For the transfers not in the final dataset, the failures
were caused by a myriad of problems in the network and the
NIMI mesh. The largest problem was that we scheduled tests
involving 6 additional NIMI hosts (above the 14 hosts de-
scribed above) that turned out to be misconfigured and could
not support our measurements (this accounts for roughly 30%
of the scheduled experiments). In addition, time synchroniza-
tion problems between machines caused the source and sink
of the transfer to execute at different times and hence no trans-
fer is conducted (even after introducing a 5 minute window
to try to mitigate this). Another example failure is the route
between two hosts being lost during the transfer. [PAM00]
discusses the problems of taking measurements in the NIMI
mesh. While the failure rate is high, we do not believe our
results are biased since we need only a sample of transfers
with a variety of loss rates and loss patterns to assess our loss
estimation techniques.

Figure 1 illustrates several characteristics of the loss present
in our dataset. The first plot shows that the transfers in the
dataset experienced a variety of per connection loss rates.
Over 20% of the transfers (both Reno and SACK) experi-
enced no losses. This is explained by the quality of the con-
nections between some of the NIMI hosts. Over a number of
paths, the 5000 segment transfers used in our study did not

load any links to the point of packet loss. As an example, one
of the paths included in our dataset is between hosts at the
International Computer Science Institute and the Lawrence
Berkeley National Laboratory, both of which are in Berke-
ley, CA, USA. The hosts are separated by roughly 1.5 miles
over a path with an RTT of roughly 5 ms and bandwidth of
100 Mbps. While at different institutions, these hosts are es-
sentially connected via a LAN-type network, explaining why
transfers between them are loss free. At the other end of the
spectrum, from figure l(a) we also note that a small percent-
age (0.6%) of the connections experienced a loss rate of more
than 10%.

The second plot in figure 1 shows the loss distance [KR02].
The loss distance is calculated for each lost packet P and is
defined as the number of packets sent since the last packet
loss. For example, if the 3 ra and 5 th packets are lost the loss
distance for packet 5 will be 2. This metric provides infor-
mation about both how clustered the losses are and how of-
ten losses are experienced. The plot shows that roughly 50%
of the loss distances are 1, indicating that half of the losses
belong to larger groups of losses (e.g., clumped losses that
happen at the end of slow start). We also note a range of loss
distances, with over 15% of the distances being greater than
16 segments.

The final plot in the figure shows the distribution of loss pe-
riods [KR02]. The length of a loss period is the number of
losses that occur in a row. In this figure we again see a range
in the loss patterns. Most of the loss periods are 1 segment
in length (over 60%), however we did note one loss period of
886 segments!

All the plots show that the loss characteristics of Reno and
SACK are largely similar. We believe the differences between
the two versions of TCP correspond to SACK's aggressive-
ness in keeping the cwnd larger than Reno and therefore keep-
ing more segments in the network, as well as TCP's bursty
sending pattern in slow start-based loss recovery (which hap-
pens more frequently in Reno than SACK). Finally, we be-
lieve that figure 1 shows that our experiments cover a variety
of loss characteristics (which is the key to evaluating a loss

14

estimator).

3 Retransmissions

Because TCP is a reliable transport, all segments lost in the
network should be repaired with retransmissions from the
data originator. Therefore, a natural first choice for estimat-
ing the loss rate experienced by a connection is to count the
number of retransmissions. Figure 2 provides the distribu-
tion of the percent difference between the actual loss rate and
the retransmission rate for the Reno and SACK transfers in
the NIMI mesh. For TCP Reno transfers, we have found that
retransmits exactly estimate the loss rate in roughly 26% of
the transfers. However, in roughly two-thirds of the trans-
fers, using retransmits as an estimate of the loss rate is off by
more than 10%. Further, in approximately 16% of the trans-
fers, the discrepancy between retransmissions and losses is
over 100%. Finally, the median percent difference between
the number of retransmits and the actual number of losses in
the Reno transfers is roughly 33%.

This discrepancy between retransmits and losses in Reno TCP
is explained by the use of slow start after the retransmis-
sion timer (RTO) fires. In this mode, and in the absence of
SACK blocks informing the sender exactly which segments
have a~ived, Reno often retransmits packets that have not
been clearly indicated as lost. For example, say segment N
is retransmitted after the expiration of the RTO timer. The re-
ception of segment N will cause an ACK coveting segment
M to be sent (where M > N). As previous work has shown
[Hoe96, FH99], this ACK indicates that segment M + 1 has
likely been lost. Since the TCP sender is in slow start, seg-
ments M + 1 and M + 2 are retransmitted. However, the
sender received no indication that M + 2 needs to be retrans-
mitted - and, as figure 2 implies, in a large number of cases
the sender is guessing wrong and needlessly retransmitting
data. This whole process is further aggravated because, with-
out selective acknowledgments, TCP is more prone to relying
on the RTO timer to repair losses [FF96].

In the absence of SACK information, TCP may still be able
to be more intelligent about which packets are transmitted,
thus reducing the number of needless retransmissions. For
instance, the use of NewReno [Hoe96, FH99] refines the re-
transmission algorithms in an effort to be more precise in re-
transmitting data.

Figure 2 also shows the performance of retransmissions as a
loss estimator using TCP SACK. The plot shows a significant
improvement over Reno, with a median difference between
the loss rate and the retransmission rate of roughly 2% and
with roughly 75% of the estimates within 10% of the actual
loss rate. However, the plot shows that there are still cases
where TCP SACK retransmits unnecessarily and hence skews
the loss estimate. We find that the cause of these needless re-
transmits is the pattern of SACK information that is sent from

1

0.8 ~

0.6

0.4

0.2

0
0.l

.. " ... ! ... i ..
Reno - -

i SACK

1 10 100 1000

Percent Difference (Retransmits vs. Loss Rate)

Figure 2: Accuracy of retransmissions as an estimate of the loss
rate.

the receiver after a timeout. Upon a timeout, the sender clears
its copy of the SACK scoreboard (per RFC 2018 [MMFR96]).
In addition, the receiver always acknowledges the blocks cor-
responding to the most recently transmitted blocks. There-
fore, the receiver sometimes does not re-populate the sender's
scoreboard appropriately and so the sender believes that some
packets need to be retransmitted even though they have ar-
rived at the receiver. This problem is discussed in greater de-
tail in § 7.

Using the number of retransmissions as the basis for a loss
rate estimate may work for some applications (especially
for TCP with SACK). However, for applications that re-
quire a more accurate estimate of the loss rate, we explore
leveraging information from the ACK stream to refine the
retransmission-based estimate. Our algorithms are detailed
in the next sections.

4 LEAST for TCP Reno

This section discusses the TCP Reno version of the loss esti-
mator, LEAST,. .

4.1 Algorithm
Figure 3 shows the Python code for implementing the
LEAST,. algorithm. The principle behind LEAST~ is that,
after the RTO timer fires and TCP starts using slow start-based
loss recovery, needless retransmissions will trigger the re-
ceiver to transmit duplicate acknowledgments. For instance,
consider the case when a sequence of four packets, n...n + 3,
is transmitted and only n + 2 arrives at the receiver. Figure 4
shows the sequence of events after the RTO timer fires, as
follows:

1. The TCP sender times out and resends segment n, caus-
ing the receiver to send an ACK covering segment n (i.e.,
expecting segment n + 1).

15

seqno = ackno = highdata = highack = retransmits = dup~mits = 0
in_rto_event = False

for pkt in snd_trace:
if pkt. IsAck () and (pkt.AckNo () > highack):

highack = pkt.AckNo ()

if pkt. IsData ():

if pkt. SeqNo () > highdata:
highdata = pkt. SeqNo ()

else:
retransmits += 1

an RTO that initiates slow start-based loss recovery
if not in rto_event and pkt. IsRTO ():

in_rto_event = True
recovered = recovered_orig = highdata
rto_segment = pkt. SeqNo ()
event retrans = 1
event dupacks = 0
continue

in slow start-based loss recovery
if in_rto_event:

if pkt. IsData ():
count retransmits in the event
if pkt. IsRetrans () and (pkt.SeqNo () < recovered):

event_retrans += 1

an RTO within the RTO event; extend the event
if pkt. IsRTO ():

recovered = recovered orig = highdata
rto_segment = pkt.SeqNo ()

track new packets sent during recovery -- we need to
account for the last few duplicate ACKs
if not pkt. IsRetrans () end (highack <= recovered orig):

recovered = pkt. SeqNo ()

else:
an ACK that terminates the RTO event
if pkt.AckNo () > recovered:

dup_xmits += min (event_dupacks, event_retrans)
in_rto event = False

count duplicate ACKs received in the event -- but, not
any associated with the RTO segment (which are not caused
by needless retransmissions)
elif (pkt.AckNo () == last_ackno) and (pkt.AckNo () >= rto_segment):

event_dupacks += 1

track the last ACK number
if pkt,IsAck ():

last_ackno = pkt.AckNo ()

least = retransmits - dupxinits

Figure 3: TCP Reno LEAST algorithm.

16

Source 'Data n ~

ACK n+l'

' Data n+l

'Data n+2 ACK n+3'

ACK n+3'

Sink

Figure 4: Sample TCP retransmit pattern after RTO timer fi res.

2. Upon reception of the ACK covering segment n, the
sender increases the congestion window (cwnd) to 2 seg-
ments. The incoming ACK points to the next missing
segment, n -4- 1, that the sender retransmits. However,
since cwnd is now 2 segments, the sender also retrans-
mits n -4- 2 even though no specific knowledge about
whether n + 2 has been lost has arrived at the sender.

3. When segment n + 1 arrives at the receiver an ACK for
segment n + 3 is generated (since n + 2 is now the highest
in-order data segment that has arrived).

4. When the spurious copy of segment n + 2 arrives at the
receiver a second ACK covering segment n + 3 is trans-
mitted.

LEAST,- uses the receipt of this second (duplicate) ACK for
segment n + 3 as an indication that a spurious retransmission
occurred. A counter tracks the number of unneeded retrans-
missions and the LEAST,- estimate is calculated as:

LEAST~ = Rtotat - R~p~,-io~ (1)

where Rtotat is the total number of retransmissions and
Rsp~,-ious is the estimated number of unnecessary retrans-
missions. We count duplicate ACKs for accumulation in
Rsp~o~s during the "RTO event" - which starts when the
RTO timer fires and ends when the TCP sender receives an
ACK for the highest segment outstanding when the event was
initiated. We found a number of situations that cause errors
in LEAST~, which will be illustrated in the next subsection.
While the principle of counting duplicate acknowledgments
seems straightforward, the algorithm given in figure 3 con-
tains several rules to cover special cases, as follows:

• Duplicate ACKs that do not cover the segment most re-
cently transmitted via the RTO timer should not be taken
as indicating that spurious segments arrived at the re-
ceiver. To understand why, assume segment n is lost,
fast retransmitted and lost again. Eventually, the RTO
timer will fire and segment n will be retransrnitted for a
second time. However, between the fast retransmit and
the expiration of the RTO timer, fast recovery governs

the sending of segments. Any segments sent will trig-
ger duplicate ACKs for segment n (i.e., the receiver is
expecting segment n). These acknowledgments do not
indicate spurious retransmissions. However, if the RTO
timer fires while these ACKs are still streaming into the
sender, they would skew the LEAST,- estimate without
this rule.

When the RTO timer expires after the connection is al-
ready in slow start-based loss recovery, the current event
must be extended to account for the most recent segment
retransmitted via the RTO timer and the outstanding data
at the time of the latest RTO timer expiration.

The point at which the event is terminated needs to be ex-
tended when previously unsent data is transmitted during
the event in order to catch the last few (possible) dupli-
cate ACKs.

When an ACK arrives that passes the recovery point, we
add the number of spurious retransmits we have counted
in the current event to the total Rsvu,-ious count. Ide-
ally, we are counting only duplicate ACKs for spuri-
ous retransmissions. However, as outlined below, situ-
ations arise that cause our count to be wrong. There-
fore, as a double check, we actually add the minimum of
the number of duplicate ACKs counted during the event
(i.e., spurious retransmits) and the number of retransmits
sent during the event (which is an upper bound on the
number of spurious retransmits sent). This rule does not
necessarily make our estimate exactly right; however, it
bounds the error.

4.2 Validat ion
As outlined in § 2, we obtained 2546 valid Reno transfers
from the NIMI measurement mesh. We calculated the loss
rate for each transfer by analyzing both sender and receiver
traces and comparing the packets transmitted by the sender
with those arriving at the receiver. We then use the sender-side
trace to derive a LEASTr estimate of the loss rate. In the dis-
cussion below, we also use a corrected version of LEAST,.
that uses receiver-side information to confirm the sources of
error in the estimate.

Figure 5 shows the distribution of the percent error between
the actual loss rate for the connections and the loss rate de-
rived from LEAST,-. In addition, for comparison, we plot the
percent error in using retransmits as a loss estimate (discussed
previously in § 3 in more detail). When using LEAST,-,
roughly 56% of the transfer loss rate estimates are exactly
right, with roughly 3% of the estimates differing from the
(measured) loss rate by more than 10%. These results again
highlight the grossness of Reno's retransmission behavior.
Using the straightforward LEAST,. estimator, we are able to
predict the loss rate to within 10% in over 96% of the trans-
fers in our dataset. We now look at several categories of errors
found in the LEAST,- estimate.

17

1

08°9 iiiiiiiiiiiiiiiii1211111111111111111111 i iiiiii iiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
0.7 ... ; :S :7:~]" ..

0 .6 ... ,~ .. ./

0.5 ... ,.-..-.---~ ~ ...
./" i

0.4 .. ¢ ~ ~ ..

0.3 .. : i + ..

0.2 .. : i ...

O. 01 .. ~ il Re t ransmi t s L E A S T , ' - -

-100 -50 0 50 100 150 200

Percen t Er ro r

Figure 5: Accuracy of L E A S T , . compared to the actual loss rate
(percent differences that are less than zero indicate un-
derestimates while differences greater than zero indicate
overestimates).

4.2.1 Sources of E r r o r : As we will show below, the
five sources of error explained in this section account for the
majority of the error in the L E A S T ~ estimate. Each error
listed below is given a one-letter identifier for the purposes of
the discussion of the results.

Spurious Fast Retransmit (.,4). This error is not caused by
t h e L E A S T r algorithm itself, but rather from spurious fast
retransmits caused by packet reordering in the network. Suf-
ficient packet reordering can cause spurious fast retransmits
[BPS99, BA02]. However, since L E A S T ~ only works af-
ter the RTO timer fires, these spurious fast retransmits are
counted in -Rtotal but since they are not detected as spurious
they are not counted in R s p ~ i o ~ 8 . Therefore, this causes an
overestimate in L E A S T ~ .

Lost Duplicate ACKs (E). When a duplicate ACK that indi-
cates a spurious retransmission to the L E A S T ~ algorithm is
lost in the network, the information about a spurious retrans-
mit is lost. For instance, in figure 4, if the second ACK for
n + 3 is lost, the sender will be unable to determine whether
the retransmission of segment n + 2 was required. Losing
duplicate ACKs during the RTO event causes overestimation.

Spurious Retransmit Triggers Partial ACK (C). Some-
times we have noticed spurious retransmits resulting in partial
ACKs I arriving at the TCP sender. This problem works hand-
in-hand with the lost duplicate ACK phenomena described
above. Losing a partial ACK causes a subsequent duplicate
ACK to be effectively turned into a partial A C K and there-
fore the information conveyed in the duplicate ACK will be
lost. I f the first ACK for n + 3 in figure 4 is lost, the sec-
ond (duplicate) ACK for n + 3 will look like a partial ACK
when arriving at the sender. Hence, there will be no second
(duplicate) ACK following to indicate a spurious retransmit
occurred. Losing partial ACKs during the RTO event causes
overestimation.

I A par t ia l A C K covers p rev ious ly u n a c k n o w l e d g e d da ta , bu t no t e n o u g h
p rev ious ly u n a c k n o w l e d g e d da ta to te rmina te recovery.

S o u r c e Data n~..............~.....~

A C K n + l ------'-
Data n + l

'Da ta n+2

A C K n + l
...........-..-----

Sink

Figure 6: Example of sequence of events following a lost retrans-
mission.

Lost Retransmiss ions (79). A lost retransmission during
slow start-based loss recovery can trigger duplicate ACKs that
do not indicate spurious retransmits and hence skew the esti-
mate. Figure 6 shows the sequence of events after the RTO
timer fires (for segment n) in the case where segments n, n + 1
and n + 2 are lost before the RTO timer expires. The dia-
gram shows the events that occur when the retransmit of seg-
ment n + l is lost (for a second time). In this case, the ACK re-
turned for segment n + 2 is a duplicate ACK, which L E A S T ~

takes as indicating a spurious retransmit even though the re-
transmit of segment n + 2 is required in this case. This series
of events yields an underestimate in the L E A S T ~ algorithm.

Spurious Fast Retransmit Terminates Recovery ($). As
outlined in [F1o95], TCP Reno is susceptible to successive
fast retransmits within a window of data. If one of these suc-
cessive fast retransmits happens at the end of slow start-based
loss recovery, a duplicate ACK indicating that the retrans-
mission was spurious will fall outside the "recovery event".
Therefore, the L E A S T r algorithm will not detect the dupli-
cate ACK. While we may be able to extend the event to wait
for the resulting duplicate ACK, it is not obvious how long to
extend the event waiting for an ACK that may or may not
arrive - or, may arrive delayed or out-of-order. L E A S T ~

makes the assumption that the retransmit was necessary and
thus overestimates when such a retransmit is sent needlessly.
This overestimate is limited to the number of RTO events that
happen within a transfer.

The above list of estimation errors is likely not complete.
Other sources of error could be packet reordering, packet du-
plication or other situations yet unknown. However, as will
be shown in the next section, we believe the above sources
of error capture the major causes of estimation error found in
our measurements.

4.2.2 Quantifying Errors: In our NIMI dataset,
L E A S T ~ exactly matched the loss rate in roughly 56% of the
transfers (or 1418 of the 2546 Reno transfers). In 57 of these
exact matches, L E A S T ~ mis-estimates in more than one of
the above outlined ways, but the estimation problems exactly
cancel out to yield a correct overall estimate.

Next we observe that in 10% (or 256) of the transfers in our

18

NIMI dataset, LEAST,. underestimates the loss rate. The
only source of underestimation outlined in § 4.2.1 is dupli-
cate ACKs returned for needed retransmits because a needed
retransmission was lost (79). We found that correcting our es-
timate based on the problems identified in § 4.2.1 yields an
exact accounting of the errors in roughly 69% of the transfers
yielding an underestimate. In another 20% of the transfers the
corrected estimate is closer to the actual loss rate, while 5%
of the transfers ended up being overestimates after the correc-
tion. Finally, in 5% of the transfers yielding an underestimate,
the correction had either no effect or increased the underesti-
mation. From this analysis we believe that while we have not
found all the causes of underestimation in our data we have
identified the major causes.

Next we turn our attention to the 34% (or 872) of the transfers
in our NIMI dataset in which LEASTr overestimates the loss
rate. Of those, 71% of the overestimates can be exactly cor-
rected by taking into account the sources of error from § 4.2.1.
In these transfers, duplicate ACK losses (B) are the largest
cause of error in the estimate with 45% of the error, followed
by receiving partial ACKs in response to spurious retrans-
mits (C) with 36% of the error, reordering causing spurious
fast retransrnits that are not accounted for by LEAST,. (.,,dO
with 14% of the error and lost retransmits triggering duplicate
ACKs (79) with 3.7% of the error. In 29% of the overestimates
in which the rnis-estimate could not be exactly corrected for,
we noted a variety of sources of error. However, we note that
the median difference between the corrected estimate and the
actual loss rate is roughly 0.6%, indicating that we have iden-
tified the majority of the errors that skew the estimate.

Finally, we note that the phenomenon whereby a spurious fast
retransmit is sent at the end of the RTO event (~) discussed
in § 4.2.1 is not a large contributor to the error in LEAST,..
This case accounts for less than 1% of the error in LEAST,.
across all our TCP Reno NIMI transfers, indicating that the
assumption outlined in 4.2.1 that the retransmit is needed does
not greatly skew LEAST,..

4.3 Summary
In this section we have shown that the LEASTr estimate is
accurate within 10% of the actual loss rate in over 96% of
the transfers. Furthermore, for roughly 56% of the transfers,
LEAST,. exactly matches the loss rate. In addition, when
LEASTr does not match the loss rate, we have identified the
vast majority of the errors in the estimate such that we believe
that (given only the information available at the sender-side
of a TCP connection), LEAST,. is forming a near-optimal
estimate of the loss rate.

the TCP sender about the sequence space that has actually ar-
rived at the receiver in a more fine-grained way than simply
using the standard cumulative acknowledgment mechanism.
As shown in § 3, the use of SACK allows TCP to be more
accurate in resending data and therefore the number of re-
transmits is a better estimate of the loss rate than when using
TCP Reno. However, needless retransmissions are still sent
by SACK-based algorithms and therefore we have developed
a mechanism that uses clues in the returning ACKs to form a
better loss estimate.

5.1 Algori thm
The LEASTs algorithm is given in figure 7. The first portion
of the code counts all retransmits. The second half of the £ o r
loop in the code is used to estimate the number of spurious
retransmits sent. The code is different depending on whether
the receiver supports the DSACK option [FMMP00].

If the receiver (i) supports the DSACK option [FMMP00],
(ii) the incoming acknowledgment contains DSACK infor-
mation and (iii) the DSACK information reported is for a
retransmitted segment then the TCP sender considers the re-
transmission to be spurious 2. DSACK blocks are only sent
on one acknowledgment packet. Therefore, if an ACK with
a DSACK is lost in the network, the information conveyed in
the DSACK will not be resent and the sender's estimate of the
loss rate will be affected.

If the receiver does not support DSACK, the LEASTs algo-
rithm looks for redundant SACKs. That is, returning ACKs
that do not advance the cumulative ACK point and contain
no previously unknown SACK information. Such an ACK is
assumed to have been caused by a needlessly retransmitted
data segment that does not update the state of the receiver's
buffer. However, ACK reordering can also cause an ACK to
be deemed redundant in the case where a later ACK passes
an earlier ACK in the network and conveys the same informa-
tion (and likely more) than the earlier ACK. When the ACK
that was originally transmitted first (but, arrives second) is
processed by the sender, all the information contained within
the ACK is redundant, hence meeting our criteria for being
counted as indicating a needless retransmission and fooling
our algorithm.

As with LEAST,., the SACK variant of the algorithm is also
susceptible to packet duplication in the network path. How-
ever, when using DSACK, the sender has some protection by
ensunng that a segment reported as arriving multiple times
was actually retransrnitted by the sender.

5 LEAST for TCP SACK

In this section we explore the LEAST~ variant for TCPs that
support the selective acknowledgment option [MMFR96].
Selective acknowledgments allow a TCP receiver to inform

2Note: to work optimally, the receiver should not delay an ACK con-
taining DSACK information. This advice agrees with [APS99]'s guidance
that out-of-order arrivals should trigger immediate ACKs. If an ACK with
a DSACK must be delayed, the DSACK information should be included in
the delayed acknowledgment. In our experiments the receiver immediately
transmits an ACK when a DSACK is required.

19

highdata = retransmits = dup_xmits = 0

for pkt in snd trace:
if pkt. IsData ():

if pkt. SeqNo () > highdata:
highdata = pkt.SeqNo ()

else:
retransmits += 1

if pkt. IsACK ():
if using_DSACK a n d pkt.DSACK () and WasRexmted

dupxmits += 1
ellf not using_DSACK and IsSACKRedundant (pkt):

dup xmits += 1

least = retransmits - dup_xmits

(pkt. DSACK ()) :

Figure 7: TCP SACK LEAST algorithm.

5.2 Validation
As outlined in § 2, we obtained 2577 valid SACK trans-
fers from the NIMI measurement mesh. We calculated the
loss rate for each transfer by comparing the sender and re-
ceiver traces. We then use the sender-side trace to derive two
LEAST8 estimates of the loss rate (with and without DSACK
information).

Figure 8 shows the distribution of the percent difference be-
tween the actual loss rate and our estimates. Using the num-
ber of retransmits inthe connection (as discussed in § 3) is the
worst of our estimators. The two remaining estimators use the
LEAST8 algorithm to attempt to correct for spurious retrans-
missions. As the plot shows, when using DSACK, nearly 96%
of the estimates are exact, with less than 1% of the connec-
tions experiencing estimates that are more than 10% different
from the actual loss rate. When DSACK is not used and a
count of the redundant (S)ACKs is employed instead, we note
approximately 60% of the estimates being exact, with roughly
9% of the connections showing estimates that are more than
10% different from the actual number of losses.

When using DSACK, the error in the LEAST~ algorithm is
always explained by lost spurious retransmits or lost ACKs
that contain DSACK information. The source of error could
be reduced by either (i) making DSACK more robust to ACK
loss by sending it more than once (ala the rest of the SACK in-
formation) or (ii) by making TCP's retransmission machinery
less likely to transmit spurious retransmits (see § 7). In addi-
tion, several non-DSACK schemes for detecting spurious re-
transmits have been outlined in the literature [LK00, SKR02]
and may be generalizable to the problem of finding spurious
retransmits for loss estimation.

Without DSACK, LEAST8 is more prone to mis-estimation.
To determine the source of error, we use the LEAST8 algo-
rithm to analyze the trace made by the receiver so that we see
the exact stream of acknowledgments that are sent. Using the
receiver-side acknowledgment stream yields exact LEASTs

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

....... ' r F T

................ ! i ... ~ : - ! i

iii i i , .. iiiiiii i ! I i / i i! ~

~" i i ~:~ LEAST: SACK -~
l.- 4 i Ret~s~t~ : /

-40 °20 0 20 40

Percent Error

Figure 8: Accuracy of LEASTs compared to the actual loss rate
(percent differences that are less than zero indicate un-
derestimates while differences over zero indicate overes-
timates).

estimates in over 84% of the connections and estimates within
10% of the actual loss rate in over 99% of the connections.
In addition, the underestimation shown in figure 8 is elim-
inated. This analysis illustrates that most of the error in the
LEAST8 (without DSACK) estimates is caused by the packet
dynamics along the network path traversed by the ACKs (e.g.,
losses, reordering, etc.). Therefore, we believe that improv-
ing LEAST8 further would require either more information
(from more than just the sender's vantage point) or heuristics
that try to infer additional information from the ACK stream.

6 Implementation Path

In the previous sections, we have described three variants of
LEAST: LEAST,. for TCP Reno connections and two vari-
ants of LEAST8 for connections that support SACK (with
and without the DSACK option). The natural question that

20

arises in the face of three different algorithms is which to use
for a given (arbitrary) TCP connection (or trace). The fol-
lowing is a sketch of a scheme that can be used to determine
which variant of LEAST to employ.

1. If either of the hosts involved in a connection fails to ad-
vertise support for selective acknowledgments in TCP's
three-way handshake, then loss estimation should pro-
ceed using LEASTr.

2. Assuming SACK is supported by both hosts in a connec-
tion, loss estimation can proceed using one of the SACK
variants. Unfortunately, the DSACK option is not ne-
gotiated during the connection setup phase. Therefore,
which variant of LEASTs to use is not immediately ob-
vious. Two approaches to loss estimation are possible,
as follows.

In the case when LEAST is being computed by a TCP
implementation or by some form of measurement tool
based on TCP (ala sting [Sav99] or TBIT [PF01]), the
first two data segments sent can explicitly overlap by
1 byte. If the receiver supports DSACK, this overlap will
cause a DSACK to be reported in the returning ACK.
Therefore, based on the returning ACK, the TCP can de-
termine which variant of LEASTs to employ.

On the other hand, in the case of estimating loss rates
by passively monitoring TCP connections, the above
active manipulation of the byte-stream is not possible.
Therefore, the recommended loss estimation approach
is to assume the receiver does not support DSACK un-
til a DSACK notification arrives and then switch vari-
ants of the algorithm. To implement this approach, the
code given in figure 7 is changed slightly, as follows.
The using_DSACK boolean starts being set to "false".
When (a) ACK segments arrive, (b) using_DSACK is
set to "false" and (c) the incoming ACK contains a
DSACK then the u s ingd3SACK flag is set to "true" and
the count of duplicate transmits (dup_xmi t s) is reset to
zero. This results in a fresh start at loss estimation using
the DSACK variant of LEASTs.

Using the above approach, LEAST can be used in environ-
ments without a priori knowledge of the TCP variant being
utilized (or, from traces containing a multitude of different
TCP variants).

7 Reducing Spurious Retransmissions With SACK

As shown in previous sections, the fundamental problem with
estimating the loss rate of a TCP connection is that TCP re-
transmissions are not an accurate reflection of the actual loss.
Designing algorithms that make better choices about what to
retransmit will simplify loss estimators (possibly obviating
the need for anything over a retransmission count), as well

as reduce the shared network resources expended on carry-
ing traffic that accomplishes no useful work. In this section
we show that more aggressive accounting of data during loss
recovery with SACK can reduce the number of needless re-
transmits sent by TCP (and, hence, reduce the amount of es-
timation that an algorithm, such as LEASTs, has to do to
arrive at the actual loss rate). In this section we explore two
different SACK-based loss recovery schemes in terms of the
number of needless retransmits triggered by each algorithm.

7.1 Why SACK Needlessly Retransmits
The specification for TCP's selective acknowledgment
(SACK) option [MMFR96] outlines the information a SACK
receiver is to return to the sender when the receiver's socket
buffer is non-contiguous, as follows:

• The first SACK block returned is to contain the received
range of data that includes the arriving data segment.

• Any remaining option space is to be used to resend the
most recent discontiguous SACK blocks transmitted.

In addition, [MMFR96] specifies that TCP senders clear any
collected SACK information upon the expiration of the re-
transmission timer to allow for the possibility the receiver
may reneg 3 on a previously sent SACK block.

The above specification creates a situation where the TCP
sender sometimes never obtains valuable information about
data in the receiver's buffer after a timeout, which leads to
the possibility that the sender will needlessly retransmit seg-
ments. As an example, table 1 shows a map of the receiver's
socket buffer at the point when the TCP sender's RTO timer
fires. Note that segments 1, 4, 7, 9, and 13 are missing. The
latest three SACK blocks transmitted to the data sender are
blocks: /36, B8 and/310 (coveting segment 8, segments 10-
12, and segment 14 respectively). The following events occur
after the RTO timer fires:

1. The sender retransmits segment 1.

2. When segment 1 arrives at the receiver, an acknowledg-
ment is sent containing a cumulative ACK covering seg-
ment 3 and the SACK blocks/36,/38 and/310 (the most
recently transmitted SACK blocks).

3. When the ACK sent in step 2 arrives, the sender will in-
crease the congestion window by 1 segment and will re-
transmit segments 4 and 5. While segment 4 requires re-
transmission at this point, segment 5 does not (as shown
in table 1). However, the TCP sender has not been in-
formed that segment 5 has arrived (since clearing the
scoreboard) and therefore assumes it requires retrans-
mission.

3[MMFR96] allows a receiver to discard received data that it has not cu-
mulatively acknowledged (to recover buffer space, for example). The re-
ceiver renegs by not keeping data that it implied to the sender (through a
SACK) would not need to be retransmitted.

21

Received Segment Range

Blocks of Received and Missing Segments

8-8] B7 Blo
14-14

Table 1: Sample socket buffer map at receiver.

4. Segment 4 arrives at the receiver which generates a cu-
mulative ACK coveting segment 6 and again sends the
SACK blocks Br, Bs and B10. When this ACK ar-
fives, the sender will have complete knowledge of the
receiver's buffer and will not needlessly retransmit any
more segments.

The above example shows a simple situation where the sender
transmits one needless segment into the network. As the
amount of outstanding data grows and becomes more frac-
tured (requiring more SACK blocks to describe), the num-
ber of spurious retransmissions increases because the receiver
only reports information about the far right-side of the win-
dow. This general problem is the cause for the vast majority
of the needless retransmits observed in our SACK dataset de-
scribed in § 5. Several possible solutions to this problem ex-
ist. For instance, the receiver could change the scheme it uses
to choose which SACK blocks to include in an ACK to pro-
vide the sender with more timely information. Alternatively,
the sender could be made more conservative - retransmitting
segments that are in a "bounded hole" in the sequence space
where the receiver has informed the sender about arrived seg-
ments on each side of the segment being retransmitted (e.g.,
retransmitting segment 13 before segment 5 in the above ex-
ample). A third possible mitigation for this problem is to re-
pair as much loss as possible before the RTO timer expires,
thus allowing the receiver to describe the state of its buffer
in fewer SACK blocks. This last solution does not attempt
to fix the fundamental problem, but rather tries to avoid the
problem. We experiment with a second SACK-based loss re-
covery algorithm to understand the degree to which it is able
to repair more loss before the RTO timer expires and describe
our results in the following subsections.

7.2 SACK Algorithm Descriptions
The SACK algorithm implemented in cap is based on [FF96]
which, in turn, is codified in ns2's sack1 TCP variant. The
algorithm keeps an estimate, pipe, of the number of segments
in the network. When loss recovery is started, pipe is initial-
ized to the amount of outstanding data. For each duplicate
ACK received during recovery, pipe is decremented by 1 seg-
ment. For each segment sent (new or retransmit), pipe is in-
cremented by 1 segment. For each partial ACK received, pipe
is decremented by 2 segments (one for the original segment
transmitted and one for the retransmit). When pipe is less
than cwnd, TCP can send (retransrnitting if data for reseed is
available or sending new segments if not).

[BAFW03] outlines a second SACK-based loss recovery al-
gorithm, which we will denote sack2, that is based on the

Parame~r Range Increment
D I 25%-75% 5%
Dd 0 % - 1 0 % 1%
Da 0 % - 1 0 % 1%

Table 2: Ranges for simulation parameters.

principles of sackl but is more careful in estimating how
much data is in the network 4. The key difference between
sack1 and sack2 is that sack2 can declare a segment"lost" and
therefore deduct it from the pipe estimate. Sack1 does not do
this, but rather relies only on ACK arrivals to declare that data
has left the network (missing the fundamental impossibility
of a lost segment triggering an ACK). Sack2's more aggres-
sive estimation of pipe provides (re)transmission opportuni-
ties sooner than when using sack1. Therefore, in the case of
the RTO timer expiring (e.g., if a retransmit is, itself, los0
sack2 has an easier job than sack1 because sack2 has likely
repaired more loss before the RTO timer fires than sack1.

7.3 Simulation Comparison
To explore the SACK algorithms detailed above, we wrote
a small simulator in Python that models both the sender and
receiver during the loss recovery phase of a TCP SACK con-
nection. The simulator, tcpsim, consists of a sender and re-
ceiver separated by a link with a one-way delay of 0.25 sec-
onds and a bandwidth of 10 Mbytes/second. The simulator's
data originator uses either sack1 or sack2 for loss recovery.
The simulator starts by transmitting a window of 250 data seg-
ments (assumed to be the last window sent in slow start, for
instance). The simulation ends when loss recovery is finished
- i.e., upon receipt of an ACK covering the highest segment
outstanding when recovery started.

From the first window of data, the first segment, $1, is always
dropped (and subsequently fast retransmitted). In addition,
segments are dropped from the first window of data randomly
with probability D I. After the first window of data trans-
mission, tcpsim drops data segments with probability Dd and
drops acknowledgments with probability D~. Table 2 out-
lines the parameter space used for the simulations presented
in this paper. We use two different loss rates for data seg-
ments to approximate the situation at the end of TCP's slow
start phase where TCP roughly doubles the congestion win-
dow every round-trip time. This causes a situation where one
window of data often experiences drastically different loss

4Note: The authors of sack1 note in [FF96] that one may be able to design
a better algorithm by being more careful - but, that was beyond the scope of
their initial study.

22

characteristics than would be expected given the steady state
loss rate of the network path. We conducted 30 random sim-
ulations with each permutation of the parameter space and
report medians in this paper.

In addition to always dropping the first segment sent, $1, tcp-
sim also always drops the first retransmit of $1 to ensure that
the retransmission timer (RTO) is required to recover some of
the loss 5.

1

0 .9

0 . 8

0 .7

0 . 6

0 .5

0 . 4

0 .3

0 . 2

0.1

0
0

i " f ,

.................... ~'-'S .. ~ ... ~ ! ! i ! i i i i i i

............ ~----+ ~- ! i i
,J i i i ~ i

.... 1t: i i ~ :...~ i

........................ i ... i s a e k l - -
, i i s a c k 2 ~

2 0 4 0 6 0 8 0 1 0 0 120

Need l e s s S e g m e n t s T r a n s m i t t e d

Figure 9: Distribution of needless retransmits across all tcpsim sim-
ulations.

Figure 9 shows the distribution of the number of needless re-
transmits sent by each SACK variant on each transfer. The
plot shows the distribution of the median of the 30 random
simulations of each loss scenario described above. As shown,
the amount of needlessly retransmitted data sent by sack1
is 3-17 times the amount spuriously sent by sack2. While
sack2 suffers fewer spurious retransrnits, it also sends 7-39%
more unique bytes during recovery than sack1 and loss recov-
ery takes approximately 20 seconds (or roughly 40 round-trip
times) less than when using sackl (on median).

These results show that sack2's more aggressive accounting
during SACK-based loss recovery allows it to be more accu-
rate in its overall retransmission behavior. Sack2's use of a
more aggressive recovery before the RTO timer fires largely
avoids the problems caused by the receiver not re-populating
the sender's SACK scoreboard after an RTO. In addition,
we note that sack2 uses its transmission opportunities more
wisely since it sends more unique data than sackl. Finally,
we note that sack2's aggressiveness does not violate the spirit
of TCP's congestion control principles [Flo00] in that multi-
plicative decrease is applied.

The results in this section suggest that the TCP sender's
choice of which particular SACK-based loss recovery algo-
rithm to utilize can have an impact on the performance of a
loss estimator such as L E A S T . By reducing the number of
needless retransmits sent into the network, the TCP sender re-
duces the amount of estimation that needs to happen to accu-

5 B o t h sackl and sack2 require the use o f t h e R T O t i m e r to r e c o v e r f r o m

l o s t retransmits.

rately assess the loss rate and distills the problem to counting
retransmissions. The loss estimation techniques outlined in
this paper are still useful for assessing the loss rate on a wide
variety of arbitrary traffic. However, the results of this section
suggest that when using an active measurement strategy, re-
searchers would be well served to choose a SACK-based loss
recovery strategy carefully.

8 Conclusions and Future Work

The following are the major contributions of this paper:

• Through measurements from the NIMI mesh of mea-
surement points, we have shown that using a count of
the number of retransmissions sent by TCP provides a
poor estimate of the number of packets actually lost.

• We have developed sender-side loss estimation tech-
niques for TCP Reno, SACK and SACK with DSACK
that estimate the loss rate of the network path within 10%
of the actual loss rate in over 90% of the transfers we
conducted over the NIMI measurement mesh.

• We have found the majority of the sources of error in the
L E A S T estimate of the loss rate. The main causes of
errors in the estimate come from network dynamics that
cannot be mitigated from information only available on
the sender side of the TCP connection (e.g., ACK loss).

• We found that, in some situations, TCP's SACK genera-
tion scheme does not provide the TCP sender with timely
information about the state of the receiver's buffer. This
triggers spurious retransmits from the TCP sender. We
explored a second SACK-based loss recovery algorithm
(outlined in [BAFW03]) and show that it is effective at
reducing the number of needless retransmits (by roughly
an order of magnitude in the cases we tested). In turn,
this makes the job of accurately estimating the loss rate
easier.

In addition, the results outlined in this paper bring up several
areas for future research:

In § 7 we outlined a general problem with SACK-based
loss recovery after TCP's RTO timer fires (and the TCP
sender purges its copy of the SACK scoreboard). The
fundamental problem is that the receiver only informs
the sender about the right side of the window and so
the sender's retransmission of the data on the left side
of the window is fairly gross. While we examined an
alternate SACK algorithm that mitigates the adverse ef-
fect of the missing information, we did not fix the prob-
lem itself. Future work should include examining ways
to send more timely SACK information after the RTO
timer fires.

23

• Testing L E A S T against different variants of TCP (e.g.,
NewReno [FH99]) to assess how well the techniques ap-
ply would be useful.

• Testing the applicability of L E A S T to various tasks,
such as modeling TCP performance or using L E A S T
with CETEN techniques (which attempt to aid TCP per-
formance by taking into account packets lost due to cor-
ruption when choosing a congestion response) would be
useful. While the experiments outlined in this paper il-
lustrate that the estimate of the loss rate is often "quite
good", it is unclear what problems the estimate is "good
enough" for and what problems need an even better es-
timate (which, arguably, would require multiple vantage
points).

• A more complete comparison of sack1 and sack2 would
be useful.

• We believe that merging the techniques presented in this
paper with those given in [BV02] may allow for the
leveraging of better loss estimation from arbitrary van-
tage points.

Acknowledgments

This paper benefited from discussions with Ethan Blanton,
Josh Blanton and Joseph Ishac. David Irimies helped with
tcpsim. David Irirnies and the anonymous reviewers provided
valuable comments on a draft of this paper. Andy Adams
and Vern Paxson provided a large amount of assistance with
NIMI. Our thanks to all!

References
[All01] Mark Allman. Measuring End-to-End Bulk Transfer Ca-
pacity. In ACM S1GCOMM lnternet Measurement Workshop,
November 2001.
[APS99] Mark Allman, Vern Paxson, and W.Richard Stevens. TCP
Congestion Control, April 1999. RFC 2581.
[BA02] Ethan Blanton and Mark Allman. On Making TCP More
Robust to Packet Reordering. ACM Computer Communication Re-
view, 32(1):20-30, January 2002.
[BAFW03] Ethan Blanton, Mark Allman, Kevin Fall, and Lili
Wang. A Conservative Selective Acknowledgment (SACK)-based
Loss Recovery Algorithm for TCP, April 2003. RFC 3517.
[BPS99] Jon Bennett, Craig Partridge, and Nicholas Shect-
man. Packet Reordering is Not Pathological Network Behavior.
IEEE/A CM Transactions on Networking, December 1999.
[BV02] Peter Benko and Andras Veres. A Passive Method for Es-
timating End-to-End TCP Packet Loss: In Proceedings of IEEE
Globecom, 2002.
[EOA03] Wesley Eddy, Shawn Ostermann, and Mark Allman. New
Techniques for Making Transport Protocols Robust to Corruption-
Based Loss, July 2003. Under submission.
[FF96] Kevin Fall and Sally Floyd. Simulation-based Comparisons
of Tahoe, Reno, and SACK TCP. Computer Communications Re-
view, 26(3), July 1996.

[FH99] Sally Floyd and Tom Henderson. The NewReno Modifi ca-
tion to TCP's Fast Recovery Algorithm, April 1999. RFC 2582.
[Flo95] Sally Floyd. TCP and Successive Fast Retransrnits. Tech-
nical report, Lawrence Berkeley Laboratory, May 1995.
[Flo00] Sally Floyd. Congestion Control Principles, September
2000. RFC 2914.
[FMMP00] Sally Floyd, Jamshid Mahdavi, Matt Mathis, and Matt
Podolsky. An Extension to the Selective Acknowledgement (SACK)
Option for TCP, July 2000. RFC 2883.
[Hoe96] Janey Hoe. Improving the Start-up Behavior of a Conges-
tion Control Scheme for TCP. In ACM SIGCOMM, August 1996.
[JBB92] Van Jacobson, Robert Braden, and David Borman. TCP
Extensions for High Performance, May 1992. RFC 1323.
[JD02] Hao Jiang and Constantinos Dovrolis. Passive Estimation
of TCP Round-Trip Times. A CM Computer Communication Review,
32(3), July 2002.
[KAPS02] Rajesh Krishnan, Mark Allman, Craig Partridge, and
James P.G. Sterbenz. Explicit Transport Error Notifi cation (ETEN)
for Error-Prone Wireless and Satellite Networks. Technical Report
TR-8333, BBN Technologies, March 2002.
[KR02] Rajeev Koodli and Rayadurgam Ravikanth. One-Way Loss
Pattern Sample Metrics, August 2002. RFC 3357.
[LK00] Reiner Ludwig and Randy Katz. The Eifel Algorithm:
Making TCP Robust Against Spurious Retransmissions. Computer
Communication Review, 30(1), January 2000.
[MA01] Matt Mathis and Mark Allman. A Framework for Deft ning
Empirical Bulk Transfer Capacity Metrics, July 2001. RFC 3148.
[MMFR96] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and AI-
lyn Romanow. TCP Selective Acknowledgement Options, October
1996. RFC 2018.
[MSMO97] Matt Mathis, Jeff Semke, Jamshid Mahdavi, and Teu-
nis Ott. The Macroscopic Behavior of the TCP Congestion Avoid-
ance Algorithm. Computer Communication Review, 27(3), July
1997.
[PAM00] Veto Paxson, Andrew Adams, and Matt Mathis. Experi-
ences with NIMI. In Proceedings of Passive and Active Measure-
ment, 2000.
[Pax97] Vern Paxson. End-to-End Internet Packet Dynamics. In
ACM SIGCOMM, September 1997.
[PF01] Jitendra Padhye and Sally Floyd. Identifying the TCP Be-
havior of Web Servers. InACMSIGCOMM, August 2001.
[PFTK98] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim
Kurose. Modeling TCP Throughput: A Simple Model and its Em-
pirical Validation. In ACM S1GCOMM, September 1998.
[PMAM98] Vern Paxson, Jamshid Mahdavi, Andrew Adams, and
Matt Mathis. An Architecture for Large-Scale Internet Measure-
ment. IEEE Communications, 1998.
[Pos81] Jon Postel. Transmission Control Protocol, September
1981. RFC 793.
[Sav99] Stefan Savage. Sting: a TCP-based Network Measurement
Tool. In Proceedings of the 1999 USENIX Symposium on lnternet
Technologies and Systems, October 1999.
[SKR02] Pasi Sarolahti, Markku Kojo, and Kimrno Raatikainen. F-
RTO: A New Recovery Algorithm for TCP Retransmission Time-
outs. Technical Report C-2002-07, University of Helsinki, February
2002.
[SMM98] Jeff Sernke, Jamshid Mahdavi, and Matt Mathis. Auto-
matic TCP Buffer Tuning. In ACM SIGCOMM, September 1998.

24

