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Abstract 

Estimating loss rates along a network path is a problem that 
has received much attention within the research community. 
However, deriving accurate estimates of the loss rate from 
TCP transfers has been largely unaddressed. In this paper, we 
first show that using a simple count of the number of retrans- 
missions yields inaccurate estimates of the loss rate in many 
cases. The mis-estimation stems from flaws in TCP's retrans- 
mission schemes that cause the protocol to spuriously retrans- 
mit data in a number of cases. Next, we develop techniques 
for refining the retransmission count to produce a better loss 
rate estimate for both Reno and SACK variants of TCP. Fi- 
nally, we explore two SACK-based variants of TCP with an 
eye towards reducing spurious retransmits, the root cause of 
the mis-estimation of the loss rate. An additional benefit of 
reducing the number of needless retransmits is a reduction in 
the amount of shared network resources used to accomplish 
no useful work. 

1 Introduction 

Assessing network properties is a topic that has received a 
great deal of attention in the literature. Among the measure- 
ment techniques developed by the research community is a 
set of methods to derive information about the dynamics of 
a path from TCP [Pos81] connections. For instance, [Pax97] 
assesses the dynamics of a number of paths through the analy- 
sis of pairs of sender-side and receiver-side TCP traces, while 
[JD02] details techniques for assessing the round-trip time of 
a path by watching TCP segments from an arbitrary location 
in the network, and [BPS99] uses TCP transfers to explore the 
prevalence of packet reordering. These are but a sampling of 
a rich range of papers in the literature. 

This paper adds to the body of measurement techniques by de- 
tailing and validating a method for estimating the loss rate ex- 
perienced by a TCP connection by observing the connection's 
segments close to the data sender (or in the sender-side TCP 
implementation). Previous work in the literature has assessed 
TCP segment losses by comparing segment traces from the 
two endpoints of a TCP connection [Pax97] or by monitoring 
only the data segments of a connection at some point in the 
middle of the network [BV02]. Our goal is to monitor the 
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connection at only the sender-side and to be as accurate as 
possible. Hence we leverage information from both the data 
and ACK streams. 

There are several attractive applications and properties of 
TCP sender-side estimation of the loss rate, including: 

• A proposal for Cumulative Explicit Transport Error No- 
tification (CETEN) [KAPS02, EOA03] requires either 
that the network provide explicit and fine-grained in- 
formation about the level of congestion or that TCP be 
able to estimate this based on the loss rate observed. 
[KAPS02] notes the problems with using a simple count 
of the number of retransmissions as an indication of the 
level of network congestion. We explore this problem 
empirically in § 3. While [KAPS02] uses explicit in- 
formation from the network, a lighter weight scheme 
whereby the sender could accurately assess the loss rate 
of the network would be easier to deploy (as discussed 
in [EOA03]). 

• Measuring the loss rate of networks using tools likeping 
(or the like) may provide an unrealistic estimate of the 
loss rate a TCP application will actually experience for 
several reasons. First, ping is generally rate-based and 
therefore does not share TCP's sending pattern, which 
inherently effects the loss probability of the segments. 
In addition, it is hard to determine some "right" rate for 
sending measurement probes into the network. If the rate 
is too low the measurement is necessarily gross and may 
not capture certain characteristics of the network. On the 
other hand, if the rate is too high, the measurement traffic 
will be disruptive and the measurement will end up being 
biased by its own traffic. These issues are explored fur- 
ther in [MA01]. While using some form of random sam- 
piing may mitigate these disadvantages somewhat, such 
a probing scheme still fails to capture TCP's burstiness 
or its dependence on the feedback loop. Estimating the 
loss rate using sender-side TCP information (or traces) is 
attractive in that it derives a loss rate on timescales that 
matter to applications and the estimate is formed using 
an accepted network-friendly sending rate. 

• Estimating loss rates based only on information avail- 
able at the sending side of a TCP connection allows re- 
searchers to measure networks in which they only con- 
trol one side of a TCP connection. This makes wide- 
scale measurement easier than the case when monitoring 
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points on both ends of the connection are necessary (e.g., 
as used in [Pax97]). 

• Deriving loss rates using TCP can aid the research com- 
munity in verifying and refining our TCP models (e.g., 
[MSMO97, PFTK98]) using sender-side only traces. 

• Comparing loss rates with TCP's retransmission rate of- 
fers insight into the effectiveness of TCP's retransmis- 
sion strategies. 

We present several techniques for determining the loss rate 
experienced by a TCP connection. The first is a simple count 
of  the number of  retransmissions. We then introduce Loss 
Estimation Algorithms for TCP (LEAST) for TCP Reno 
and TCP with selective acknowledgments (SACK) (LEAST,. 
and LEAST,  respectively) and present validations of  both 
algorithms. The measurements highlight the large difference 
between the actual number of  losses and the number of  re- 
transmits TCP uses to repair those losses. Finally, we test a 
second SACK-based loss recovery algorithm with an eye to- 
wards reducing the number of  spurious retransmissions sent 
(and, therefore, reducing the complexity of  loss estimation 
techniques). 

This paper is organized as follows. § 2 outlines our exper- 
imental environment, tools and methodology. § 3 discusses 
the accuracy of  using a simple count of  the number of re- 
transmissions as an estimate of  the loss rate. § 4 discusses 
our TCP Reno loss estimator (LEAST,.), while § 5 discusses 
our SACK-based version of  the loss estimator (LEAST~). 
§ 6 discusses an implementation path for choosing which 
L E A S T  variant to use for a given transfer. § 7 discusses 
a second SACK-based loss recovery algorithm that may aid 
L E A S T  by using more accurate accounting practices during 
loss recovery. Finally, § 8 offers conclusions and suggests 
future work. 

2 Methodology 

To evaluate LEAST,  we use transfers conducted across the 
NIMI measurement mesh [PMAM98, PAM00]. We use the 
bulk transfer capacity [MA01] tool cap [All01] to conduct the 
transfers. This section describes the TCP variants we tested, 
our experimental methodology, and provides a high level de- 
scription of the measurements taken. 

2.1 TCP Variants 
We used a number of  TCP variants in our investigation as 
follows: 

• Reno. This version supports TCP's basic congestion 
control algorithms: slow start, congestion avoidance, 
fast retransmit and fast recovery [APS99]. 

• SACK. This version builds on TCP's standard conges- 
tion control algorithms by using the selective acknowl- 
edgment (SACK) option as specified in [MMFR96] and 
the loss recovery algorithm outlined in [FF96]. SACKs 
are used to enhance TCP's cumulative acknowledgment 
scheme by allowing the receiver to provide fine-grained 
feedback about exactly which segments have arrived. 

• SACK+DSACK. This version builds on both the stan- 
dard congestion control algorithms and the SACK en- 
hancements by adding the use of  the DSACK option 
[FMMP00]. DSACKs allow the receiver to inform the 
sender about segments that have arrived more than once. 

Note: In our experiments we use only Reno and 
SACK+DSACK transfers. Since the DSACK option does 
not change any of TCP's on-the-network algorithmic dynam- 
ics, we can ignore the DSACK information in our analysis to 
study the SACK without DSACK case. 

While real TCP implementations use byte-based sequence 
numbers for reliability (and ordering), cap is based on seg- 
ment numbers for simplicity. In this paper, we will discuss 
our algorithms in terms of segment numbers. We believe 
the transformation to byte counts is fairly straightforward, but 
will require a bit of care in accounting for things like retrans- 
mits that do not include exactly the same sequence space as 
the original transmission and like problems. 

Finally, TCP Reno is susceptible to a phenomenon called suc- 
cessive fast retransmits [F1o95]. In this situation, spurious 
retransmissions cause enough duplicate ACKs to trigger the 
fast retransmit algorithm during recovery which (i) reduces 
TCP's congestion window needlessly and (ii) often triggers 
additional spurious retransmits. [FH99] outlines a "bugfix" 
that prevents these successive fast retransmits from trigger- 
ing. Our TCP Reno implementation does not use this bug fix 
for two reasons. First, we believe that estimating the loss rate 
without the bugfix is more difficult than when the bugfix is 
implemented so we are testing our estimation techniques in 
the worst case environment. Without using the bugfix, spu- 
rious fast retransmits and the duplicate ACKs they trigger 
are common. Therefore, the loss recovery process is messier 
without bugfix [Flo95] and therefore we believe it provides 
a more rigorous test of  our loss estimation techniques. The 
second reason for not using the bugfix is that we have no 
information on its implementation status in real world TCP 
implementations and therefore did not want to make an un- 
realistic assumption that would hinder the application of  our 
techniques in real networks. 

2.2 Platform 
Our experiments involve a mesh of 14 NIMI hosts using the 
cap bulk transfer capacity tool to take measurements. The 
NIMI machines are hosted by research centers and universi- 
ties. Of the 14 NIMIs used in our experiments, 8 are located in 
the United States, 4 in Europe, 1 in the Far East and 1 in South 
America. Both Reno and SACK+DSACK are implemented 
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Figure 1: Per connection loss characteristics across NIMI mesh. 

in cap. We scheduled a transfer between two randomly cho- 
sen hosts at intervals chosen by a Poisson process with a mean 
of  60 seconds. Each transfer consists of 5000 segments, us- 
ing a packet size of  1500 bytes, an infinite advertised win- 
dow (simulating automatic socket buffer tuning [SMM98]) 
and the TCP timestamp option [JBB92]. We collect packet 
traces from both the sender and receiver and compare them 
to obtain the actual loss rate for a given connection. We run 
L E A S T  across only the sender-side packet trace to assess the 
algorithm's ability to estimate the loss rate along the path. 

2.3 Measurements 
We scheduled 16320 transfers between February 24, 2003 and 
March 10, 2003. Of the scheduled transfers, we ended up 
with a dataset of 5123 transfers. The final dataset consists 
of  2546 valid Reno transfers and 2577 valid SACK+DSACK 
transfers. For the transfers not in the final dataset, the failures 
were caused by a myriad of  problems in the network and the 
NIMI mesh. The largest problem was that we scheduled tests 
involving 6 additional NIMI hosts (above the 14 hosts de- 
scribed above) that turned out to be misconfigured and could 
not support our measurements (this accounts for roughly 30% 
of  the scheduled experiments). In addition, time synchroniza- 
tion problems between machines caused the source and sink 
of  the transfer to execute at different times and hence no trans- 
fer is conducted (even after introducing a 5 minute window 
to try to mitigate this). Another example failure is the route 
between two hosts being lost during the transfer. [PAM00] 
discusses the problems of taking measurements in the NIMI 
mesh. While the failure rate is high, we do not believe our 
results are biased since we need only a sample of  transfers 
with a variety of loss rates and loss patterns to assess our loss 
estimation techniques. 

Figure 1 illustrates several characteristics of the loss present 
in our dataset. The first plot shows that the transfers in the 
dataset experienced a variety of per connection loss rates. 
Over 20% of the transfers (both Reno and SACK) experi- 
enced no losses. This is explained by the quality of  the con- 
nections between some of the NIMI hosts. Over a number of 
paths, the 5000 segment transfers used in our study did not 

load any links to the point of packet loss. As an example, one 
of  the paths included in our dataset is between hosts at the 
International Computer Science Institute and the Lawrence 
Berkeley National Laboratory, both of  which are in Berke- 
ley, CA, USA. The hosts are separated by roughly 1.5 miles 
over a path with an RTT of  roughly 5 ms and bandwidth of 
100 Mbps. While at different institutions, these hosts are es- 
sentially connected via a LAN-type network, explaining why 
transfers between them are loss free. At the other end of  the 
spectrum, from figure l(a) we also note that a small percent- 
age (0.6%) of the connections experienced a loss rate of more 
than 10%. 

The second plot in figure 1 shows the loss distance [KR02]. 
The loss distance is calculated for each lost packet P and is 
defined as the number of  packets sent since the last packet 
loss. For example, if the 3 ra and 5 th packets are lost the loss 
distance for packet 5 will be 2. This metric provides infor- 
mation about both how clustered the losses are and how of- 
ten losses are experienced. The plot shows that roughly 50% 
of the loss distances are 1, indicating that half of  the losses 
belong to larger groups of  losses (e.g., clumped losses that 
happen at the end of  slow start). We also note a range of loss 
distances, with over 15% of the distances being greater than 
16 segments. 

The final plot in the figure shows the distribution of loss pe- 
riods [KR02]. The length of  a loss period is the number of 
losses that occur in a row. In this figure we again see a range 
in the loss patterns. Most of the loss periods are 1 segment 
in length (over 60%), however we did note one loss period of  
886 segments! 

All the plots show that the loss characteristics of  Reno and 
SACK are largely similar. We believe the differences between 
the two versions of  TCP correspond to SACK's aggressive- 
ness in keeping the cwnd larger than Reno and therefore keep- 
ing more segments in the network, as well as TCP's bursty 
sending pattern in slow start-based loss recovery (which hap- 
pens more frequently in Reno than SACK). Finally, we be- 
lieve that figure 1 shows that our experiments cover a variety 
of  loss characteristics (which is the key to evaluating a loss 
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estimator). 

3 Retransmissions 

Because TCP is a reliable transport, all segments lost in the 
network should be repaired with retransmissions from the 
data originator. Therefore, a natural first choice for estimat- 
ing the loss rate experienced by a connection is to count the 
number of  retransmissions. Figure 2 provides the distribu- 
tion of  the percent difference between the actual loss rate and 
the retransmission rate for the Reno and SACK transfers in 
the NIMI mesh. For TCP Reno transfers, we have found that 
retransmits exactly estimate the loss rate in roughly 26% of 
the transfers. However, in roughly two-thirds of the trans- 
fers, using retransmits as an estimate of the loss rate is off by 
more than 10%. Further, in approximately 16% of the trans- 
fers, the discrepancy between retransmissions and losses is 
over 100%. Finally, the median percent difference between 
the number of retransmits and the actual number of losses in 
the Reno transfers is roughly 33%. 

This discrepancy between retransmits and losses in Reno TCP 
is explained by the use of  slow start after the retransmis- 
sion timer (RTO) fires. In this mode, and in the absence of 
SACK blocks informing the sender exactly which segments 
have a~ived, Reno often retransmits packets that have not 
been clearly indicated as lost. For example, say segment N 
is retransmitted after the expiration of the RTO timer. The re- 
ception of segment N will cause an ACK coveting segment 
M to be sent (where M > N). As previous work has shown 
[Hoe96, FH99], this ACK indicates that segment M + 1 has 
likely been lost. Since the TCP sender is in slow start, seg- 
ments M + 1 and M + 2 are retransmitted. However, the 
sender received no indication that M + 2 needs to be retrans- 
mitted - and, as figure 2 implies, in a large number of cases 
the sender is guessing wrong and needlessly retransmitting 
data. This whole process is further aggravated because, with- 
out selective acknowledgments, TCP is more prone to relying 
on the RTO timer to repair losses [FF96]. 

In the absence of  SACK information, TCP may still be able 
to be more intelligent about which packets are transmitted, 
thus reducing the number of needless retransmissions. For 
instance, the use of  NewReno [Hoe96, FH99] refines the re- 
transmission algorithms in an effort to be more precise in re- 
transmitting data. 

Figure 2 also shows the performance of retransmissions as a 
loss estimator using TCP SACK. The plot shows a significant 
improvement over Reno, with a median difference between 
the loss rate and the retransmission rate of roughly 2% and 
with roughly 75% of the estimates within 10% of the actual 
loss rate. However, the plot shows that there are still cases 
where TCP SACK retransmits unnecessarily and hence skews 
the loss estimate. We find that the cause of  these needless re- 
transmits is the pattern of  SACK information that is sent from 
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Figure 2: Accuracy of retransmissions as an estimate of the loss 
rate. 

the receiver after a timeout. Upon a timeout, the sender clears 
its copy of the SACK scoreboard (per RFC 2018 [MMFR96]). 
In addition, the receiver always acknowledges the blocks cor- 
responding to the most recently transmitted blocks. There- 
fore, the receiver sometimes does not re-populate the sender's 
scoreboard appropriately and so the sender believes that some 
packets need to be retransmitted even though they have ar- 
rived at the receiver. This problem is discussed in greater de- 
tail in § 7. 

Using the number of  retransmissions as the basis for a loss 
rate estimate may work for some applications (especially 
for TCP with SACK). However, for applications that re- 
quire a more accurate estimate of  the loss rate, we explore 
leveraging information from the ACK stream to refine the 
retransmission-based estimate. Our algorithms are detailed 
in the next sections. 

4 LEAST for TCP Reno 

This section discusses the TCP Reno version of the loss esti- 
mator, LEAST,. .  

4.1 Algorithm 
Figure 3 shows the Python code for implementing the 
LEAST,.  algorithm. The principle behind LEAST~ is that, 
after the RTO timer fires and TCP starts using slow start-based 
loss recovery, needless retransmissions will trigger the re- 
ceiver to transmit duplicate acknowledgments. For instance, 
consider the case when a sequence of  four packets, n...n + 3, 
is transmitted and only n + 2 arrives at the receiver. Figure 4 
shows the sequence of events after the RTO timer fires, as 
follows: 

1. The TCP sender times out and resends segment n, caus- 
ing the receiver to send an ACK covering segment n (i.e., 
expecting segment n + 1). 
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seqno = ackno = highdata = highack = retransmits = dup~mits = 0 
in_rto_event = False 

for pkt in snd_trace: 
if pkt. IsAck () and (pkt.AckNo () > highack): 

highack = pkt.AckNo () 

if pkt. IsData (): 

if pkt. SeqNo () > highdata: 
highdata = pkt. SeqNo () 

else: 
retransmits += 1 

## an RTO that initiates slow start-based loss recovery 
if not in rto_event and pkt. IsRTO (): 

in_rto_event = True 
recovered = recovered_orig = highdata 
rto_segment = pkt. SeqNo () 
event retrans = 1 
event dupacks = 0 
continue 

## in slow start-based loss recovery 
if in_rto_event: 

if pkt. IsData (): 
## count retransmits in the event 
if pkt. IsRetrans () and (pkt.SeqNo () < recovered): 

event_retrans += 1 

## an RTO within the RTO event; extend the event 
if pkt. IsRTO (): 

recovered = recovered orig = highdata 
rto_segment = pkt.SeqNo () 

## track new packets sent during recovery -- we need to 
## account for the last few duplicate ACKs 
if not pkt. IsRetrans () end (highack <= recovered orig): 

recovered = pkt. SeqNo () 

else: 
## an ACK that terminates the RTO event 
if pkt.AckNo () > recovered: 

dup_xmits += min (event_dupacks, event_retrans) 
in_rto event = False 

## count duplicate ACKs received in the event -- but, not 
## any associated with the RTO segment (which are not caused 
## by needless retransmissions) 
elif (pkt.AckNo () == last_ackno) and (pkt.AckNo () >= rto_segment): 

event_dupacks += 1 

## track the last ACK number 
if pkt,IsAck (): 

last_ackno = pkt.AckNo () 

least = retransmits - dupxinits 

Figure 3: TCP Reno LEAST algorithm. 
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Figure  4: Sample TCP retransmit pattern after RTO timer fi res. 

2. Upon reception of the ACK covering segment n, the 
sender increases the congestion window (cwnd) to 2 seg- 
ments. The incoming ACK points to the next missing 
segment, n -4- 1, that the sender retransmits. However, 
since cwnd is now 2 segments, the sender also retrans- 
mits n -4- 2 even though no specific knowledge about 
whether n + 2 has been lost has arrived at the sender. 

3. When segment n + 1 arrives at the receiver an ACK for 
segment n + 3  is generated (since n + 2  is now the highest 
in-order data segment that has arrived). 

4. When the spurious copy of  segment n + 2 arrives at the 
receiver a second ACK covering segment n + 3 is trans- 
mitted. 

LEAST,- uses the receipt of  this second (duplicate) ACK for 
segment n + 3 as an indication that a spurious retransmission 
occurred. A counter tracks the number of unneeded retrans- 
missions and the LEAST,- estimate is calculated as: 

LEAST~ = Rtotat - R~p~,-io~ (1) 

where Rtotat is the total number of  retransmissions and 
Rsp~,-ious is the estimated number of unnecessary retrans- 
missions. We count duplicate ACKs for accumulation in 
Rsp~o~s  during the "RTO event" - which starts when the 
RTO timer fires and ends when the TCP sender receives an 
ACK for the highest segment outstanding when the event was 
initiated. We found a number of situations that cause errors 
in LEAST~, which will be illustrated in the next subsection. 
While the principle of counting duplicate acknowledgments 
seems straightforward, the algorithm given in figure 3 con- 
tains several rules to cover special cases, as follows: 

• Duplicate ACKs that do not cover the segment most re- 
cently transmitted via the RTO timer should not be taken 
as indicating that spurious segments arrived at the re- 
ceiver. To understand why, assume segment n is lost, 
fast retransmitted and lost again. Eventually, the RTO 
timer will fire and segment n will be retransrnitted for a 
second time. However, between the fast retransmit and 
the expiration of  the RTO timer, fast recovery governs 

the sending of  segments. Any segments sent will trig- 
ger duplicate ACKs for segment n (i.e., the receiver is 
expecting segment n). These acknowledgments do not 
indicate spurious retransmissions. However, if the RTO 
timer fires while these ACKs are still streaming into the 
sender, they would skew the LEAST,- estimate without 
this rule. 

When the RTO timer expires after the connection is al- 
ready in slow start-based loss recovery, the current event 
must be extended to account for the most recent segment 
retransmitted via the RTO timer and the outstanding data 
at the time of the latest RTO timer expiration. 

The point at which the event is terminated needs to be ex- 
tended when previously unsent data is transmitted during 
the event in order to catch the last few (possible) dupli- 
cate ACKs. 

When an ACK arrives that passes the recovery point, we 
add the number of spurious retransmits we have counted 
in the current event to the total Rsvu,-ious count. Ide- 
ally, we are counting only duplicate ACKs for spuri- 
ous retransmissions. However, as outlined below, situ- 
ations arise that cause our count to be wrong. There- 
fore, as a double check, we actually add the minimum of  
the number of  duplicate ACKs counted during the event 
(i.e., spurious retransmits) and the number of  retransmits 
sent during the event (which is an upper bound on the 
number of  spurious retransmits sent). This rule does not 
necessarily make our estimate exactly right; however, it 
bounds the error. 

4.2 Validat ion 
As outlined in § 2, we obtained 2546 valid Reno transfers 
from the NIMI measurement mesh. We calculated the loss 
rate for each transfer by analyzing both sender and receiver 
traces and comparing the packets transmitted by the sender 
with those arriving at the receiver. We then use the sender-side 
trace to derive a LEASTr estimate of  the loss rate. In the dis- 
cussion below, we also use a corrected version of LEAST,. 
that uses receiver-side information to confirm the sources of  
error in the estimate. 

Figure 5 shows the distribution of the percent error between 
the actual loss rate for the connections and the loss rate de- 
rived from LEAST,-. In addition, for comparison, we plot the 
percent error in using retransmits as a loss estimate (discussed 
previously in § 3 in more detail). When using LEAST,-, 
roughly 56% of the transfer loss rate estimates are exactly 
right, with roughly 3% of the estimates differing from the 
(measured) loss rate by more than 10%. These results again 
highlight the grossness of Reno's retransmission behavior. 
Using the straightforward LEAST,. estimator, we are able to 
predict the loss rate to within 10% in over 96% of the trans- 
fers in our dataset. We now look at several categories of  errors 
found in the LEAST,- estimate. 
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4.2.1 Sources of E r r o r :  As we will show below, the 
five sources of  error explained in this section account for the 
majority of  the error in the L E A S T ~  estimate. Each error 
listed below is given a one-letter identifier for the purposes of 
the discussion of  the results. 

Spurious Fast Retransmit (.,4). This error is not caused by 
t h e  L E A S T r  algorithm itself, but rather from spurious fast 
retransmits caused by packet reordering in the network. Suf- 
ficient packet reordering can cause spurious fast retransmits 
[BPS99, BA02]. However, since L E A S T ~  only works af- 
ter the RTO timer fires, these spurious fast retransmits are 
counted in -Rtotal but since they are not detected as spurious 
they are not counted in R s p ~ i o ~ 8 .  Therefore, this causes an 
overestimate in L E A S T ~ .  

Lost Duplicate ACKs (E). When a duplicate ACK that indi- 
cates a spurious retransmission to the L E A S T ~  algorithm is 
lost in the network, the information about a spurious retrans- 
mit is lost. For instance, in figure 4, if the second ACK for 
n + 3 is lost, the sender will be unable to determine whether 
the retransmission of segment n + 2 was required. Losing 
duplicate ACKs during the RTO event causes overestimation. 

Spurious Retransmit Triggers Partial ACK (C). Some- 
times we have noticed spurious retransmits resulting in partial 
ACKs I arriving at the TCP sender. This problem works hand- 
in-hand with the lost duplicate ACK phenomena described 
above. Losing a partial ACK causes a subsequent duplicate 
ACK to be effectively turned into a partial A C K  and there- 
fore the information conveyed in the duplicate ACK will be 
lost. I f  the first ACK for n + 3 in figure 4 is lost, the sec- 
ond (duplicate) ACK for n + 3 will look like a partial ACK 
when arriving at the sender. Hence, there will be no second 
(duplicate) ACK following to indicate a spurious retransmit 
occurred. Losing partial ACKs during the RTO event causes 
overestimation. 

I A  par t ia l  A C K  covers  p rev ious ly  u n a c k n o w l e d g e d  da ta ,  bu t  no t  e n o u g h  
p rev ious ly  u n a c k n o w l e d g e d  da ta  to te rmina te  recovery.  

S o u r c e  Data n .....~..............~.....~ 

A C K  n + l  ................------'- 
Data n + l  

'Da ta  n+2 

A C K  n + l  
...........-..----- 

Sink  

Figure 6: Example of sequence of events following a lost retrans- 
mission. 

Lost  Retransmiss ions  (79). A lost retransmission during 
slow start-based loss recovery can trigger duplicate ACKs that 
do not indicate spurious retransmits and hence skew the esti- 
mate. Figure 6 shows the sequence of  events after the RTO 
timer fires (for segment n) in the case where segments n, n +  1 
and n + 2 are lost before the RTO timer expires. The dia- 
gram shows the events that occur when the retransmit of  seg- 
ment n + l  is lost (for a second time). In this case, the ACK re- 
turned for segment n + 2 is a duplicate ACK, which L E A S T ~  

takes as indicating a spurious retransmit even though the re- 
transmit of  segment n + 2 is required in this case. This series 
of  events yields an underestimate in the L E A S T ~  algorithm. 

Spurious Fast Retransmit Terminates Recovery ($). As 
outlined in [F1o95], TCP Reno is susceptible to successive 
fast retransmits within a window of  data. If  one of these suc- 
cessive fast retransmits happens at the end of  slow start-based 
loss recovery, a duplicate ACK indicating that the retrans- 
mission was spurious will fall outside the "recovery event". 
Therefore, the L E A S T r  algorithm will not detect the dupli- 
cate ACK. While we may be able to extend the event to wait 
for the resulting duplicate ACK, it is not obvious how long to 
extend the event waiting for an ACK that may or may not 
arrive - or, may arrive delayed or out-of-order. L E A S T ~  

makes the assumption that the retransmit was necessary and 
thus overestimates when such a retransmit is sent needlessly. 
This overestimate is limited to the number of RTO events that 
happen within a transfer. 

The above list of estimation errors is likely not complete. 
Other sources of  error could be packet reordering, packet du- 
plication or other situations yet unknown. However, as will 
be shown in the next section, we believe the above sources 
of error capture the major causes of estimation error found in 
our measurements. 

4.2.2 Quantifying Errors: In our NIMI dataset, 
L E A S T ~  exactly matched the loss rate in roughly 56% of  the 
transfers (or 1418 of  the 2546 Reno transfers). In 57 of  these 
exact matches, L E A S T ~  mis-estimates in more than one of 
the above outlined ways, but the estimation problems exactly 
cancel out to yield a correct overall estimate. 

Next we observe that in 10% (or 256) of  the transfers in our 
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NIMI dataset, LEAST,. underestimates the loss rate. The 
only source of underestimation outlined in § 4.2.1 is dupli- 
cate ACKs returned for needed retransmits because a needed 
retransmission was lost (79). We found that correcting our es- 
timate based on the problems identified in § 4.2.1 yields an 
exact accounting of the errors in roughly 69% of the transfers 
yielding an underestimate. In another 20% of the transfers the 
corrected estimate is closer to the actual loss rate, while 5% 
of the transfers ended up being overestimates after the correc- 
tion. Finally, in 5% of the transfers yielding an underestimate, 
the correction had either no effect or increased the underesti- 
mation. From this analysis we believe that while we have not 
found all the causes of underestimation in our data we have 
identified the major causes. 

Next we turn our attention to the 34% (or 872) of the transfers 
in our NIMI dataset in which LEASTr overestimates the loss 
rate. Of those, 71% of the overestimates can be exactly cor- 
rected by taking into account the sources of error from § 4.2.1. 
In these transfers, duplicate ACK losses (B) are the largest 
cause of error in the estimate with 45% of the error, followed 
by receiving partial ACKs in response to spurious retrans- 
mits (C) with 36% of the error, reordering causing spurious 
fast retransrnits that are not accounted for by LEAST,. (.,,dO 
with 14% of the error and lost retransmits triggering duplicate 
ACKs (79) with 3.7% of the error. In 29% of the overestimates 
in which the rnis-estimate could not be exactly corrected for, 
we noted a variety of  sources of error. However, we note that 
the median difference between the corrected estimate and the 
actual loss rate is roughly 0.6%, indicating that we have iden- 
tified the majority of  the errors that skew the estimate. 

Finally, we note that the phenomenon whereby a spurious fast 
retransmit is sent at the end of  the RTO event (~) discussed 
in § 4.2.1 is not a large contributor to the error in LEAST,.. 
This case accounts for less than 1% of the error in LEAST,. 
across all our TCP Reno NIMI transfers, indicating that the 
assumption outlined in 4.2.1 that the retransmit is needed does 
not greatly skew LEAST,.. 

4.3 Summary 
In this section we have shown that the LEASTr estimate is 
accurate within 10% of the actual loss rate in over 96% of 
the transfers. Furthermore, for roughly 56% of the transfers, 
LEAST,. exactly matches the loss rate. In addition, when 
LEASTr does not match the loss rate, we have identified the 
vast majority of the errors in the estimate such that we believe 
that (given only the information available at the sender-side 
of a TCP connection), LEAST,. is forming a near-optimal 
estimate of the loss rate. 

the TCP sender about the sequence space that has actually ar- 
rived at the receiver in a more fine-grained way than simply 
using the standard cumulative acknowledgment mechanism. 
As shown in § 3, the use of SACK allows TCP to be more 
accurate in resending data and therefore the number of re- 
transmits is a better estimate of  the loss rate than when using 
TCP Reno. However, needless retransmissions are still sent 
by SACK-based algorithms and therefore we have developed 
a mechanism that uses clues in the returning ACKs to form a 
better loss estimate. 

5.1 Algori thm 
The LEASTs algorithm is given in figure 7. The first portion 
of  the code counts all retransmits. The second half of  the £ o r  
loop in the code is used to estimate the number of  spurious 
retransmits sent. The code is different depending on whether 
the receiver supports the DSACK option [FMMP00]. 

If  the receiver (i) supports the DSACK option [FMMP00], 
(ii) the incoming acknowledgment contains DSACK infor- 
mation and (iii) the DSACK information reported is for a 
retransmitted segment then the TCP sender considers the re- 
transmission to be spurious 2. DSACK blocks are only sent 
on one acknowledgment packet. Therefore, if an ACK with 
a DSACK is lost in the network, the information conveyed in 
the DSACK will not be resent and the sender's estimate of the 
loss rate will be affected. 

If  the receiver does not support DSACK, the LEASTs algo- 
rithm looks for redundant SACKs. That is, returning ACKs 
that do not advance the cumulative ACK point and contain 
no previously unknown SACK information. Such an ACK is 
assumed to have been caused by a needlessly retransmitted 
data segment that does not update the state of the receiver's 
buffer. However, ACK reordering can also cause an ACK to 
be deemed redundant in the case where a later ACK passes 
an earlier ACK in the network and conveys the same informa- 
tion (and likely more) than the earlier ACK. When the ACK 
that was originally transmitted first (but, arrives second) is 
processed by the sender, all the information contained within 
the ACK is redundant, hence meeting our criteria for being 
counted as indicating a needless retransmission and fooling 
our algorithm. 

As with LEAST,., the SACK variant of the algorithm is also 
susceptible to packet duplication in the network path. How- 
ever, when using DSACK, the sender has some protection by 
ensunng that a segment reported as arriving multiple times 
was actually retransrnitted by the sender. 

5 LEAST for TCP SACK 

In this section we explore the LEAST~ variant for TCPs that 
support the selective acknowledgment option [MMFR96]. 
Selective acknowledgments allow a TCP receiver to inform 

2Note: to work optimally, the receiver should not delay an ACK con- 
taining DSACK information. This advice agrees with [APS99]'s guidance 
that out-of-order arrivals should trigger immediate ACKs. If an ACK with 
a DSACK must be delayed, the DSACK information should be included in 
the delayed acknowledgment. In our experiments the receiver immediately 
transmits an ACK when a DSACK is required. 
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highdata = retransmits = dup_xmits = 0 

for pkt in snd trace: 
if pkt. IsData (): 

if pkt. SeqNo () > highdata: 
highdata = pkt.SeqNo () 

else: 
retransmits += 1 

if pkt. IsACK (): 
if using_DSACK a n d  pkt.DSACK () and WasRexmted 

dupxmits += 1 
ellf not using_DSACK and IsSACKRedundant (pkt): 

dup xmits += 1 

least = retransmits - dup_xmits 

(pkt. DSACK ( ) ) :  

Figure 7: TCP SACK LEAST algorithm. 

5.2 Validation 
As outlined in § 2, we obtained 2577 valid SACK trans- 
fers from the NIMI measurement mesh. We calculated the 
loss rate for each transfer by comparing the sender and re- 
ceiver traces. We then use the sender-side trace to derive two 
LEAST8 estimates of  the loss rate (with and without DSACK 
information). 

Figure 8 shows the distribution of  the percent difference be- 
tween the actual loss rate and our estimates. Using the num- 
ber of retransmits inthe connection (as discussed in § 3) is the 
worst of  our estimators. The two remaining estimators use the 
LEAST8 algorithm to attempt to correct for spurious retrans- 
missions. As the plot shows, when using DSACK, nearly 96% 
of  the estimates are exact, with less than 1% of the connec- 
tions experiencing estimates that are more than 10% different 
from the actual loss rate. When DSACK is not used and a 
count of the redundant (S)ACKs is employed instead, we note 
approximately 60% of  the estimates being exact, with roughly 
9% of  the connections showing estimates that are more than 
10% different from the actual number of  losses. 

When using DSACK, the error in the LEAST~ algorithm is 
always explained by lost spurious retransmits or lost ACKs 
that contain DSACK information. The source of  error could 
be reduced by either (i) making DSACK more robust to ACK 
loss by sending it more than once (ala the rest of  the SACK in- 
formation) or (ii) by making TCP's retransmission machinery 
less likely to transmit spurious retransmits (see § 7). In addi- 
tion, several non-DSACK schemes for detecting spurious re- 
transmits have been outlined in the literature [LK00, SKR02] 
and may be generalizable to the problem of  finding spurious 
retransmits for loss estimation. 

Without DSACK, LEAST8 is more prone to mis-estimation. 
To determine the source of  error, we use the LEAST8 algo- 
rithm to analyze the trace made by the receiver so that we see 
the exact stream of acknowledgments that are sent. Using the 
receiver-side acknowledgment stream yields exact LEASTs 
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Figure 8: Accuracy of LEASTs compared to the actual loss rate 
(percent differences that are less than zero indicate un- 
derestimates while differences over zero indicate overes- 
timates). 

estimates in over 84% of  the connections and estimates within 
10% of  the actual loss rate in over 99% of  the connections. 
In addition, the underestimation shown in figure 8 is elim- 
inated. This analysis illustrates that most of  the error in the 
LEAST8 (without DSACK) estimates is caused by the packet 
dynamics along the network path traversed by the ACKs (e.g., 
losses, reordering, etc.). Therefore, we believe that improv- 
ing LEAST8 further would require either more information 
(from more than just the sender's vantage point) or heuristics 
that try to infer additional information from the ACK stream. 

6 Implementation Path 

In the previous sections, we have described three variants of  
LEAST: LEAST,. for TCP Reno connections and two vari- 
ants of  LEAST8 for connections that support SACK (with 
and without the DSACK option). The natural question that 
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arises in the face of three different algorithms is which to use 
for a given (arbitrary) TCP connection (or trace). The fol- 
lowing is a sketch of  a scheme that can be used to determine 
which variant of LEAST to employ. 

1. If  either of the hosts involved in a connection fails to ad- 
vertise support for selective acknowledgments in TCP's 
three-way handshake, then loss estimation should pro- 
ceed using LEASTr. 

2. Assuming SACK is supported by both hosts in a connec- 
tion, loss estimation can proceed using one of the SACK 
variants. Unfortunately, the DSACK option is not ne- 
gotiated during the connection setup phase. Therefore, 
which variant of  LEASTs to use is not immediately ob- 
vious. Two approaches to loss estimation are possible, 
as follows. 

In the case when LEAST is being computed by a TCP 
implementation or by some form of  measurement tool 
based on TCP (ala sting [Sav99] or TBIT [PF01]), the 
first two data segments sent can explicitly overlap by 
1 byte. If  the receiver supports DSACK, this overlap will 
cause a DSACK to be reported in the returning ACK. 
Therefore, based on the returning ACK, the TCP can de- 
termine which variant of  LEASTs to employ. 

On the other hand, in the case of  estimating loss rates 
by passively monitoring TCP connections, the above 
active manipulation of  the byte-stream is not possible. 
Therefore, the recommended loss estimation approach 
is to assume the receiver does not support DSACK un- 
til a DSACK notification arrives and then switch vari- 
ants of  the algorithm. To implement this approach, the 
code given in figure 7 is changed slightly, as follows. 
The using_DSACK boolean starts being set to "false". 
When (a) ACK segments arrive, (b) using_DSACK is 
set to "false" and (c) the incoming ACK contains a 
DSACK then the u s  ingd3SACK flag is set to "true" and 
the count of  duplicate transmits (dup_xmi t s) is reset to 
zero. This results in a fresh start at loss estimation using 
the DSACK variant of  LEASTs. 

Using the above approach, LEAST can be used in environ- 
ments without a priori knowledge of the TCP variant being 
utilized (or, from traces containing a multitude of  different 
TCP variants). 

7 Reducing Spurious Retransmissions With SACK 

As shown in previous sections, the fundamental problem with 
estimating the loss rate of  a TCP connection is that TCP re- 
transmissions are not an accurate reflection of  the actual loss. 
Designing algorithms that make better choices about what to 
retransmit will simplify loss estimators (possibly obviating 
the need for anything over a retransmission count), as well 

as reduce the shared network resources expended on carry- 
ing traffic that accomplishes no useful work. In this section 
we show that more aggressive accounting of  data during loss 
recovery with SACK can reduce the number of needless re- 
transmits sent by TCP (and, hence, reduce the amount of  es- 
timation that an algorithm, such as LEASTs, has to do to 
arrive at the actual loss rate). In this section we explore two 
different SACK-based loss recovery schemes in terms of  the 
number of needless retransmits triggered by each algorithm. 

7.1 Why SACK Needlessly Retransmits 
The specification for TCP's selective acknowledgment 
(SACK) option [MMFR96] outlines the information a SACK 
receiver is to return to the sender when the receiver's socket 
buffer is non-contiguous, as follows: 

• The first SACK block returned is to contain the received 
range of  data that includes the arriving data segment. 

• Any remaining option space is to be used to resend the 
most recent discontiguous SACK blocks transmitted. 

In addition, [MMFR96] specifies that TCP senders clear any 
collected SACK information upon the expiration of the re- 
transmission timer to allow for the possibility the receiver 
may reneg 3 on a previously sent SACK block. 

The above specification creates a situation where the TCP 
sender sometimes never obtains valuable information about 
data in the receiver's buffer after a timeout, which leads to 
the possibility that the sender will needlessly retransmit seg- 
ments. As an example, table 1 shows a map of  the receiver's 
socket buffer at the point when the TCP sender's RTO timer 
fires. Note that segments 1, 4, 7, 9, and 13 are missing. The 
latest three SACK blocks transmitted to the data sender are 
blocks: /36, B8 and/310 (coveting segment 8, segments 10- 
12, and segment 14 respectively). The following events occur 
after the RTO timer fires: 

1. The sender retransmits segment 1. 

2. When segment 1 arrives at the receiver, an acknowledg- 
ment is sent containing a cumulative ACK covering seg- 
ment 3 and the SACK blocks/36,/38 and/310 (the most 
recently transmitted SACK blocks). 

3. When the ACK sent in step 2 arrives, the sender will in- 
crease the congestion window by 1 segment and will re- 
transmit segments 4 and 5. While segment 4 requires re- 
transmission at this point, segment 5 does not (as shown 
in table 1). However, the TCP sender has not been in- 
formed that segment 5 has arrived (since clearing the 
scoreboard) and therefore assumes it requires retrans- 
mission. 

3[MMFR96] allows a receiver to discard received data that it has not cu- 
mulatively acknowledged (to recover buffer space, for example). The re- 
ceiver renegs by not keeping data that it implied to the sender (through a 
SACK) would not need to be retransmitted. 
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Received Segment Range 

Blocks of Received and Missing Segments 

8-8 ] B7 Blo 
14-14 

Table 1: Sample socket buffer map at receiver. 

4. Segment 4 arrives at the receiver which generates a cu- 
mulative ACK coveting segment 6 and again sends the 
SACK blocks Br, Bs and B10. When this ACK ar- 
fives, the sender will have complete knowledge of the 
receiver's buffer and will not needlessly retransmit any 
more segments. 

The above example shows a simple situation where the sender 
transmits one needless segment into the network. As the 
amount of outstanding data grows and becomes more frac- 
tured (requiring more SACK blocks to describe), the num- 
ber of spurious retransmissions increases because the receiver 
only reports information about the far right-side of the win- 
dow. This general problem is the cause for the vast majority 
of the needless retransmits observed in our SACK dataset de- 
scribed in § 5. Several possible solutions to this problem ex- 
ist. For instance, the receiver could change the scheme it uses 
to choose which SACK blocks to include in an ACK to pro- 
vide the sender with more timely information. Alternatively, 
the sender could be made more conservative - retransmitting 
segments that are in a "bounded hole" in the sequence space 
where the receiver has informed the sender about arrived seg- 
ments on each side of the segment being retransmitted (e.g., 
retransmitting segment 13 before segment 5 in the above ex- 
ample). A third possible mitigation for this problem is to re- 
pair as much loss as possible before the RTO timer expires, 
thus allowing the receiver to describe the state of its buffer 
in fewer SACK blocks. This last solution does not attempt 
to fix the fundamental problem, but rather tries to avoid the 
problem. We experiment with a second SACK-based loss re- 
covery algorithm to understand the degree to which it is able 
to repair more loss before the RTO timer expires and describe 
our results in the following subsections. 

7.2 SACK Algorithm Descriptions 
The SACK algorithm implemented in cap is based on [FF96] 
which, in turn, is codified in ns2's sack1 TCP variant. The 
algorithm keeps an estimate, pipe, of the number of segments 
in the network. When loss recovery is started, pipe is initial- 
ized to the amount of outstanding data. For each duplicate 
ACK received during recovery, pipe is decremented by 1 seg- 
ment. For each segment sent (new or retransmit), pipe is in- 
cremented by 1 segment. For each partial ACK received, pipe 
is decremented by 2 segments (one for the original segment 
transmitted and one for the retransmit). When pipe is less 
than cwnd, TCP can send (retransrnitting if data for reseed is 
available or sending new segments if not). 

[BAFW03] outlines a second SACK-based loss recovery al- 
gorithm, which we will denote sack2, that is based on the 

Parame~r Range Increment 
D I 25%-75% 5% 
Dd 0 % - 1 0 %  1% 
Da 0 % - 1 0 %  1% 

Table 2: Ranges for simulation parameters. 

principles of sackl but is more careful in estimating how 
much data is in the network 4. The key difference between 
sack1 and sack2 is that sack2 can declare a segment"lost" and 
therefore deduct it from the pipe estimate. Sack1 does not do 
this, but rather relies only on ACK arrivals to declare that data 
has left the network (missing the fundamental impossibility 
of a lost segment triggering an ACK). Sack2's more aggres- 
sive estimation of pipe provides (re)transmission opportuni- 
ties sooner than when using sack1. Therefore, in the case of 
the RTO timer expiring (e.g., if a retransmit is, itself, los0 
sack2 has an easier job than sack1 because sack2 has likely 
repaired more loss before the RTO timer fires than sack1. 

7.3 Simulation Comparison 
To explore the SACK algorithms detailed above, we wrote 
a small simulator in Python that models both the sender and 
receiver during the loss recovery phase of a TCP SACK con- 
nection. The simulator, tcpsim, consists of a sender and re- 
ceiver separated by a link with a one-way delay of 0.25 sec- 
onds and a bandwidth of 10 Mbytes/second. The simulator's 
data originator uses either sack1 or sack2 for loss recovery. 
The simulator starts by transmitting a window of 250 data seg- 
ments (assumed to be the last window sent in slow start, for 
instance). The simulation ends when loss recovery is finished 
- i.e., upon receipt of an ACK covering the highest segment 
outstanding when recovery started. 

From the first window of data, the first segment, $1, is always 
dropped (and subsequently fast retransmitted). In addition, 
segments are dropped from the first window of data randomly 
with probability D I. After the first window of data trans- 
mission, tcpsim drops data segments with probability Dd and 
drops acknowledgments with probability D~. Table 2 out- 
lines the parameter space used for the simulations presented 
in this paper. We use two different loss rates for data seg- 
ments to approximate the situation at the end of TCP's slow 
start phase where TCP roughly doubles the congestion win- 
dow every round-trip time. This causes a situation where one 
window of data often experiences drastically different loss 

4Note: The authors of sack1 note in [FF96] that one may be able to design 
a better algorithm by being more careful - but, that was beyond the scope of 
their initial study. 
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characteristics than would be expected given the steady state 
loss rate of the network path. We conducted 30 random sim- 
ulations with each permutation of  the parameter space and 
report medians in this paper. 

In addition to always dropping the first segment sent, $1, tcp- 
sim also always drops the first retransmit of  $1 to ensure that 
the retransmission timer (RTO) is required to recover some of 
the loss 5. 
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Figure 9: Distribution of needless retransmits across all tcpsim sim- 
ulations. 

Figure 9 shows the distribution of  the number of  needless re- 
transmits sent by each SACK variant on each transfer. The 
plot shows the distribution of  the median of the 30 random 
simulations of  each loss scenario described above. As shown, 
the amount of needlessly retransmitted data sent by sack1 
is 3-17 times the amount spuriously sent by sack2. While 
sack2 suffers fewer spurious retransrnits, it also sends 7-39% 
more unique bytes during recovery than sack1 and loss recov- 
ery takes approximately 20 seconds (or roughly 40 round-trip 
times) less than when using sackl (on median). 

These results show that sack2's more aggressive accounting 
during SACK-based loss recovery allows it to be more accu- 
rate in its overall retransmission behavior. Sack2's use of a 
more aggressive recovery before the RTO timer fires largely 
avoids the problems caused by the receiver not re-populating 
the sender's SACK scoreboard after an RTO. In addition, 
we note that sack2 uses its transmission opportunities more 
wisely since it sends more unique data than sackl.  Finally, 
we note that sack2's aggressiveness does not violate the spirit 
of  TCP's congestion control principles [Flo00] in that multi- 
plicative decrease is applied. 

The results in this section suggest that the TCP sender's 
choice of  which particular SACK-based loss recovery algo- 
rithm to utilize can have an impact on the performance of a 
loss estimator such as L E A S T .  By reducing the number of  
needless retransmits sent into the network, the TCP sender re- 
duces the amount of  estimation that needs to happen to accu- 

5 B o t h  sackl and sack2 require the use o f  t h e  R T O  t i m e r  to  r e c o v e r  f r o m  

l o s t  retransmits. 

rately assess the loss rate and distills the problem to counting 
retransmissions. The loss estimation techniques outlined in 
this paper are still useful for assessing the loss rate on a wide 
variety of  arbitrary traffic. However, the results of  this section 
suggest that when using an active measurement strategy, re- 
searchers would be well served to choose a SACK-based loss 
recovery strategy carefully. 

8 Conclusions and Future Work 

The following are the major contributions of  this paper: 

• Through measurements from the NIMI mesh of  mea- 
surement points, we have shown that using a count of  
the number of retransmissions sent by TCP provides a 
poor estimate of the number of  packets actually lost. 

• We have developed sender-side loss estimation tech- 
niques for TCP Reno, SACK and SACK with DSACK 
that estimate the loss rate of the network path within 10% 
of the actual loss rate in over 90% of  the transfers we 
conducted over the NIMI measurement mesh. 

• We have found the majority of  the sources of  error in the 
L E A S T  estimate of  the loss rate. The main causes of  
errors in the estimate come from network dynamics that 
cannot be mitigated from information only available on 
the sender side of  the TCP connection (e.g., ACK loss). 

• We found that, in some situations, TCP's SACK genera- 
tion scheme does not provide the TCP sender with timely 
information about the state of  the receiver's buffer. This 
triggers spurious retransmits from the TCP sender. We 
explored a second SACK-based loss recovery algorithm 
(outlined in [BAFW03]) and show that it is effective at 
reducing the number of needless retransmits (by roughly 
an order of  magnitude in the cases we tested). In turn, 
this makes the job of  accurately estimating the loss rate 
easier. 

In addition, the results outlined in this paper bring up several 
areas for future research: 

In § 7 we outlined a general problem with SACK-based 
loss recovery after TCP's RTO timer fires (and the TCP 
sender purges its copy of  the SACK scoreboard). The 
fundamental problem is that the receiver only informs 
the sender about the right side of the window and so 
the sender's retransmission of  the data on the left side 
of  the window is fairly gross. While we examined an 
alternate SACK algorithm that mitigates the adverse ef- 
fect of  the missing information, we did not fix the prob- 
lem itself. Future work should include examining ways 
to send more timely SACK information after the RTO 
timer fires. 
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• Testing L E A S T  against different variants of TCP (e.g., 
NewReno [FH99]) to assess how well the techniques ap- 
ply would be useful. 

• Testing the applicability of L E A S T  to various tasks, 
such as modeling TCP performance or  using L E A S T  
with CETEN techniques (which attempt to aid TCP per- 
formance by taking into account packets lost due to cor- 
ruption when choosing a congestion response) would be 
useful. While the experiments outlined in this paper il- 
lustrate that the estimate of the loss rate is often "quite 
good", it is unclear what problems the estimate is "good 
enough" for and what problems need an even better es- 
timate (which, arguably, would require multiple vantage 
points). 

• A more complete comparison of  sack1 and sack2 would 
be useful. 

• We believe that merging the techniques presented in this 
paper with those given in [BV02] may allow for the 
leveraging of  better loss estimation from arbitrary van- 
tage points. 
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