
FAST TCP:
Motivation, Architecture, Algorithms, Performance

Cheng Jin David X. Wei Steven H. Low
Engineering & Applied Science, Caltech

http://netlab.caltech.edu

Abstract— We describe FAST TCP, a new TCP congestion
control algorithm for high-speed long-latency networks, from
design to implementation. We highlight the approach taken by
FAST TCP to address the four difficulties, at both packet and
flow levels, which the current TCP implementation has at large
windows. We describe the architecture and characterize the
equilibrium and stability properties of FAST TCP. We present
experimental results comparing our first Linux prototype with
TCP Reno, HSTCP, and STCP in terms of throughput, fairness,
stability, and responsiveness. FAST TCP aims to rapidly stabilize
high-speed long-latency networks into steady, efficient and fair
operating points, in dynamic sharing environments, and the
preliminary results are promising.

I. INTRODUCTION

Congestion control is a distributed algorithm to share net-
work resources among competing users. It is important in
situations where the availability of resources and the set of
competing users vary over time unpredictably, yet efficient
sharing is desired. These constraints, unpredictable supply and
demand and efficient operation, necessarily lead to feedback
control as the preferred approach, where traffic sources dy-
namically adapt their rates to congestion in their paths. On
the Internet, this is performed by the Transmission Control
Protocol (TCP) in source and destination computers involved
in data transfers.

The congestion control algorithm in the current TCP, which
we refer to as Reno, was developed in 1988 [1] and has gone
through several enhancements since, e.g., [2], [3], [4]. It has
performed remarkably well and is generally believed to have
prevented severe congestion as the Internet scaled up by six
orders of magnitude in size, speed, load, and connectivity. It
is also well-known, however, that as bandwidth-delay prod-
uct continues to grow, TCP Reno will eventually become a
performance bottleneck itself. The following four difficulties
contribute to the poor performance of TCP Reno in networks
with large bandwidth-delay products:

1) At the packet level, linear increase by one packet per
Round-Trip Time (RTT) is too slow, and multiplicative
decrease per loss event is too drastic.

2) At the flow level, maintaining large average congestion
windows requires an extremely small equilibrium loss
probability.

3) At the packet level, oscillation is unavoidable because
TCP uses a binary congestion signal (packet loss).

4) At the flow level, the dynamics is unstable, leading
to severe oscillations that can only be reduced by the
accurate estimation of packet loss probability and a
stable design of the flow dynamics.

We explain these difficulties in detail in Section II. In [5], we
described HSTCP [6] and STCP [7], two loss-based solutions
to these problems. In this paper, we propose a delay-based
solution. See [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18] for other proposals.

In Section III, we motivate delay-based approach. Delay-
based congestion control has been proposed, e.g., in [19], [20],
[8]. Its advantage over loss-based approach is small at low
speed, but decisive at high speed, as we will argue below. As
pointed out in [21], delay can be a poor or untimely predictor
of packet loss, and therefore using a delay-based algorithm
to augment the basic AIMD (Additive Increase Multiplicative
Decrease) algorithm of TCP Reno is the wrong approach to
address the above difficulties at large windows. Instead, a new
approach that fully exploits delay as a congestion measure,
augmented with loss information, is needed. FAST TCP uses
this approach. Using queueing delay as the congestion measure
has two advantages.

First, queueing delay can be more accurately estimated than
loss probability both because packet losses in networks with
large bandwidth-delay product are rare events (probability
on the order 10−8 or smaller), and because loss samples
provide coarser information than queueing delay samples.
Indeed, measurements of delay are noisy, just as those of
loss probability. Each measurement of packet loss (whether
a packet is lost) provides one bit of information for the
filtering of noise, whereas each measurement of queueing
delay provides multi-bit information. This makes it easier for
an equation-based implementation to stabilize a network into a
steady state with a target fairness and high utilization. Second,
the dynamics of queueing delay seems to have the right scaling
with respect to network capacity. This helps maintain stability
as a network scales up in capacity [22], [23], [24]. In Section
III, we explain how we exploit these advantages to address the
four difficulties of TCP Reno.

In Section IV, we lay out an architecture to implement our
design. Even though the discussion is in the context of FAST
TCP, the architecture can also serve as a general framework to
guide the design of other congestion control mechanisms, not
necessarily limited to TCP, for high-speed networks. The main
components in the architecture can be designed separately
and upgraded asynchronously. Unlike the conventional design,
FAST TCP can use the same window and burstiness control
algorithms regardless of whether a source is in the normal state
or the loss recovery state. This leads to a clean separation of
components in both functionality and code structure. We then
present an overview of some of the algorithms implemented
in our current prototype.

In Section V, we present a mathematical model of
the window control algorithm. We prove that FAST TCP
has the same equilibrium properties as TCP Vegas [25],
[26]. In particular, it does not penalize flows with large
propagation delays, and it achieves weighted proportional
fairness [27]. For the special case of single bottleneck
link with heterogeneous flows, we prove that the window
control algorithm of FAST is globally stable, in the absence of

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004



feedback delay. Moreover, starting from any initial state, a
network converges exponentially to a unique equilibrium.

In Section VI, we present preliminary experimental results
to illustrate throughput, fairness, stability, and responsiveness
of FAST TCP, in the presence of delay and in heterogeneous
and dynamic environments where flows of different delays
join and depart asynchronously. We compare the performance
of FAST TCP with Reno, HSTCP (HighSpeed TCP [6]),
and STCP (Scalable TCP [7]), using their default param-
eters. In these experiments, FAST TCP achieved the best
performance under each criterion, while HSTCP and STCP
improved throughput and responsiveness over Reno at the cost
of fairness and stability. We conclude in Section VII.

II. PROBLEMS AT LARGE WINDOWS

A congestion control algorithm can be designed at two
levels. The flow-level (macroscopic) design aims to achieve
high utilization, low queueing delay and loss, fairness, and
stability. The packet-level design implements these flow-level
goals within the constraints imposed by end-to-end control.
Historically for TCP Reno, packet-level implementation was
introduced first. The resulting flow-level properties, such as
fairness, stability, and the relationship between equilibrium
window and loss probability, were then understood as an
afterthought. In contrast, the packet-level designs of HSTCP
[6], STCP [7], and FAST TCP are explicitly guided by flow-
level goals.

We elaborate in this section on the four difficulties of TCP
Reno listed in Section I. It is important to distinguish between
packet-level and flow-level difficulties because they must be
addressed by different means.

A. Packet and flow level modeling

The congestion avoidance algorithm of TCP Reno and its
variants have the form of AIMD [1]. The pseudo code for
window adjustment is:

Ack: w ←− w+
1
w

Loss: w ←− w− 1
2
w

This is a packet-level model, but it induces certain flow-level
properties such as throughput, fairness, and stability.

These properties can be understood with a flow-level model
of the AIMD algorithm, e.g., [28], [29], [30]. The window
wi(t) of source i increases by 1 packet per RTT,1 and
decreases per unit time by

xi(t)pi(t) · 12 ·
4
3
wi(t) packets

where

xi(t) := wi(t)/Ti(t) pkts/sec

Ti(t) is the round-trip time, and pi(t) is the (delayed) end-to-
end loss probability, in period t.2 Here, 4wi(t)/3 is the peak

1It should be (1 − pi(t)) packets, where pi(t) is the end-to-end loss
probability. This is roughly 1 when pi(t) is small.

2This model assumes that window is halved on each packet loss. It can be
modified to model the case, where window is halved at most once in each
RTT. This does not qualitatively change the following discussion.

window size that gives the “average” window of wi(t). Hence,
a flow-level model of AIMD is:

ẇi(t) =
1

Ti(t)
− 2

3
xi(t)pi(t)wi(t) (1)

Setting ẇi(t) = 0 in (1) yields the well-known 1/
√

p formula
for TCP Reno discovered in [31], [32], which relates loss
probability to window size in equilibrium:

p∗i =
3

2w∗2i

(2)

In summary, (1) and (2) describe the flow-level dynamics and
the equilibrium, respectively, for TCP Reno. It turns out that
different variants of TCP all have the same dynamic structure
at the flow level (see [5], [33]). By defining

κi(wi, Ti) =
1
Ti

and ui(wi, Ti) =
1.5
w2

i

and noting that wi = xiTi, we can express (1) as:

ẇi(t) = κ(t)
(

1− pi(t)
ui(t)

)
(3)

where we have used the shorthand κi(t) = κi(wi(t), Ti(t))
and ui(t) = ui(wi(t), Ti(t)). Equation 3 can be used to
describe all known TCP variants, and different variants differ
in their choices of the gain function κi and marginal utility
function ui, and whether the congestion measure pi is loss
probability or queueing delay.

Next, we illustrate the equilibrium and dynamics problems
of TCP Reno, at both the packet and flow levels, as bandwidth-
delay product increases.

B. Equilibrium problem

The equilibrium problem at the flow level is expressed in
(2): the end-to-end loss probability must be exceedingly small
to sustain a large window size, making the equilibrium difficult
to maintain in practice, as bandwidth-delay product increases.

Even though equilibrium is a flow-level notion, this problem
manifests itself at the packet level, where a source increments
its window too slowly and decrements it too drastically.
When the peak window is 80,000-packet (corresponding to
an “average” window of 60,000 packets), which is necessary
to sustain 7.2Gbps using 1,500-byte packets with a RTT of
100ms, it takes 40,000 RTTs, or almost 70 minutes, to recover
from a single packet loss. This is illustrated in Figure 1a,
where the size of window increment per RTT and decrement
per loss, 1 and 0.5wi, respectively, are plotted as functions
of wi. The increment function for Reno (and for HSTCP) is
almost indistinguishable from the x-axis. Moreover, the gap
between the increment and decrement functions grows rapidly
as wi increases. Since the average increment and decrement
must be equal in equilibrium, the required loss probability can
be exceedingly small at large wi. This picture is thus simply
a visualization of (2).

To address the difficulties of TCP Reno at large window
sizes, HSTCP and STCP increase more aggressively and
decrease more gently, as discussed in [5], [33].

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004



0 1 2 3 4 5 6 7 8

x 10
4

−10000

−9000

−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

window (pkts)

w
in

do
w

 a
dj

us
tm

en
t (

pk
ts

)

Reno 

S−TCP 

HSTCP 

w* 
O 

inc per RTT 

O dec per loss 

(a) Reno, HSTCP, and STCP

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

distance from equilibrium p
i
/u

i
−1

w
in

do
w

 a
dj

us
tm

en
t (

pk
ts

)

w = w* 

(b) FAST

Fig. 1. Packet-level implementation: (a) Window increment per RTT and decrement per loss, as functions of the current window. The increment functions
for TCP Reno and HSTCP are almost identical at this scale. (b) Window update as a function of distance from equilibrium for FAST.

C. Dynamic problems

The causes of the oscillatory behavior of TCP Reno lie in
its design at both the packet and flow levels. At the packet
level, the choice of binary congestion signal necessarily leads
to oscillation, and the parameter setting in Reno worsens the
situation as bandwidth-delay product increases. At the flow
level, the system dynamics given by (1) is unstable at large
bandwidth-delay products [29], [30]. These must be addressed
by different means, as we now elaborate.

Figure 2(a) illustrates the operating points chosen by vari-
ous TCP congestion control algorithms, using the single-link
single-flow scenario. It shows queueing delay as a function of
window size. Queueing delay starts to build up after point C
where window equals bandwidth-propagation-delay product,
until point R where the queue overflows. Since Reno oscillates
around point R, the peak window size goes beyond point
R. The minimum window in steady state is half of the peak
window. This is the basis for the rule of thumb that bottleneck
buffer should be at least one bandwidth-delay product: the
minimum window will then be above point C, and buffer will
not empty in steady state operation, yielding full utilization.

In the loss-based approach, full utilization, even if achiev-
able, comes at the cost of severe oscillations and potentially
large queueing delay. The DUAL scheme in [20] proposes
to oscillate around point D, the midpoint between C and
R when the buffer is half-full. DUAL increases congestion
window linearly by one packet per RTT, as long as queueing
delay is less than half of the maximum value, and decreases
multiplicatively by a factor of 1/8, when queueing delay
exceeds half of the maximum value. The scheme CARD (Con-
gestion Avoidance using Round-trip Delay) of [19] proposes
to oscillate around point C through AIMD with the same
parameter (1, 1/8) as DUAL, based on the ratio of round-
trip delay and delay gradient, to maximize power. In all these
schemes, the congestion signal is used as a binary signal, and
hence congestion window must oscillate.

Congestion window can be stabilized only if multi-bit feed-
back is used. This is the approach taken by the equation-based
algorithm in [34], where congestion window is adjusted based
on the estimated loss probability in an attempt to stabilize
around a target value given by (2). Its operating point is
T in Figure 2(b), near the overflowing point. This approach
eliminates the oscillation due to packet-level AIMD, but two

difficulties remain at the flow level.
First, equation-based control requires the explicit estimation

of end-to-end loss probability. This is difficult when the loss
probability is small. Second, even if loss probability can
be perfectly estimated, Reno’s flow dynamics, described by
equation (1) leads to a feedback system that becomes unstable
as feedback delay increases, and more strikingly, as network
capacity increases [29], [30]. The instability at the flow level
can lead to severe oscillations that can be reduced only by
stabilizing the flow-level dynamics. We will return to both
points in Section III.

III. DELAY-BASED APPROACH

In this section, we motivate delay-based approach to address
the four difficulties at large window sizes.

A. Motivation
Although improved loss-based protocols such as HSTCP

and STCP have been proposed as replacements to TCP Reno,
we showed in [5] that they don’t address all four problems
(Section I) of TCP Reno. To illustrate this, we plot the
increment and decrement functions of HSTCP and STCP in
Figure 1(a) alongside TCP Reno. Both protocols upper bound
TCP Reno: each increases more aggressively and decreases
less drastically, so that the gap between the increment and
decrement functions is narrowed. This means, in equilibrium,
both HSTCP and STCP can tolerate larger loss probabilities
than TCP Reno, thus achieving larger equilibrium windows.
However, neither solves the dynamics problems at both the
packet and the flow levels.

In [5], we show that the congestion windows in Reno,
HSTCP and STCP all evolve according to:

ẇi(t) = κi(t) ·
(

1− pi(t)
ui(t)

)
(4)

where κ(t) := κi(wi(t), Ti(t)) and ui(t) := ui(wi(t), Ti(t)).
Moreover, the dynamics of FAST TCP also takes the same
form; see below. They differ only in the choice of the gain
function κi(wi, Ti), the marginal utility function ui(wi, Ti),
and the end-to-end congestion measure pi. Hence, at the flow
level, there are only three design decisions:
• κi(wi, Ti): the choice of the gain function κi determines

the dynamic properties such as stability and responsive-
ness, but does not affect the equilibrium properties.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004



Q
u
e
u
e
 
D
e
l
a
y

WindowC D

R

de
la
y

loss

(a) Binary signal: oscillatory

Q
u
e
u
e
 
D
e
l
a
y

WindowF

de
la
y

loss

T

R

(b) Multi-bit signal: stabilizable

Fig. 2. Operating points of TCP algorithms: R: Reno [1], HSTCP [6], STCP [7]; D: DUAL [20]; C: CARD [19]; T : TFRC [34]; F : Vegas [8], FAST.

• ui(wi, Ti): the choice of the marginal utility function
ui mainly determines equilibrium properties such as the
equilibrium rate allocation and its fairness.

• pi: in the absence of explicit feedback, the choice of
congestion measure pi is limited to loss probability or
queueing delay. The dynamics of pi(t) is determined at
links.

The design choices in Reno, HSTCP, STCP and FAST are
shown in Table I.

κi(wi, Ti) ui(wi, Ti) pi

Reno 1/Ti 1.5/w2
i loss probability

HSTCP
0.16b(wi)w

0.80
i

(2−b(wi))Ti
0.08/w1.20

i loss probability
STCP awi/Ti ρ/wi loss probability
FAST γαi αi/xi queueing delay

TABLE I
COMMON DYNAMIC STRUCTURE: wi IS SOURCE i’S WINDOW SIZE, Ti IS

ITS ROUND-TRIP TIME, pi IS CONGESTION MEASURE, xi = wi/Ti ;
a, b(wi), ρ, γ, αi ARE PROTOCOL PARAMETERS.

These choices produce equilibrium characterizations shown
in Table II.

Reno xi = 1
Ti

· αi

p0.50
i

HSTCP xi = 1
Ti

· αi

p0.84
i

STCP xi = 1
Ti

· αi
pi

FAST xi = αi
pi

TABLE II
COMMON EQUILIBRIUM STRUCTURE.

This common model (4) can be interpreted as follows:
the goal at the flow level is to equalize marginal utility
ui(t) with the end-to-end measure of congestion, pi(t). This
interpretation immediately suggests an equation-based packet-
level implementation where both the direction and size of the
window adjustment ẇi(t) are based on the difference between
the ratio pi(t)/ui(t) and the target of 1. Unlike the approach
taken by Reno, HSTCP, and STCP, this approach eliminates
packet-level oscillations due to the binary nature of congestion
signal. It however requires the explicit estimation of the end-
to-end congestion measure pi(t).

Without explicit feedback, pi(t) can only be loss probability,
as used in TFRC [34], or queueing delay, as used in TCP Vegas
[8] and FAST TCP.3 Queueing delay can be more accurately

3It is debatable whether TCP Vegas is equation-based since the size of its
window adjustment does not depend on queueing delay. This is not important
at low speed but critical at high speed.

estimated than loss probability both because packet losses
in networks with large bandwidth-delay products are rare
events (probability on the order 10−8 or smaller), and because
loss samples provide coarser information than queueing delay
samples. Indeed, each measurement of packet loss (whether
a packet is lost) provides one bit of information for the
filtering of noise, whereas each measurement of queueing
delay provides multi-bit information. This allows an equation-
based implementation to stabilize a network into a steady state
with a target fairness and high utilization.

At the flow level, the dynamics of the feedback system must
be stable in the presence of delay, as the network capacity
increases. Here, again, queueing delay has an advantage over
loss probability as a congestion measure: the dynamics of
queueing delay seems to have the right scaling with respect
to network capacity. This helps maintain stability as network
capacity grows [22], [23], [24].

B. Implementation strategy

The delay-based approach, with proper flow and packet
level designs, can address the four difficulties of Reno at
large windows. First, by explicitly estimating how far the
current state pi(t)/ui(t) is from the equilibrium value of 1,
our scheme can drive the system rapidly, yet in a fair and
stable manner, toward the equilibrium. The window adjustment
is small when the current state is close to equilibrium and
large otherwise, independent of where the equilibrium is, as
illustrated in Figure 1(b). This is in stark contrast to the
approach taken by Reno, HSTCP, and STCP, where window
adjustment depends on just the current window size and is
independent of where the current state is with respect to the
target (compare Figures 1(a) and (b)). Like the equation-based
scheme in [34], this approach avoids the problem of slow
increase and drastic decrease in Reno, as the network scales
up.

Second, by choosing a multi-bit congestion measure, this
approach eliminates the packet-level oscillation due to binary
feedback, avoiding Reno’s third problem.

Third, using queueing delay as the congestion measure
pi(t) allows the network to stabilize in the region below the
overflowing point, around point F in Figure 2(b), when the
buffer size is sufficiently large. Stabilization at this operating
point eliminates large queueing delay and unnecessary packet
loss. More importantly, it makes room for buffering “mice”
traffic. To avoid the second problem in Reno, where the
required equilibrium congestion measure (loss probability for
Reno, and queueing delay here) is too small to practically

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004



estimate, the algorithm must adapt its parameter αi with
capacity to maintain small but sufficient queueing delay.

Finally, to avoid the fourth problem of Reno, the window
control algorithm must be stable, in addition to being fair and
efficient, at the flow level. The use of queueing delay as a
congestion measure facilitates the design as queueing delay
naturally scales with capacity [22], [23], [24].

The design of TCP congestion control algorithm can thus
be conceptually divided into two levels:
• At the flow level, the goal is to design a class of function

pairs, ui(wi, Ti) and κ(wi, Ti), so that the feedback
system described by (4), together with link dynamics in
pi(t) and the interconnection, has an equilibrium that is
fair and efficient, and that the equilibrium is stable, in the
presence of feedback delay.

• At the packet level, the design must deal with issues that
are ignored by the flow-level model or modeling assump-
tions that are violated in practice, in order to achieve these
flow-level goals. These issues include burstiness control,
loss recovery, and parameter estimation.

The implementation then proceeds in three steps:
1) determine various system components;
2) translate the flow-level design into packet-level algo-

rithms;
3) implement the packet-level algorithms in a specific op-

erating system.
The actual process iterates intimately between flow and packet
level designs, between theory, implementation, and experi-
ments, and among the three implementation steps.

The emerging theory of large-scale networks under end-to-
end control, e.g., [27], [35], [36], [25], [37], [38], [26], [39],
[22], [40], [41], [29], [30], [42], [43], [24], [23], [15] (see also,
e.g., [44], [45], [46] for recent surveys), forms the foundation
of the flow-level design. The theory plays an important role by
providing a framework to understand issues, clarify ideas, and
suggest directions, leading to a robust and high performance
implementation.

We lay out the architecture of FAST TCP next.

IV. ARCHITECTURE AND ALGORITHMS

We separate the congestion control mechanism of TCP
into four components in Figure 3. These four components
are functionally independent so that they can be designed
separately and upgraded asynchronously. In this section, we
focus on the two parts that we have implemented in the current
prototype (see [33]).

Burstiness
  Control

  Window 
  Control

TCP Protocol Processing

  Data
Control

Estimation

Fig. 3. FAST TCP architecture.

The data control component determines which packets to
transmit, window control determines how many packets to
transmit, and burstiness control determines when to transmit
these packets. These decisions are made based on informa-
tion provided by the estimation component. Window control
regulates packet transmission at the RTT timescale, while
burstiness control works at a smaller timescale.

In the following subsections, we provide an overview of es-
timation and window control and the algorithms implemented
in our current prototype. An initial prototype that included the
features discussed here was demonstrated in November 2002 at
the SuperComputing Conference, and the experimental results
were reported in [47].

A. Estimation
This component provides estimations of various input pa-

rameters to the other three decision-making components. It
computes two pieces of feedback information for each data
packet sent. When a positive acknowledgment is received,
it calculates the RTT for the corresponding data packet and
updates the average queueing delay and the minimum RTT.
When a negative acknowledgment (signaled by three duplicate
acknowledgments or timeout) is received, it generates a loss
indication for this data packet to the other components. The
estimation component generates both a multi-bit queueing
delay sample and a one-bit loss-or-no-loss sample for each
data packet.

The queueing delay is smoothed by taking a moving average
with the weight η(t) := min{3/wi(t), 1/4} that depends on
the window wi(t) at time t, as follows. The k-th RTT sample
Ti(k) updates the average RTT T i(k) according to:

T i(k + 1) = (1− η(tk))T i(k) + η(tk)Ti(k)

where tk is the time at which the k-th RTT sample is received.
Taking di(k) to be the minimum RTT observed so far, the
average queueing delay is estimated as:

q̂i(k) = T i(k)− di(k)

The weight η(t) is usually much smaller than the weight (1/8)
used in TCP Reno. The average RTT T i(k) attempts to track
the average over one congestion window. During each RTT,
an entire window worth of RTT samples are received if every
packet is acknowledged. Otherwise, if delayed ack is used, the
number of queueing delay samples is reduced so η(t) should
be adjusted accordingly.

B. Window control
The window control component determines congestion win-

dow based on congestion information—queueing delay and
packet loss, provided by the estimation component. A key
decision in our design that departs from traditional TCP
design is that the same algorithm is used for congestion
window computation independent of the state of the sender.
For example, in TCP Reno (without rate halving), congestion
window is increased by one packet every RTT when there is
no loss, and increased by one for each duplicate ack during
loss recovery. In FAST TCP, we would like to use the same
algorithm for window computation regardless of the sender
state.

Our congestion control mechanism reacts to both queueing
delay and packet loss. Under normal network conditions,
FAST periodically updates the congestion window based on
the average RTT and average queueing delay provided by the
estimation component, according to:

w ←− min

{
2w, (1− γ)w + γ

(
baseRTT

RTT
w + α(w, qdelay)

) }
(5)

where γ ∈ (0, 1], baseRTT is the minimum RTT observed so
far, and qdelay is the end-to-end (average) queueing delay.
In our current implementation, congestion window changes
over two RTTs: it is updated in one RTT and frozen in the

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004



next. The update is spread out over the first RTT in a way
such that congestion window is no more than doubled in each
RTT.

In our current prototype, we choose the function
α(w, qdelay) to be a constant at all times. This produces
linear convergence when the qdelay is zero. Alternatively,
we can use a constant α only when qdelay is nonzero
and an α proportional to window, α(w, qdelay) = aw,
when qdelay is zero. In this case, when qdelay is zero,
FAST performs multiplicative increase and grows exponen-
tially at rate a to a neighborhood of qdelay > 0. Then
α(w, qdelay) switches to a constant α and, as we will
see in Theorem 2 below, window converges exponentially to
the equilibrium at a different rate that depends on qdelay.
The constant α is the number of packets each flow attempts
to maintain in the network buffer(s) at equilibrium, similar to
TCP Vegas [8].4

Although we would like to use the same congestion control
function during loss recovery, we have currently disabled this
feature because of ambiguities associated with retransmitted
packets. Currently when a packet loss is detected, FAST halves
its window and enters loss recovery. The goal is to back off
packet transmission quickly when severe congestion occurs,
in order to bring the system back to a regime where reliable
RTT measurements are again available for window adjustment
(5) to work effectively. A source does not react to delay until
it exits loss recovery.5

C. Packet-level implementation
It is important to maintain an abstraction of the imple-

mentation as as the code evolves. This abstraction should
describe the high-level operations each component performs
based on external inputs, and can serve as a road map for future
TCP implementations as well as improvements to the existing
implementation. Whenever a non-trivial change is required,
one should first update this abstraction to ensure that the
overall packet-level code would be built on a sound underlying
foundation.

Since TCP is an event-based protocol, our control actions
should be triggered by the occurrence of various events.
Hence, we need to translate our flow-level algorithms into
event-based packet-level algorithms. There are four types of
events that FAST TCP reacts to: on the reception of an
acknowledgment, after the transmission of a packet, at the
end of a RTT, and for each packet loss.

For each acknowledgment received, the estimation compo-
nent computes the average queueing delay, and the burstiness
control component determines whether packets can be injected
into the network. For each packet transmitted, the estimation
component records a time-stamp, and the burstiness control
component updates corresponding data structures for book-
keeping. At a constant time interval, which we check on the
arrival of each acknowledgment, window control calculates a
new window size. At the end of each RTT, burstiness reduction
calculates the target throughput using the window and RTT
measurements in the last RTT. Window pacing will then sched-
ule to break up a large increment in congestion window into

4All experiments in Section VI used linear increase, i.e.,
α(w, qdelay) = α for all qdelay.

5In the Linux TCP implementation, congestion window was frequently
reduced to one when there were heavy losses. In order to ensure a reasonable
recovery time, we impose a minimum window of 16 packets during loss
recovery for connections that use large windows. This and other interim
measures will be improved in future FAST TCP releases.

Component
 Design

 Packet-Level
   Algorithm

  OS-Specific
Implementation

per Ack

per RTT

per Loss

function 1

function 2

...

Flow-Level
Algorithm

x=f(p)
p=g(x,p)

Fig. 4. From flow-level design to implementation.

smaller increments over time. During loss recovery, congestion
window should be continually updated based on congestion
signals from the network. Upon the detection of a packet
loss event, a sender determines whether to retransmit each
unacknowledged packet right away or hold off until a more
appropriate time.

Figure 4 presents an approach to turn the high-level design
of a congestion control algorithm into an implementation.
First, an algorithm is designed at the flow-level and analyzed
to ensure that it meets the high-level objectives such as
fairness and stability. Based on that, one can determine the
components necessary to implement congestion control. The
flow-level algorithm can then be translated into a packet-level
algorithm that consists of a set of event-based tasks. The event-
based tasks should be independent of any specific TCP or
operating system implementation, but yet detailed enough so
the understanding of these tasks enables one to implement
FAST in any operating system or protocol stack.

V. EQUILIBRIUM AND STABILITY OF WINDOW CONTROL
ALGORITHM

In this section, we present a model of the window con-
trol algorithm. We show that, in equilibrium, the vectors of
source windows and link queueing delays are the unique
solutions of a pair of optimization problems (9)–(10). This
completely characterizes the network equilibrium properties
such as throughput, fairness, and delay. We also analyze
the stability of the window control algorithm. We prove in
[33] that, for a single link with heterogeneous sources, the
window control algorithm (5) is globally stable, assuming
zero feedback delay, and converges exponentially to a unique
equilibrium. Extensive experiments in Section VI illustrate its
stability in the presence of feedback delay.

Given a network that consists of a set of resources with finite
capacities cl, e.g., transmission links, processing units, mem-
ory, etc., we refer to them in general as “links” in our model.
The network is shared by a set of unicast flows, identified by
their sources. Let di denote the round-trip propagation delay of
source i. Let R be the routing matrix where Rli = 1 if source
i uses link l, and 0 otherwise. Let pl(t) denote the queueing
delay at link l at time t. Let qi(t) =

∑
l Rlipl(t) be the round-

trip queueing delay, or in vector notation, q(t) = RT p(t). Then
the round trip time of source i is Ti(t) := di + qi(t).

Each source i adapts wi(t) periodically according to: 6

wi(t + 1) = γ

(
diwi(t)

di + qi(t)
+ αi(wi(t), qi(t))

)
+ (1− γ)wi(t) (6)

6Note that (6) can be rewritten as (when αi(wi, qi) = αi, constant)

wi(t + 1) = wi(t) + γi(αi − xi(t)qi(t))

From [26], TCP Vegas updates its window according to

wi(t + 1) = wi(t) +
1

Ti(t)
sgn(αi − xi(t)qi(t))

where sgn(z) = −1 if z < 0, 0 if z = 0, and 1 if z > 0. Hence FAST can
be thought of as a high-speed version of Vegas.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004



where γ ∈ (0, 1], at time t, and αi(wi, qi) is defined by:

αi(wi, qi) =
{

aiwi if qi = 0
αi otherwise (7)

A key departure of our model from those in the literature
is that we assume that a source’s send rate, defined as
xi(t) := wi(t)/Ti(t), cannot exceed the throughput it receives.
This is justified because of self-clocking: one round-trip time
after a congestion window is increased, packet transmission
will be clocked at the same rate as the throughput the flow
receives. See [48] for detailed justification and validation
experiments. A consequence of this assumption is that the
link queueing delay vector, p(t), is determined implicitly
by the instantaneous window size in a static manner: given
wi(t) = wi for all i, the link queueing delays pl(t) = pl ≥ 0
for all l are given by:

∑
i

Rli
wi

di + qi

{
= cl if pl > 0
≤ cl if pl = 0 (8)

where again qi =
∑

l Rlipl.
The equilibrium values of windows w∗ and delays p∗ of the

network defined by (6)–(8) can be characterized as follows.
Consider the utility maximization problem

max
x≥0

∑
i

αi log xi s.t. Rx ≤ c (9)

and the following (dual) problem:

min
p≥0

∑
l

clpl −
∑

i

αi log
∑

l

Rlipl (10)

Theorem 1: Suppose R has full row rank. The unique
equilibrium point (w∗, p∗) of the network defined by (6)–(8)
exists and is such that x∗ = (x∗i := wi/(di + q∗i ),∀i) is the
unique maximizer of (9) and p∗ is the unique minimizer of
(10). This implies in particular that the equilibrium rate x∗ is
αi-weighted proportionally fair.

Theorem 1 implies that FAST TCP has the same equilibrium
properties as TCP Vegas [25], [26]. Its throughput is given by

xi =
αi

qi
(11)

In particular, it does not penalize sources with large prop-
agation delays di. The relation (11) also implies that, in
equilibrium, source i maintains αi packets in the buffers along
its path [25], [26]. Hence, the total amount of buffering in the
network must be at least

∑
i αi packets in order to reach the

equilibrium.
We now turn to the stability of the algorithm. Global

stability in a general network in the presence of feedback
delay is an open problem (see [49], [50] for stability analysis
for the single-link-single-source case). State-of-the-art results
either prove global stability while ignoring feedback delay, or
local stability in the presence of feedback delay. Our stability
result is restricted to a single link in the absence of delay.

Theorem 2: Suppose there is a single link with capacity c.
Then the network defined by (6)–(8) is globally stable, and
converges geometrically to the unique equilibrium (w∗, p∗).

The basic idea of the proof is to show that the iteration
from w(t) to w(t + 1) defined by (6)–(8) is a contraction
mapping. Hence w(t) converges geometrically to the unique
equilibrium.

Some properties follow from the proof of Theorem 2.
Corollary 3: 1) Starting from any initial point

(w(0), p(0)), the link is fully utilized, i.e., equality
holds in (8), after a finite time.

2) The queue length is lower and upper bounded after a
finite amount of time.

VI. PERFORMANCE

We have conducted some preliminary experiments on our
dummynet [51] testbed comparing performance of various new
TCP algorithms as well as the Linux TCP implementation. It
is important to evaluate them not only in static environments,
but also dynamic environments where flows come and go;
and not only in terms of end-to-end throughput, but also
queue behavior in the network. In this study, we compare
performance among TCP connections of the same protocol
sharing a single bottleneck link. In summary,

1) FAST TCP achieved the best overall performance in
each of the four evaluation criteria: throughput, fairness,
responsiveness, and stability.

2) Both HSTCP and STCP improved throughput and re-
sponsiveness of Linux TCP, although both showed fair-
ness problems and oscillations with higher frequencies
and larger magnitudes.

In the following subsections, we will describe in detail our
experimental setup, evaluation criteria, and results.

A. Testbed and kernel instrumentation

We constructed a testbed of a sender and a receiver both
running Linux, and an emulated router running FreeBSD. Each
testbed machine has dual Xeon 2.66 GHz, 2 GB of main
memory, and dual on-board Intel PRO/1000 Gigabit Ethernet
interfaces. We have tested these machines to ensure each is
able to achieve a peak throughput of 940 Mbps with the
standard Linux TCP protocol using iperf.

 queue 
monitor

Sender ReceiverRouter

 sender
monitor

iperf iperf

50 ms

100 ms

150 ms

200 ms

Fig. 5. Testbed and the experimental setup.
Figure 5 shows the setup of the testbed. The testbed router

supports paths of various delays and a single bottleneck
capacity with a fixed buffer size. It has monitoring capability
at the sender and the router. The receiver runs different TCP
traffic sinks with different port numbers for connections with
different RTTs. We set up and run different experiments from
the sender using an automatic script generator to start multiple
iperf sessions to emulate multiple TCP connections.

Our testbed router ran dummynet [51] under FreeBSD. We
configured dummynet to create paths or pipes of different
delays, 50, 100, 150, and 200ms, using different destination
port numbers on the receiving machine. We then created
another pipe to emulate a bottleneck capacity of 800 Mbps and
a buffer size of 2,000 packets, shared by all the delay pipes.
Due to our need to emulate a high-speed bottleneck capacity,
we increased the scheduling granularity of dummynet events.
We recompiled the FreeBSD kernel so the task scheduler ran
every 1 ms. We also increased the size of the IP layer interrupt

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004



queue (ipintrq) to 3000 to accommodate large bursts of
packets.

We instrumented both the sender and the dummynet router
to capture relevant information for protocol evaluation. For
each connection on the sending machine, the kernel monitor
captured the congestion window, the observed baseRTT, and
the observed queueing delay. On the dummynet router, the
kernel monitor captured the throughput at the dummynet
bottleneck, the number of lost packets, and the average queue
size every two seconds. We retrieved the measurement data
after the completion of each experiment in order to avoid disk
I/O that may have interfered with the experiment itself.

We tested four TCP implementations: FAST, HSTCP, STCP,
and Reno (Linux implementation). The FAST TCP is based on
Linux 2.4.20 kernel, while the rest of the TCP protocols are
based on Linux 2.4.19 kernel. We ran tests and did not observe
any appreciable difference between the two plain Linux ker-
nels, and the TCP source codes of the two kernels are nearly
identical. Linux TCP implementation includes all of the latest
RFCs such as New Reno, SACK, D-SACK, and TCP high
performance extensions. There are two versions of HSTCP
[52], [53]. We present the results of the implementation in
[52], but our tests show that the implementation in [53] has
comparable performance.

In all of our experiments, the bottleneck capacity is 800
Mbps—roughly 66 packets/ms, and the maximum buffer size
is 2000 packets.

We now present our experimental results. We first look at
three cases in detail, comparing not only the throughput behav-
ior seen at the source, but also the queue behavior inside the
network, by examining trajectories of throughputs, windows,
instantaneous queue, cumulative losses, and link utilization.
We then summarize the overall performance in a diverse set
of experiments in terms of quantitative metrics, defined below,
on throughput, fairness, stability, and responsiveness.

B. Case study: static scenario
We present experimental results on aggregate throughput

in a simple static environment where, in each experiment, all
TCP flows had the same propagation delay and started and
terminated at the same times. This set of tests included 20
experiments for different pairing of propagation delays, 50,
100, 150, and 200ms, and the number of identical sources, 1,
2, 4, 8, and 10. We ran this test suite under each of the four
TCP protocols. We then constructed a 3-d plot, in Figure 6,
for each protocol with the x-axis and y-axis being the number
of sources and propagation delay, respectively. The z-axis is
the aggregate throughput.

All four protocols performed well when the number of
flows was large or the propagation delay was small, i.e.,
when the window size was small. The performance of FAST
TCP remained consistent when these parameters changed. TCP
Reno, HSTCP, and STCP had varying degrees of performance
degradation as the window size increased, with TCP Reno
showing the most significant degradation.

This set of experiments, involving a static environment
and identical flows, does not test the fairness, stability and
responsiveness of the protocols. We take a close look at
these properties next in a dynamic scenario where network
equilibrium changes as flows come and go.

C. Case study: dynamic scenario I
In the first dynamic test, the number of flows was small

so that throughput per flow, and hence the window size, was

FAST HSTCP

2

4

6

8

10

50

100

150

200
0

1

2

3

4

5

6

7

8

x 10
5

flow numberpropagatoin delay(ms)

FA
ST

 th
ro

ug
hp

ut
 (K

bp
s)

 

2

4

6

8

10

50

100

150

200
0

1

2

3

4

5

6

7

8

x 10
5

flow numberpropagatoin delay(ms)

HS
CT

P 
th

ro
ug

hp
ut

 (K
bp

s)
 

STCP Reno

2

4

6

8

10

50

100

150

200
0

1

2

3

4

5

6

7

8

x 10
5

flow numberpropagatoin delay(ms)

Sc
al

ab
le

 T
CP

 th
ro

ug
hp

ut
 (K

bp
s)

 

2

4

6

8

10

50

100

150

200
0

1

2

3

4

5

6

7

8

x 10
5

flow numberpropagatoin delay(ms)

Li
nu

x 
2.

4.
19

 T
CP

 th
ro

ug
hp

ut
 (K

bp
s)

 

Fig. 6. Static scenario: aggregate throughput.

large. There were three TCP flows, with propagation delays of
100, 150, and 200ms, that started and terminated at different
times, as illustrated in Figures 7(a).

For each dynamic experiment, we generated two sets of
figures, from the sender monitor and the queue monitor. From
the sender monitor, we obtained the trajectories of individual
connection throughput (in Kbps) and window size (in packets)
over time. They are shown in Figure 8.

As new flows joined or old flows left, FAST TCP converged
to the new equilibrium rate allocation rapidly and stably.
Reno’s throughput was also relatively smooth because of the
slow (linear) increase before packet losses. The link utilization
was low at the end of the experiment when it took 30 minutes
for a flow to reclaim the spare capacity due to the departure
of another flow. HSTCP and STCP, in an attempt to respond
more quickly, went into severe oscillation.

From the queue monitor, we obtained three trajectories: the
average queue size (packets), the number of cumulative packet
losses (packets), and the utilization of the bottleneck link (in
packets/ms), shown in Figure 9 from top to bottom. The queue
under FAST TCP was quite small throughout the experiment
due to the small number of flows. HSTCP and STCP exhibited
strong oscillations that filled the buffer. The link utilizations
of FAST TCP and Reno were quite steady, whereas those of
HSTCP and STCP showed fluctuations.

From the throughput trajectories of each protocol, we cal-
culate Jain’s fairness index (see Section VI-E for definition)
for the rate allocations for each time interval that contains
more than one flow (see Figure 7(a)). The fairness indices are
shown in Table III. FAST TCP obtained the best fairness,

Time #Sources FAST HSTCP STCP Reno
1800 – 3600 2 .967 .927 .573 .684
3600 – 5400 3 .970 .831 .793 .900
5400 – 7200 2 .967 .873 .877 .718

TABLE III
DYNAMIC SCENARIO I: INTRA-PROTOCOL FAIRNESS.

very close to 1, followed by HSTCP, Reno, and then STCP. It
confirms that FAST TCP does not penalize against flows with
large propagation delays. Even though HSTCP, STCP, and
Reno all try to equalize congestion windows among competing
connections instead of equalizing rates, this was not achieved
as shown in Figure 8. The unfairness is especially severe in
the case of STCP, likely due to MIMD as explained in [54].

For FAST TCP, each source tries to maintain the same
number of packets in the queue in equilibrium, and thus, in

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004



1 x 100 ms

1 x 150 ms

1 x 200 ms

3600 90000

(a) Dynamic scenario I (3 flows)

2 x 50 ms

2 x 100 ms 2 x 100 ms

2 x 150 ms 2 x 150 ms

2 x 200 ms 2 x 200 ms

3600 2160010800

(b) Dynamic scenario II (8 flows)

Fig. 7. Dynamic scenario: each colored block represents one or more connections of certain propagation delay. The left and the right edges of each block
represent the starting and ending times, respectively, of the flow(s).

FAST HSTCP STCP Reno

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

5000

10000

15000

cw
nd

 (p
kt

)

sec

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

2

4

6

8

10
x 10

5

th
ro

ug
hp

ut
 (K

bp
s)

sec

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

5000

10000

15000

cw
nd

 (p
kt

)

sec

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

2

4

6

8

10
x 10

5

th
ro

ug
hp

ut
 (K

bp
s)

sec

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

5000

10000

15000

cw
nd

(p
kt

)

sec

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

2

4

6

8

10
x 10

5

th
ro

ug
hp

ut
 (K

bp
s)

sec

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

5000

10000

15000

cw
nd

(p
kt

)

sec

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

2

4

6

8

10
x 10

5

th
ro

ug
hp

ut
 (K

bp
s)

sec

Fig. 8. Dynamic scenario I: throughput and cwnd trajectories.

FAST HSTCP STCP Reno

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

500

1000

1500

2000

q av
g (p

kt
)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

5

10
x 10

4

cu
m

ul
at

ive
 lo

ss
 (p

kt
)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

20

40

60

80

th
ro

ug
hp

ut
 (p

kt
/m

s)

sec

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

500

1000

1500

2000

q av
g (p

kt
)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

5

10
x 10

4

cu
m

ul
at

ive
 lo

ss
 (p

kt
)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

20

40

60

80

th
ro

ug
hp

ut
 (p

kt
/m

s)

sec

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

500

1000

1500

2000

q av
g (p

kt
)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

5

10
x 10

4

cu
m

ul
at

ive
 lo

ss
 (p

kt
)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

20

40

60

80

th
ro

ug
hp

ut
 (p

kt
/m

s)

sec

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

500

1000

1500

2000

q av
g (p

kt
)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

5

10
x 10

4

cu
m

ul
at

ive
 lo

ss
 (p

kt
)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

20

40

60

80

th
ro

ug
hp

ut
 (p

kt
/m

s)

sec

Fig. 9. Dynamic scenario I: dummynet queue sizes, losses, and link utilization.

theory, each competing source should get an equal share of
the bottleneck bandwidth. Even though FAST TCP achieved
the best fairness index, we did not observe the expected
equal sharing of bandwidth (see Figure 8). We found that
connections with longer RTTs consistently observed higher
queueing delays than those with shorter RTTs. For example,
the connection on the path of 100 ms saw an average queueing
delay of 6 ms, while the connection on the path of 200 ms saw
an average queueing delay of 9 ms. This caused the connection
with longer RTTs to maintain fewer packets in the queue in
equilibrium, thus getting a smaller share of the bandwidth.
We have yet to uncover the source of this problem, but the
early conjecture is that when congestion window size is large,
it is much harder to break up bursts of packets. With bursty
traffic arriving at a queue, each packet would see a delay that
includes the transmission times of all preceding packets in
the burst. However, if packets were spaced out smoothly, then
each packet would have seen a smaller queueing delay at the
queue.

D. Case study: dynamic scenario II

This experiment was similar to dynamic scenario I, except
that there were a larger number (8) of flows, with different
propagation delays, which joined and departed according
to the schedule in Figure 7(b). The qualitative behavior in
throughput, fairness, stability, and responsiveness for each of
the protocols is similar to those in scenario I, and in fact is
amplified as the number of flows increases.

Specifically, as the number of competing sources increases
in a network, stability becomes worse for the loss-based
protocols. As shown in Figures 10 and 11, oscillations in

both congestion windows and queue size are more severe for
all loss-base protocols. Packet loss is also more severe. The
performance of FAST TCP did not degrade in any significant
way. Connections sharing the link achieved very similar rates.
There was a reasonably stable queue at all times, with little
packet loss and high link utilization. Intra-protocol fairness is
shown in Table IV, with little change for FAST TCP.

Time Sources FAST HSTCP STCP Reno
0 – 1800 2 1.0 .806 .999 .711

1800 – 3600 4 .987 .940 .721 .979
3600 – 5400 6 .976 .808 .631 .978
5400 – 7200 8 .977 .747 .566 .830
7200 – 9000 6 .970 .800 .613 .845
9000 – 10800 4 .989 .906 .636 .885

10800 – 12600 2 .998 .996 .643 .993
12600 – 14400 4 .989 .843 .780 .782
14400 – 16200 6 .944 .769 .613 .880
16200 – 18000 8 .973 .816 .547 .787
18000 – 19800 6 .982 .899 .563 .892
19800 – 21600 4 .995 .948 .668 .896
21600 – 23400 2 1.000 .920 .994 1.000

TABLE IV
FAIRNESS AMONG VARIOUS PROTOCOLS FOR EXPERIMENT II.

E. Overall evaluation

We have conducted several other experiments, with different
delays, number of flows, and their arrival and departure
patterns. In all these experiments, the bottleneck link capacity
was 800Mbps and buffer size 2000 packets. We present in this
subsection a summary of protocol performance in terms of
some quantitative measures on throughput, fairness, stability,
and responsiveness.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004



FAST HSTCP STCP Reno

0 0.5 1 1.5 2

x 10
4

0

5000

10000

15000

cw
nd

 (p
kt

)

sec

0 0.5 1 1.5 2

x 10
4

0

2

4

6

8
x 10

5

th
ro

ug
hp

ut
 (K

bp
s)

sec

0 0.5 1 1.5 2 2.5

x 10
4

0

0.5

1

1.5

2
x 10

4

cw
nd

 (p
kt)

sec

0 0.5 1 1.5 2 2.5

x 10
4

0

2

4

6

8
x 10

5

th
ro

ug
hp

ut
 (K

bp
s)

sec

0 0.5 1 1.5 2

x 10
4

0

5000

10000

15000

cw
nd

 (p
kt

)

sec

0 0.5 1 1.5 2

x 10
4

0

2

4

6

8
x 10

5

th
ro

ug
hp

ut
 (K

bp
s)

sec

0 0.5 1 1.5 2

x 10
4

0

5000

10000

15000

cw
nd

 (p
kt

)

sec

0 0.5 1 1.5 2

x 10
4

0

2

4

6

8
x 10

5

th
ro

ug
hp

ut
 (K

bp
s)

sec

Fig. 10. Dynamic scenario II: throughput and cwnd trajectories.

FAST HSTCP STCP Reno

0 0.5 1 1.5 2

x 10
4

0

500

1000

1500

2000

q av
g (p

kt)

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

5
x 10

5

cu
m

ula
tiv

e 
los

s (
pk

t)

0 0.5 1 1.5 2

x 10
4

0

20

40

60

80

th
ro

ug
hp

ut
 (p

kt/
m

s)

sec

0 0.5 1 1.5 2

x 10
4

0

500

1000

1500

2000

q av
g (p

kt)

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

5
x 10

5
cu

m
ula

tiv
e 

los
s (

pk
t)

0 0.5 1 1.5 2

x 10
4

0

20

40

60

80

th
ro

ug
hp

ut
 (p

kt/
m

s)

sec

0 0.5 1 1.5 2

x 10
4

0

500

1000

1500

2000

q av
g (p

kt)

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

5
x 10

5

cu
m

ula
tiv

e 
los

s (
pk

t)

0 0.5 1 1.5 2

x 10
4

0

20

40

60

80

th
ro

ug
hp

ut
 (p

kt/
m

s)

sec

0 0.5 1 1.5 2

x 10
4

0

500

1000

1500

2000

q av
g (p

kt)

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

5
x 10

5

cu
m

ula
tiv

e 
los

s (
pk

t)

0 0.5 1 1.5 2

x 10
4

0

20

40

60

80

th
ro

ug
hp

ut
 (p

kt/
m

s)

sec

Fig. 11. Dynamic scenario II: dummynet queue sizes, losses, and link utilization.

We use the output of iperf for our quantitative evaluation.
Each iperf session in our experiments produced five-second
averages of its throughput. This is the data rate (i.e., goodput)
applications such as iperf receives, and is slightly less
than the bottleneck bandwidth due to IP and Ethernet packet
headers.

Let xi(k) be the average throughput of flow i in the five-
second period k. Most tests involved dynamic scenarios where
flows joined and departed. For the definitions below, suppose
the composition of flows changes in period k = 1, remains
fixed over period k = 1, . . . , m, and changes again in period
k = m+1, so that [1,m] is the maximum-length interval over
which the same equilibrium holds. Suppose there are n active
flows in this interval, indexed by i = 1, . . . , n. Let

xi :=
1
m

m∑
k=1

xi(k)

be the average throughput of flow i over this interval. We now
define our performance metrics for this interval [1,m] using
these throughput measurements.

1) Throughput: The average aggregate throughput for the
interval [1,m] is defined as:7

E :=
n∑

i=1

xi

2) Intra-protocol fairness: Jain’s fairness index for the
interval [1,m] is defined as [55]:

F =
(
∑n

i=1 xi)
2

n
∑n

i=1 x2
i

F ∈ (0, 1] and F = 1 is ideal (equal sharing).
3) Stability: The stability index of flow i is the sample

standard deviation normalized by the average through-
put:

Si :=
1
xi

√√√√ 1
m− 1

m∑
k=1

(xi(k)− xi)
2

7As mentioned above, this is the throughput (or goodput) seen at the
application layer, not TCP layer.

The smaller the stability index, the less oscillation a
source experiences. The stability index for interval [0,m]
is the average over the n active sources:

S :=
1
n

n∑
i=1

Si

4) Responsiveness: The responsiveness index measures
the speed of convergence when network equilibrium
changes at k = 1, i.e., when flows join or depart. Let
xi(k) be the running average by period k ≤ m:

xi(k) :=
1
k

k∑
t=1

xi(k)

Then xi(m) = xi is the average over the entire interval
[1,m].
Responsiveness index R1 measures how fast the running
average xi(k) of the slowest source converges to xi:8

R1 := max
i

max
{

k :
∣∣∣∣xi(k)− xi

xi

∣∣∣∣ > 0.1
}

For each TCP protocol, we obtain one set of computed
values for each evaluation criterion for all of our experiments.
We plot the CDF (cumulative distribution function) of each
set of values. These are shown in Figures 12 – 15.

From Figures 12–15, FAST has the best performance among
all protocols under each evaluation criterion. More impor-
tantly, the variation in each of the distributions is smaller
under FAST than under the other protocols, suggesting that
FAST had fairly consistent performance in our test scenarios.
We also observe that both HSTCP and STCP achieved higher
throughput and improved responsiveness compared with TCP
Reno. STCP had worse intra-protocol fairness compared with
TCP Reno, while HSTCP achieved comparable intra-protocol
fairness to Reno (see Figures 13, 8 and 10). Both HSTCP
and STCP showed increased oscillations compared with Reno

8The natural definition of responsiveness index as the earliest period after
which the throughput xi(k) (as opposed to the running average xi(k) of the
throughput) stays within 10% of its equilibrium value is unsuitable for TCP
protocols that do not stabilize into an equilibrium value. Hence we define it in
terms of xi(k) which, by definition, always converges to xi by the end of the
interval k = m. This definition captures the intuitive notion of responsiveness
if xi(k) settles into a periodic limit cycle.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800
C

D
F

Throughput (Mbps)

FAST TCP
HighSpeed TCP

Scalable TCP
TCP Reno

Fig. 12. Overall evaluation: throughput.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

C
D

F

Fairness

FAST TCP
HighSpeed TCP

Scalable TCP
TCP Reno

Fig. 13. Overall evaluation: fairness.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

C
D

F

Stability

FAST TCP
HighSpeed TCP

Scalable TCP
TCP Reno

Fig. 14. Overall evaluation: stability.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400 1600 1800

C
D

F

Responsiveness (sec)

FAST TCP
HighSpeed TCP

Scalable TCP
TCP Reno

Fig. 15. Overall evaluation: responsiveness
index R1.

(Figures 14, 8 and 9), and the oscillations became worse as
the number of sources increased (Figures 10 and 11).

From Figure 15, FAST TCP achieved a much better respon-
siveness index R1 (which is based on worst case individual
throughput) than the other schemes. We caution however that
it can be hard to quantify “responsiveness” for protocols that
do not stabilize into an equilibrium point or a periodic limit
cycle, and hence the unresponsiveness of Reno, HSTCP, and
STCP, as measured by index R1, should be interpreted with
care.

VII. CONCLUSION

We have described an alternative congestion control algo-
rithm, FAST TCP, that addresses the four main problems of
TCP Reno in networks with high capacities and large latencies.
FAST TCP has a log utility function and achieves weighted
proportional fairness. Its window adjustment is equation-
based, under which the network moves rapidly toward equilib-
rium when the current state is far away and slows down when it
approaches the equilibrium. FAST TCP uses queueing delay, in
addition to packet loss, as a congestion signal. Queueing delay
provides a finer measure of congestion and scales naturally
with network capacity.

We have presented experimental results of our first Linux
prototype and compared its performance with TCP Reno,
HSTCP, and STCP. We have evaluated these algorithms not
only in static environments, but also dynamic environments
where flows come and go, and not only in terms of end-to-end
throughput, but also queue behavior in the network. In these
experiments, HSTCP and STCP achieved better throughput
and link utilization than Reno, but their congestion windows
and network queue lengths had significant oscillations. TCP
Reno produced less oscillation, but at the cost of lower link
utilization when sources departed. FAST TCP, on the other
hand, consistently outperforms these protocols in terms of
throughput, fairness, stability, and responsiveness.

Acknowledgments: We gratefully acknowledge the contri-
butions of the FAST project team and our collaborators,

at http://netlab.caltech.edu/FAST/, in particular,
G. Almes, J. Bunn, D. H. Choe, R. L. A. Cottrell, V. Do-
raiswami, J. C. Doyle, W. Feng, O. Martin, H. Newman, F.
Paganini, S. Ravot, S. Shalunov, S. Singh, J. Wang, Z. Wang,
S. Yip. This work is funded by NSF (grants ANI-0113425 and
ANI-0230967), Caltech Lee Center for Advanced Networking,
ARO (grant DAAD19-02-1-0283), AFOSR (grant F49620-03-
1-0119), and Cisco.

REFERENCES

[1] V. Jacobson, “Congestion avoidance and control,” Proceedings of
SIGCOMM’88, ACM, August 1988, An updated version is available
via ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z.

[2] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selec-
tive Acknowledgment Options,” RFC 2018, ftp://ftp.isi.edu/
in-notes/rfc2018.txt, October 1996.

[3] V. Jacobson, R. Braden, and D. Borman, “TCP extensions for
high performance,” RFC 1323, ftp://ftp.isi.edu/in-notes/
rfc1323.txt, May 1992.

[4] Janey Hoe, “Improving the startup behavior of a congestion control
scheme for tcp,” in ACM Sigcomm’96, August 1996, http://www.
acm.org/sigcomm/sigcomm96/program.html.

[5] Cheng Jin, David X. Wei, and Steven H. Low, “The case for delay-
based congestion control,” in Proc. of IEEE Computer Communication
Workshop (CCW), October 2003.

[6] Sally Floyd, “HighSpeed TCP for large congestion windows,” Internet
draft draft-floyd-tcp-highspeed-02.txt, work in progress, http://www.
icir.org/floyd/hstcp.html, February 2003.

[7] Tom Kelly, “Scalable TCP: Improving performance in highspeed wide
area networks,” Submitted for publication, http://www-lce.eng.
cam.ac.uk/˜ctk21/scalable/, December 2002.

[8] Lawrence S. Brakmo and Larry L. Peterson, “TCP Vegas: end-to-end
congestion avoidance on a global Internet,” IEEE Journal on Selected
Areas in Communications, vol. 13, no. 8, pp. 1465–80, October 1995,
http://cs.princeton.edu/nsg/papers/jsac-vegas.ps.

[9] E. Weigle and W. Feng, “A case for TCP Vegas in high-performance
computational grids,” in Proceedings of the 9th International Symposium
on High Performance Distributed Computing (HPDC’01), August 2001.

[10] W. Feng and S. Vanichpun, “Enabling compatibility between TCP Reno
and TCP Vegas,” IEEE Symposium on Applications and the Internet
(SAINT 2003), January 2003.

[11] C. Casetti, M. Gerla, S. Mascolo, M. Sansadidi, and R. Wang, “TCP
Westwood: end-to-end congestion control for wired/wireless networks,”
Wireless Networks Journal, vol. 8, pp. 467–479, 2002.

[12] R. Wang, M. Valla, M. Sanadidi, B. Ng, and M. Gerla, “Using
adaptive rate estimation to provide enhanced and robust transport over
heterogeneous networks,” in Proc. of IEEE ICNP, 2002.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004



[13] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high-
bandwidth delay product networks,” in Proc. ACM Sigcomm, August
2002.

[14] Shudong Jin, Liang Guo, Ibrahim Matta, and Azer Bestavros, “A
spectrum of TCP-friendly window-based congestion control algorithms,”
IEEE/ACM Transactions on Networking, vol. 11, no. 3, June 2003.

[15] R. Shorten, D. Leith, J. Foy, and R. Kilduff, “Analysis and design of
congestion control in synchronised communication networks,” in Proc.
of 12th Yale Workshop on Adaptive and Learning Systems, May 2003,
www.hamilton.ie/doug_leith.htm.

[16] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control
for fast long-distance networks,” in Proc. of IEEE Infocom, 2004.

[17] A. Kuzmanovic and E. Knightly, “TCP-LP: a distributed algorithm for
low priority data transfer,” in Proc. of IEEE Infocom, 2003.

[18] H. Bullot and L. Cottrell, “Tcp stacks testbed,” http://www-iepm.
slac.stanford.edu/bw/tcp-eval/.

[19] Raj Jain, “A delay-based approach for congestion avoidance in
interconnected heterogeneous computer networks,” ACM Computer
Communication Review, vol. 19, no. 5, pp. 56–71, Oct. 1989.

[20] Z. Wang and J. Crowcroft, “Eliminating periodic packet losses in the
4.3-Tahoe BSD TCP congestion control algorithm,” ACM Computer
Communications Review, April 1992.

[21] Jim Martin, Arne Nilsson, and Injong Rhee, “Delay-based congestion
avoidance for TCP,” IEEE/ACM Trans. on Networking, vol. 11, no. 3,
pp. 356–369, June 2003.

[22] Fernando Paganini, John C. Doyle, and Steven H. Low, “Scalable laws
for stable network congestion control,” in Proceedings of Conference
on Decision and Control, December 2001, http://www.ee.ucla.
edu/˜paganini.

[23] Hyojeong Choe and Steven H. Low, “Stabilized Vegas,” in Proc. of
IEEE Infocom, April 2003, http://netlab.caltech.edu.

[24] Fernando Paganini, Zhikui Wang, Steven H. Low, and John C. Doyle,
“A new TCP/AQM for stability and performance in fast networks,” in
Proc. of IEEE Infocom, April 2003, http://www.ee.ucla.edu/
˜paganini.

[25] Jeonghoon Mo and Jean Walrand, “Fair end-to-end window-based
congestion control,” IEEE/ACM Transactions on Networking, vol. 8,
no. 5, pp. 556–567, October 2000.

[26] Steven H. Low, Larry Peterson, and Limin Wang, “Understanding Vegas:
a duality model,” J. of ACM, vol. 49, no. 2, pp. 207–235, March 2002,
http://netlab.caltech.edu.

[27] Frank P. Kelly, Aman Maulloo, and David Tan, “Rate control for
communication networks: Shadow prices, proportional fairness and
stability,” Journal of Operations Research Society, vol. 49, no. 3, pp.
237–252, March 1998.

[28] Frank P. Kelly, “Mathematical modelling of the Internet,” in Mathemat-
ics Unlimited - 2001 and Beyond, B. Engquist and W. Schmid, Eds., pp.
685–702. Springer-Verlag, Berlin, 2001.

[29] C.V. Hollot, V. Misra, D. Towsley, and W.B. Gong, “Analysis and
design of controllers for AQM routers supporting TCP flows,” IEEE
Transactions on Automatic Control, vol. 47, no. 6, pp. 945–959, 2002.

[30] S. H. Low, F. Paganini, J. Wang, and J. C. Doyle, “Linear stability of
TCP/RED and a scalable control,” Computer Networks Journal, vol. 43,
no. 5, pp. 633–647, 2003, http://netlab.caltech.edu.

[31] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott,
“The macroscopic behavior of the TCP congestion avoidance algo-
rithm,” ACM Computer Communication Review, vol. 27, no. 3, July
1997, http://www.psc.edu/networking/papers/model_
ccr97.ps.

[32] T. V. Lakshman and Upamanyu Madhow, “The performance of TCP/IP
for networks with high bandwidth–delay products and random loss,”
IEEE/ACM Transactions on Networking, vol. 5, no. 3, pp. 336–350,
June 1997, http://www.ece.ucsb.edu/Faculty/Madhow/
Publications/ton97.ps.

[33] C. Jin, D. Wei, and S. H. Low, “FAST TCP: motivation, architecture,
algorithms, performance,” Tech. Rep. CaltechCSTR:2003.010, Caltech,
Pasadena CA, 2003, http://netlab.caltech.edu/FAST.

[34] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based con-
gestion control for unicast applications,” in Proc. ACM SIGCOMM’00,
September 2000.

[35] Steven H. Low and David E. Lapsley, “Optimization flow control,
I: basic algorithm and convergence,” IEEE/ACM Transactions on
Networking, vol. 7, no. 6, pp. 861–874, December 1999, http:
//netlab.caltech.edu.

[36] S. Kunniyur and R. Srikant, “End-to-end congestion control: utility
functions, random losses and ECN marks,” IEEE/ACM Transactions on
Networking, 2003.

[37] L. Massoulie and J. Roberts, “Bandwidth sharing: objectives and
algorithms,” IEEE/ACM Transactions on Networking, vol. 10, no. 3,
pp. 320–328, June 2002.

[38] H. Yaiche, R. R. Mazumdar, and C. Rosenberg, “A game theoretic
framework for bandwidth allocation and pricing in broadband networks,”
IEEE/ACM Transactions on Networking, vol. 8, no. 5, October 2000.

[39] Steven H. Low, “A duality model of TCP and queue management
algorithms,” IEEE/ACM Trans. on Networking, vol. 11, no. 4, pp. 525–
536, August 2003, http://netlab.caltech.edu.

[40] Glenn Vinnicombe, “On the stability of networks operating TCP-like
congestion control,” in Proc. of IFAC World Congress, 2002.

[41] S. Kunniyur and R. Srikant, “A time-scale decomposition approach to
adaptive ECN marking,” IEEE Transactions on Automatic Control, June
2002.

[42] S. Kunniyur and R. Srikant, “Designing AVQ parameters for a general
topology network,” in Proceedings of the Asian Control Conference,
September 2002.

[43] Glenn Vinnicombe, “Robust congestion control for the Internet,”
submitted for publication, 2002.

[44] Steven H. Low, Fernando Paganini, and John C. Doyle, “Internet
congestion control,” IEEE Control Systems Magazine, vol. 22, no. 1,
pp. 28–43, February 2002.

[45] S. H. Low and R. Srikant, “A mathematical framework for designing a
low-loss, low-delay internet,” 2003.

[46] Frank P. Kelly, “Fairness and stability of end-to-end congestion control,”
European Journal of Control, vol. 9, pp. 159–176, 2003.

[47] C. Jin, D. Wei, S. H. Low, G. Buhrmaster, J. Bunn, D. H. Choe, R. L. A.
Cottrell, J. C. Doyle, H. Newman, F. Paganini, S. Ravot, and S. Singh,
“FAST Kernel: Background theory and experimental results,” in First
International Workshop on Protocols for Fast Long-Distance Networks,
February 2003.

[48] David X. Wei and Steven H. Low, “A model for TCP model with
burstiness effect,” Submitted for publication, 2003.

[49] Zhikui Wang and Fernando Paganini, “Global stability with time delay
in network congestion control,” in Proc. of the IEEE Conference on
Decision and Control, December 2002.

[50] S. Deb and R. Srikant, “Global stability of congestion controllers for
the Internet,” IEEE Transactions on Automatic Control, vol. 48, no. 6,
pp. 1055–1060, June 2003.

[51] Luigi Rizzo, “Dummynet,” http://http://info.iet.unipi.
it/˜luigi/ip_dummynet/.

[52] Y. Li, “Implementing highspeed tcp,” URL:http://www.hep.ucl.
ac.uk/˜ytl/tcpip/hstcp/index.html.

[53] T. Dunigan, “Floyd’s tcp slow-start and aimd mods,” URL:http://
www.csm.ornl.gov/˜dunigan/net100/floyd.html.

[54] D. Chiu and R. Jain, “Analysis of the increase and decrease algorithms
for congestion avoidance in computer networks,” Computer Networks,
vol. 17, pp. 1–14, 1989.

[55] R. Jain, The art of computer systems performance analysis: techniques
for experimental design, measurement, simulation and modeling., John
Wiley and Sons, Inc., 1991.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004


	INFOCOM 2004
	Return to Previous View


