Joel Kammet

CSC72010, Assignment 1: Answers

1. minimum: uids arranged in clockwise-increasing order

initiate processes	n
leader's uid goes around	2n
every uid other than leader goes	
only to the next process	2(n-1)
leader declares itself	1
total	5n - 1

maximum: uids arranged in clockwise-decreasing order

initiate processes	n
leader's uid goes around	2n
every uid other than leader goes	
around to the leader (a)	n(n-1)
leader declares itself	1
total	$n^2 + 2n + 1$

(a) This is twice the sum of the integers (1+...+n-1)

2. Reordering channel, minimum: uids arranged in clockwise-increasing order

initiate processes	n
leader's uid goes around	2n
every uid other than leader goes	
only to the next CHANNEL (b)	n-1
leader declares itself	1
total	4n

(b) because the leader's uid can jump ahead of other uids in every channel

maximum: same as in question 1.

Channels are not *required* to reorder messages. The maximum number of transitions occurs when all messages are transmitted in the sequence in which they were sent.

3. (i) "Lossy" channels - minimum transitions to successfully elect leader:

initiate processes	n
leader's uid goes around	2n
every uid other than leader goes	
only to the next CHANNEL (c)	n-1
leader declares itself	1
total	4n

(c) Uids other than the leader's are lost in the channels. If the leader's uid is also lost, there is an absolute minimum of 2n transitions (n to initiate, n to send all uids to the adjacent channel where they are lost) but no leader is elected.

(ii) "Lossy" channels - maximum is same as in question 1.

Channels are not required to lose messages.

(iii) Duplicating channels - minimum is same as in question 1.

Channels are not required to duplicate.

(iv) Duplicating channels - maximum is infinite.

Any number of "loser" uids can be duplicated and forwarded around the ring before the leader's uid finishes its circuit.