Part II
I0A Data Types

TOA specifications can employ various data types, both built-in and user-defined. We list here the
operators available for the built-in types; Appendix A defines their properties formally via sets
of axioms in multisorted first-order logic (see Section 11). Data types and operators are defined
abstractly, not in terms of any particular representation or implementation. In particular, operators
are defined without any reference to a “state” or “store,” so they cannot have “side-effects.”

e The primitive data types Bool, Int, Nat, Real, and Char can be used without explicit declara-
tions. Section 7 describes the operators available for each of these types.

e Other primitive data types can be introduced as type parameters to automaton definitions,
as in the channel automaton described in Figure 5, which is parameterized by the types M
and Index.

e Compound data types formed using the type constructors Array, Set, Mset, Seq, and Map can
be used without explicit declarations. Section 8 describes the operators available for these

types.

e Compound data types formed using the keywords enumeration, tuple, and union can be
used with explicit declarations, as in

type Color = enumeration of red, white, blue
type VMsg = tuple of source, dest: Process, contents: String
type Fig = union of sq: Square, circ: Circle

Sections 9.8 and 22 describe the operators available for these data types.

e User-defined data types, as well as additional operators on the above primitive and compound
data types, can be introduced (or required to have certain properties) by indicating auxiliary
specifications, as in

axioms RingIndex(abcd, String)

axioms Stack for Stack[__]

assumes TotalOrdering(T, <)
These auxiliary specifications, which users write as ¢raits in the Larch Shared Language (LSL),
provide both the syntax and semantics for all operators introduced in this fashion. Sections 9
and 10 describe how to write LSL traits and how to incorporate them into IOA specifications
by means of the axioms statement.

The equality (__=__), inequality (__#__), and conditional (if __ then else) operators are
available for all data types in IOA (the __’s are placeholders for the arguments of these operators).

7 Built-in primitive types

The following built-in primitive types and operators require no declaration.

7.1 Booleans

The boolean data type, bool, provides constants and operators for the set {true, false} of logical
values. Syntactically, the operators A and V bind more tightly than =, which binds more tightly
than <.

21

Operators for bool | Sample input Meaning

true, false true, false The values true and false

- “p Negation (not)

A, V P /\ q,p \/ q | Conjunction (and), disjunction (or)
= P=>q Implication (implies)

o p <=>gq Logical equivalence (if and only if)

7.2 Integers

The integer data type, Int, provides constants and operators for the set of (positive and negative)
integers.

Operators for Int | Sample input | Meaning

0,1, ... 123 Non-negative integers

- -x Additive inverse (unary minus)

abs abs (x) Absolute value

pred, succ succ(x) Predecessor, successor

+, -, % x + (y*2) Addition, subtraction, multiplication
min, max min(x, y) Minimum, maximum

div, mod mod(x, y) Integer quotient, modulus

< <>, > x <=y Less (greater) than (or equal to)

Syntactically, all binary operators bind equally tightly, so that expressions must be parenthe-
sized, as in ((x*y) + z) > 3, to indicate the arguments to which operators are applied.

7.3 Natural numbers

The natural number data type, Nat, provides constants and operators for the set of non-negative
integers. The operators and constants are as for Int, except that there are no unary operators - or
abs, there is an additional operator *x for exponentiation, and the value of x-y is defined to be 0
if x < y. Syntactically, integer constants (e.g., 1) and operators (e.g., -) are distinct from natural
number constants and operators that have the same typographical representation. Sometimes such
overloaded operators can be distinguished from context (e.g., the 1 in the expression abs(-1) must
be an integer constant, because abs and unary - are operators over the integers, but not over the
natural numbers). At other times, users must distinguish which operators or constants are meant
by qualifying expressions with types, as in x > 0:Nat.

7.4 Real numbers

The real number data type, Real, provides constants and operators for the set of real numbers.
Again, the operators and constants are as for Int, except that there are no operators pred, succ,
div, and mod, and there are additional operators / and ** for division and exponentiation.

7.5 Characters

The character data type, Char, provides constants and operators for letters and digits.”

7 Additional character constants will be provided in a future version of IOA.

22

Operators for Char ‘ Sample input ‘ Meaning
A L AT PSP - L BN Letters and digits
<, < >, > N =7 ASCII ordering

7.6 Strings

The string data type, String, provides constants and operators for lexicographically ordered se-
quences of characters. It provides operators as described for Seq[Char] (see Section 8.4) as well as
the ordering relations <, <, >, and >.

8 Built-in type constructors

The following built-in type constructors and operators require no declaration.

8.1 Arrays

The array data types, Array[I, E] and Array[I, I, E], provide constants and operators for one-
and two-dimensional arrays of elements of some type E indexed by elements of some type I.

Operators for Array[I, E] | Meaning

constant(e) Array with all elements equal to e
a[i] Element indexed by i in array a
assign(a, i, e) Array a’ equal to a except that a’[i] = e

Operators for Array[I, I, E] | Meaning

constant(e) Array with all elements equal to e
ali, jl Element indexed by i, j in array a
assign(a, i, j, e) Array a’ equal to a except that a’[i, j1 = e

The array (one- or two-dimensional) denoted by constant(e) is determined by context, as in
constant(e) [i], or by an explicit qualification, as in constant(e) :Array[I,I,E].
8.2 Finite sets

The set data type, Set[E], provides constants and operators for finite sets of elements of some type
E.

Operators for Set[E] | Sample input Meaning

{3 {3 Empty set

{...} {e} Set containing e alone

insert insert(e, s) Set containing e and all elements of s
delete delete(e, s) Set containing all elements of s, but not e
€ e \in s True iff e is in s

U, N, - (s \U 8’) - (s \I s’) | Union, intersection, difference

c,c 0,2 s \subseteq s’ (Proper) subset (superset)

size size(s) Size (an Int) of s

23

8.3 Multisets

The multiset data type, Mset[E], provides constants and operators for finite multisets of elements
of some type E. Its operators are those for Set[E], except that there is an additional operator count
such that count(e, s) is the number (an Int) of times an element e occurs in a multiset s.

8.4 Sequences

The sequence data type, Seq[E], provides constants and operators for finite sequences of elements
of some type E.

Operators for Seq[E] | Sample input | Meaning
{} {3 Empty sequence
= s |- e Sequence with e appended to s
4 e -| s Sequence with e prepended to s
| s |l s’ Concatenation of s, s’
€ e \in s True iff eisin s
head, last head(s) First (last) element in sequence
init, tail tail(s) All but first (last) elements in sequence
len len(s) Length (an Int) of s
L. s [n] nth (an Int) element in s

8.5 Mappings

The mapping data type, Map[D, R], provides constants and operators for finite partial mappings
of elements of some domain type D to elements of some range type R. Finite mappings differ from
arrays in two ways: they may not be defined for all elements of D, and their domains are always
finite.

Operators for Map[D, R] | Sample input | Meaning

empty empty Empty mapping

R m[d] Image of d under m

defined defined(m, d) True if m[d] is defined

update update(m, d, r) | Mapping n’' equal to m except that m'[d] = r

9 Data type semantics

TIOA describes the semantics of abstract data types by means of axioms expressed in the the Larch
Shared Language (LSL). Users need refer to LSL specifications only if they have questions about
the precise mathematical meaning of some operator or if they wish to introduce new operators or
data types.®

This section provides a tutorial introduction to LSL. It is taken from Chapter 4 of [7], but has
been updated to reflect several changes to LSL, most significantly the addition of explicit quan-
tification. LSL is a member of the Larch family of specification languages [7], which supports a
two-tiered, definitional style of specification. Each specification has components written in two
languages: LSL, which is independent of any programming language, and a so-called interface lan-
guage tailored specifically for a programming language (such as C) or for a mathematical model of

8Some tool builders may wish to provide other, equivalent definitions for the built-in data types, e.g., using some
other mathematical formalism or in terms of procedures written in some programming language.

24

