add (3, 2), result(5), add(1, 2), add(-1, 1), result (0), .
that start with an add action, in which every result action returns the sum computed by the last

add action, and in which every pair of result actions must be separated by one or more add actions.

automaton Channel(M, Index: type, i, j: Index)
signature
input send(m: M, const i, const j)
output receive(m: M, const i, const j)
states
buffer: Seq[M] := {}
transitions
input send(m, i, j)
eff buffer := buffer F m
output receive(m, i, j)
pre buffer # {} A m = head(buffer)
eff buffer := tail(buffer)

Figure 5: IOA description of a reliable communication channel

Another simple automaton, Channel, is shown in Figure 5. This automaton represents a reliable
communication channel, as illustrated in Figure 2, which neither loses nor reorders messages in
transit. The automaton is parameterized by the type M of messages that can be in transit on
the channel, by the type Index of process indices, and by two values, i and j, which represent
the indices of processes that use the channel for communication. The signature consists of input
actions, send(m, i, j), and output actions, receive(m, i, j), one for each value of m. The keyword
const in the signature indicates that the values of i and j in these actions are fixed by the values
of the automaton’s parameters.

The state of the automaton Channel consists of a buffer, which is a sequence of messages (i.e.,
an element of type Seq[M]) initialized to the empty sequence {}. Section 8.4 describes the type
constructor Seq and operators on sequences such as {3}, I, head, and tail.

The input action send(m, i, j) has the effect of appending m to buffer (here, I is the append
operator). The output action receive(m, i, j) is enabled when buffer is not empty and has the
message m at its head. The effect of this action is to remove the head element from buffer.

The rest of Part I shows in more detail how IOA can be used to describe I/O automata.

3 Data types in IOA descriptions

IOA enables users to define the actions and states of I/O automata abstractly, using mathematical
notations for sets, sequences, etc., without having to provide concrete representations for these
abstractions. Some mathematical notations are built into IOA; others can be defined by the user.

The data types Bool, Int, Nat, Real, Char, and String can appear in IOA descriptions without
explicit declarations. Section 7 describes the operators available for each of these types.

Compound data types can be constructed using the following type constructors and used without
explicit declarations. Section 8 describes the operators available for types constructed in any of
these fashions.

e Array[I, E] is an array of elements of type E indexed by elements of type I.
e Map[D, R] is a finite partial mapping of elements of a domain type D to elements of a range

type R. Mappings differ from arrays in that their domains are always finite, and in that they
may not be totally defined.

e Seq[E] is a finite sequence of elements of type E.
e Set[E] is a finite set of elements of type E.
e Mset[E] is a finite multiset of elements of type E.

In this tutorial, we describe operators on the built-in data types informally when they first
appear in an example.

Users can define additional data types, as well as redefine built-in types, in one of two ways.
First, they can explicitly declare enumeration, tuple, and union types analogous to those found in
many common programming languages. For example,

type Color = enumeration of red, white, blue
type Msg = tuple of source, dest: Process, contents: String
type Fig = union of sq: Square, circ: Circle

Section 9.8 describes the operators available for each of these types. Second, users can refer to an
auxiliary specification that defines the syntax and semantics of a data type, as in
axioms Queue for Q[__] % Supplies axioms for Q[Int], Q[Set[Natl],
axioms Peano for Nat % Overrides built-in axioms for Nat
axioms Graph(V, E) % Supplies axioms for graphs
These auxiliary specifications are written in the Larch Shared Language (LSL); see Sections 9 and 10.
In this report, some operators are displayed using mathematical symbols that do not appear on
the standard keyboard. The following tables show the input conventions for entering these symbols.
The standard meanings of the logical operators are built into LSL and IOA. The meanings of the
datatype operators are defined by the LSL specifications for the built-in datatypes in Section 9.

Logical Operator H Datatype Operator

Symbol | Meaning Input Symbol | Meaning Input

A For all \A < Less than or equal <=

3 There exists | \E > Greater than or equal | >=

- Not - € Member of \in

+* Not equals ~= g Not a member of \notin

A And /\ C Proper subset of \subset

Vv Or \/ C Subset of \subseteq

= Implies => D Proper superset of \supset

& If and only if | <=> D) Superset of \supseteq
F Append element |-
= Prepend element =1

4 JOA descriptions for primitive automata

Primitive automata (i.e., automata without subcomponents) are described by specifying their
names, action signatures, state variables, transition relations, and task partitions. All but the
last of these elements must be present in every primitive automaton description.

4.1 Automaton names and parameters

The first line of an automaton description consists of the keyword automaton followed by the name
of the automaton (see Figures 4 and 5). As illustrated in Figure 5, the name may be followed by
a list of formal parameters enclosed within parentheses. Each parameter consists of an identifier

with its associated type (or, as in Figure 5, with the keyword type to indicate that the identifier
names a type rather than an element of a type).*

4.2 Action signatures

The signature for an automaton is declared in IOA using the keyword signature followed by lists of
entries describing the automaton’s input, internal, and output actions. Each entry contains a name
and an optional list of parameters enclosed in parentheses. Each parameter consists of an identifier
with its associated type, or of an expression following the keyword const; entries cannot have type
parameters. Each entry in the signature denotes a set of actions, one for each assignment of values
to its non-const parameters.

It is possible to place constraints on the values of the parameters for an entry in the signature
using the keyword where followed by a predicate, that is, by a boolean-valued expression. Such

constraints restrict the set of actions denoted by the entry. For example, the signature
signature
input add(i, j: Int) where i > 0 A j > 0
output result(k: Int) where k > 1
could have been used for the automaton Adder to restrict the values of the input parameters to

positive integers and the value of the output parameter to integers greater than 1.

4.3 State variables

As in the above examples, state variables are declared using the keyword states followed by a
comma-separated list of state variables and their types. State variables can be initialized using the
assignment operator := followed by an expression or by a nondeterministic choice. The order in
which state variables are declared makes no difference: state variables are initialized simultaneously,
and the initialization given for one state variable cannot refer to the value of any other state variable.

A nondeterministic choice, indicated by the keyword choose following the assignment operator
:=, selects an arbitrary value for the named variable that satisfies the predicate following the
keyword where. When a nondeterministic choice is used to initialize a state variable, there must
be some value of the named variable that satisfies this predicate. If this predicate is true for all
values of the named variable, then the effect is the same as if no initial value had been specified for
the state variable.

automaton Choice

signature
output result(i: Int)
states
num: Int = choose n where 1 < n A n < 3,
done: Bool := false

transitions
output result (i)
pre —done A i = num
eff done := true

Figure 6: Example of nondeterministic choice of initial value for state variable

*Later versions of IOA may also allow us to parameterize automata by operations (e.g., ordering relations) on a
data type.

For example, in the automaton Choice (Figure 6), the state variable num is initialized nondeter-
ministically to some value of the variable n that satisfies the predicate 1 < n A n < 3, i.e., to one
of the values 1, 2, or 3 (the value of n must be an integer because it is constrained to have the same
type, Int, as the variable num to which it will be assigned). The automaton Choice can return the
selected value at most once in an output action.

It is also possible to constrain the initial values of all state variables taken together, whether or
not initial values are assigned to any individual state variable. This can be done using the construct
so that followed by a predicate (involving state variables and automaton parameters), as illustrated
by the definition of the automaton Shuffle in Figure 7.° Here, the initial values of the variable
cut and the array name of strings are constrained so that name[1], ..., name[52] are sorted in two
pieces, each in increasing order, with the piece after the cut containing smaller elements than the
piece before the cut. Note that the scope of the so that clause is the entire set of state variable
declarations.

type cardIndex = enumeration of 1, 2, 3,

automaton Shuffle
signature
internal swap(i, j: cardIndex)
output deal(a: Array[cardIndex, String])

states
dealt: Bool := false,
name: Array[cardIndex, String],
cut: cardIndex,

temp: String
so that V i: cardIndex (i # 52 A i # cut = name[i] < name[succ(i)])
A name [62] < name[1]
transitions
internal swap(i, j)
pre —dealt

eff temp := namel[i];
name[i] := namel[j];
name[j] := temp
output deal(a)
pre —dealt A a = name
eff dealt := true

Figure 7: Example of a constraint on initial values for state variables

In Figure 7, values of type Array[cardIndex, String] are arrays indexed by elements of type
cardIndex and containing elements of type String (see Section 8.1). The swap actions transpose
pairs of strings, until a deal action announces the contents of the array; then no further actions
occur. Note that the constraint following so that limits only the initial values of the state variables,
not their subsequent values.

When the type of a state variable is an Array or a tuple (Section 9.8), IOA also treats the
elements of the array or the fields in the tuple as state variables, to which values can be assigned
without affecting the values of the other elements in the array or fields in the tuple.

5At present, users must expand the ...in the definition of the type cardIndex by hand; IOA will eventually
provide more convenient notations for integer subranges.

4.4 Transition relations

Transitions for the actions in an automaton’s signature are defined following the keyword transi-
tions. A transition definition consists of an action type (i.e., input, internal, or output), an action
name with optional parameters and an optional where clause, an optional list of additional “choose
parameters,” an optional precondition, and an optional effect.

4.4.1 Transition parameters

The parameters accompanying an action name in a transition definition must match those accom-
panying the name in the automaton’s signature, both in number and in type. However, parameters
take a simpler form in a transition definition than they do in the signature. The simplest way to
construct the parameter list for an action name in a transition definition is to erase the keyword
const and the type modifiers from the parameter list in the signature; thus, in Figure 5,

input send(m: M, const i, const j)
in the signature of Channel is shortened to input send(m, i, j) in the transition definition. See
Section 15.3 for the actual set of rules.

More than one transition definition can be given for an entry in an automaton’s signature. For
example, the transition definition for the swap actions in the Shuffle automaton (Figure 7) can be

split into two components:
internal swap(i, j) where i # j
pre —dealt

eff temp := namel[i];
name[i] := name[j];
name[j] := temp

internal swap(i, i)
pre —dealt
The second of these two transition definitions does not change the state, because it has no eff

clause.

4.4.2 Preconditions

A precondition can be defined for a transition of an output or internal action using the keyword
pre followed by a predicate, that is, by a boolean-valued expression. Preconditions cannot be
defined for transitions of input actions. All variables in the precondition must be parameters of
the automaton, be state variables, appear in the parameter list for the transition definition, be
choose parameters, or be quantified explicitly in the precondition. If no precondition is given, it is
assumed to be true.

An action is said to be enabled in a state if the precondition for its transition definition is true
in that state for some values of the choose parameters. Input actions, whose transitions have no
preconditions, are always enabled.

4.4.3 Effects

The effect of a transition, if any, is defined following the keyword eff. This effect is generally defined
in terms of a (possibly nondeterministic) program that assigns new values to state variables. The
amount of nondeterminism in a transition can be limited by a predicate relating the values of state
variables in the post-state (i.e., in the state after the transition has occurred) to each other and to
their values in the pre-state (i.e., in the state before the transition occurs).

If the effect is missing, then the transition has none; i.e., it leaves the state unchanged.

10

Using programs to specify effects A program is a list of statements, separated by semicolons.
Statements in a program are executed sequentially. There are three kinds of statements:

e assignment statements,
e conditional statements, and

e for statements.

Assignment statements An assignment statement changes the value of a state variable.
The statement consists of a state variable followed by the assignment operator := and either an
expression or a nondeterministic choice (indicated by the keyword choose). (As noted in Section 4.3,
the elements in an array used as a state variable, or the fields in a tuple used as a state variable, are
themselves considered as separate state variables and can appear on the left side of the assignment
operator.)

The expression or nondeterministic choice in an assignment statement must have the same type
as the state variable. The value of the expression is defined mathematically, rather than computa-
tionally, in the state before the assignment statement is executed. The value of the expression then
becomes the value of the state variable in the state after the assignment statement is executed.
Execution of an assignment statement does not have side-effects; i.e., it does not change the value
of any state variable other than that on the left side of the assignment operator.

axioms Subsequence for Seql[__]

automaton LossyChannel(M: type)

signature
input send(m: M),
crash
output receive(m: M)
states
buffer: Seq[M] := {}

transitions
input send(m)

eff buffer := buffer F m
input crash
eff buffer := choose b where b <X buffer

output receive(m)
pre buffer # {} A m = head(buffer)
eff buffer := tail(buffer)

Figure 8: IOA description of a lossy communication channel

The definition of the crash action in the LossyChannel automaton (Figure 8) illustrates the use
of the choose ...where construct to constrain the new value of the state variable buffer to be a
nondeterministically chosen subsequence of the old value. LossyChannel is a modification of the
reliable communication channel (Figure 5) in which the additional input action crash may cause
the sequence buffer to lose messages (but not to reorder them).

The axioms statement at the beginning of Figure 8 identifies an auxiliary specification (Fig-
ure 9), which overrides the default axioms for the built-in type constructor Seq[E] for the sequence
data type (see Section 8.4) to add a definition for the subsequence relation < appearing in the

11

definition of transitions for the crash action. Because this relation is not one of the built-in op-
erators provided by IOA for the sequence data type, we must supply a specification to define its
properties, namely, that a subsequence does not reorder elements, and that it need not contain
consecutive elements from the larger sequence. Figure 9 conveys this information by presenting a
recursive definition for <. Section 9 provides more information about how to read such auxiliary
specifications.

Subsequence(E): trait
includes Sequence(E)

introduces __=<__: Seql[E], Seq[E] — Bool
asserts with e, el, e2: E, s, s1, s2: SeqlE]
{} £ s;
—-((s F e) {H;

<
(s1 F el) X (s2 F e2) & (s1 F el) X 82V (81 X 82 A el = e2)
Figure 9: Auxiliary specification with recursive definition of subsequence operator

An abbreviated form of nondeterministic choice can be used in the assignment statement to
express the fact that a transition can change the value of a state variable, without specifying what
the new value may be. Such a nondeterministic choice consists of the keyword choose alone, without
a subsequent variable or where clause. The statement x := choose is equivalent to the somewhat
longer statement x := choose y where true. Both of these statements give a transition a license
to change the value of the state variable x. As described below, constraints on the new values for
modified variables, if any, can be given in a so that clause for the entire effect.

Conditional statements A conditional statement is used to select which of several program
segments to execute in a larger program. It starts with the keyword if followed by a predicate,
the keyword then, and a program segment; it ends with the keywordfi. In between, there can be
any number of elseif clauses (each of which contains a predicate, the keyword then, and a program
segment), and there can be a final else clause (which also contains a program segment). Figure 10
illustrates the use of a conditional statement in defining an automaton that distributes input values
into one of three sets. Section 8.2 describes the set data type and the operators {} and insert.

For statements A for statement is used to perform a program segment once for each value
of a variable that satisfies a given condition. It starts with the keyword for followed by a variable,
a clause describing a set of values for this variable, the keyword do, a program segment, and the
keyword od.

Figure 11 illustrates the use of a for statement in a high-level description of a multicast algo-
rithm. Tts first line defines the Packet data type to consist of triples [contents, source, dest], in
which contents represents a message, source the Node from which the message originated, and dest
the set of Nodes to which the message should be delivered. The state of the multicast algorithm
consists of a multiset network, which represents the packets currently in transit, and an array queue,
which represents, for each Node, the sequence of packets delivered to that Node, but not yet read by
the Node.

The mcast action inserts a new packet in the network; the notation [m, i, I] is defined by the
tuple data type (Section 9.8) and the insert operator by the multiset data type (Section 8.3). The
deliver action, which is described using a for statement, distributes a packet to all nodes in its
destination set (by appending the packet to the queue for each node in the destination set and

12

automaton Distribute

signature
input get(i: Int)
states
small: Set[Int] := {2},
medium: Set[Int] := {3},
large: Set[Int] := {},
boundl: Int,

bound2: Int

so that boundl < bound2

transitions
input get (i)
eff if i

fi

Figure 10: Example of a conditional statement

< boundl then small
elseif i < bound2 then medium
else large := imnsert (i,

insert (i,

large)

small)

insert (i, medium)

Set[Nodel

type Packet = tuple of contents: Message, source: Node, dest:
automaton Multicast
signature
input mcast(m: Message, Node, I: Set[Nodel)
internal deliver(p: Packet)
output read(m: Message, Node)
states
network: Mset[Packet]
queue: Array[Node, Seq[Packet]]
so that V i: Node (queuel[i] = {})
transitions
input mcast(m, i, I)
eff network := insert ([m, I], network)
internal deliver(p)
pre p € network
eff for j: Node in p.dest do queue[j] := queuel[j] F p od;
network := delete(p, network)

output read(m, j)

pre queuel[j] # {} A head(queue[j]).contents = m

eff queuel[j] := tail(queuel[j])

Figure 11: Example showing use of a for statement

13

then deleting the packet from the network). The read action receives the contents of a packet at a
particular Node by removing that packet from the queue of delivered packets at that Node.

In general, the clause describing the set of values for the control variable in a for statement
consists either of the keyword in followed by an expression denoting a set (Section 8.2) or multiset
(Section 8.3) of values of the appropriate type, or of the keywords so that followed by a predicate.
The program following the keyword do is executed once for each value in the set or multiset
following the keyword in, or once for each value satisfying the predicate following the keywords so
that. These versions of the program are executed in an arbitrary order. However, IOA restricts
the form of the program so that the effect of the for statement is independent of the order in which
the versions of the program are executed.

Using predicates on states to specify effects The results of a program can be constrained
by a predicate relating the values of state variables after a transition has occurred to the values
of state variables before the transition began. Such a predicate is particularly useful when the
program contains the nondeterministic choose operator. For example,

input crash

eff buffer := choose
so that buffer’ < buffer

is an alternative, but equivalent way of describing the crash action in LossyChannel (Figure 8). The
assignment statement indicates that the crash action can change the value of the state variable
buffer. The predicate in the so that clause constrains the new value of buffer in terms of its old
value. A primed state variable in this predicate (i.e., buffer’) indicates the value of the variable
in the post-state; an unprimed state variable (i.e., buffer) indicates its value in the pre-state. For
another example,

eff name[i] := choose;
name[j] := choose
so that name’[i] = namel[j] A name’[j] = namel[il

is an alternative way of writing the effect clause of the swap action in Shuffle (Figure 7). The
assignment statements indicate that the array name may be modified at indices i and j, and the
so that clause constrains the modifications. This notation allows us to eliminate the temp state
variable needed previously for swapping.

There are important differences between where and so that clauses. A where clause can be
attached to a nondeterministic choose operator in a single assignment statement to restrict the
value chosen by that operator; variables appearing in a where clause denote values in the state
before the assignment statement is executed. A so that clause can be attached to an entire eff
clause; unprimed variables appearing in a so that clause denote values in the state before the
transition represented by the entire eff clause occurs, and primed variables denote values in the
state after the transition has occurred.

4.4.4 Choose parameters

Two kinds of parameters can be specified for a transition: ordinary parameters, corresponding to
those in the automaton’s signature, and additional “choose parameters,” which provide a convenient
way to relate the postcondition for a transition to its precondition. Figure 12 illustrates the use of
choose parameters.

The automaton LossyBuffer represents a message channel that loses a message each time it
transmits one. The state of the automaton consists of a multiset buff of messages of type M. The
input action for the channel, get (m), simply adds the message m to buff. The output action, put(m),
delivers m while dropping another message, given by the choose parameter n. The precondition

14

automaton LossyBuffer(M: type)
signature
input get(m: M)
output put(m: M)
states
buff: Mset[M] := {}
transitions
input get (m)
eff buff := insert(m, buff)
output put (m)
choose n: M
pre m € buff A n € buff A (m # n V count(n, buff) > 1)
eff buff := delete(m, delete(n, buff))

Figure 12: Example of the use of choose parameters

ensures that both m and n a remembers of the multiset buff and, if m and n happen to be the same
message, that buff contains two copies of this message.

Choose parameters provide syntactic sugar for defining transitions. It is possible to define
transitions without them by using explicit quantification. For example, the transition for the put

action in Figure 12 can be rewritten as follows:
output put(m)
pre 3 n: M (m € buff A n € buff A (m # n V count(m, buff) > 1))
eff buff := choose
so that 3 n: M (m € buff A n € buff A (m # n V count(m, buff) > 1)
A buff’= delete(m, delete(n, buff)))
In general, to eliminate choose parameters, one quantifies them explicitly in the precondition
for the transition, and then repeats the quantified precondition as part of the effect.

4.5 Tasks

A final, but optional part in the description of an I/O automaton is a partition of the automaton’s
output and internal actions into a set of disjoint tasks. This partition is indicated by the keyword
tasks followed by a list of the sets in the partition. If the keyword tasks is omitted, and no task
partition is given, all output and internal actions are presumed to belong to the same task.

To see why tasks are useful, consider the automaton Shuffle described in Figure 7. The traces
of this automaton can be either infinite sequences of swap actions, a finite sequence of swap actions,
or a finite sequence of swap actions followed by a single deal action: nothing in the description in

Figure 7 requires that a deal action ever occur. By adding
tasks

{swap(i, j) for i: cardIndex, j: cardIndex};
{deal(a) for a: Array[cardIndex, Stringl}
to the description of Shuffle, we can place all swap actions in one task (or thread of control) and
all deal actions in another. The definition of a fair execution of an I/O automaton requires that,
whenever a task remains enabled, some action in that task will eventually be performed. Thus this
task partition for Shuffle prevents swap actions from starving a deal action in any fair execution.
There are no fairness requirements, however, on the actions within the same task: the description
of Shuffle does not require that every pair of elements in the array will eventually be interchanged.
Variables appearing in task definitions must be introduced using the keyword for, either within
the braces defining individual tasks (as illustrated for Shuffle) or outside the braces. For example

15

the task partition
tasks {deliver(p) for p: Packetl}; {read(m, j) for m: Message} for j: Node

for the Multicast automaton places the read actions for different nodes in different tasks, so that
the execution of read actions for one node cannot starve execution of receive actions for another.
The values of variables appearing in task definitions can be constrained further by where clauses
following the for clauses.

Editorial note: Do we want to allow more general set-theoretic notations for defining tasks???
For example, do we want to allow {foo(i) for i: I} U {bar(i) for i: I} in addition to or in
place of {foo(i), bar(i) for i: I}?

5 IOA notations for operations on automata

We often wish to describe new automata in terms of previously defined automata. IOA provides
notations for composing several automata, for hiding some output actions in an automaton, and
for specializing parameterized automata.

5.1 Composition

We illustrate composition by describing the LeLann-Chang-Roberts (LCR) leader election algorithm
as a composition of process and channel automata.

In this algorithm, a finite set of processes arranged in a ring elect a leader by communicating
asynchronously. The algorithm works as follows. Each process sends a unique string representing
its name, which need not have any special relation to its index, to its right neighbor. When a
process receives a name, it compares it to its own. If the received name is greater than its own
in lexicographic order, the process transmits the received name to the right; otherwise the process
discards it. If a process receives its own name, that name must have traveled all the way around
the ring, and the process can declare itself the leader.

Figure 13 describes such a process, which is parameterized by the type I of process indices and
by a process index i. The assumes clause identifies an auxiliary specification, RingIndex (Figure 14),
that imposes restrictions on the type I. This specification requires that there be a ring structure
on I induced by the operators first, right, and left, and that name provide a one-one mapping
from indices of type I to names of type String.

The type declaration on the first line of Figure 13 declares Status to be an enumeration (Sec-
tion 9.8) of the values waiting, elected, and announced.

The automaton Process has two state variables: pending is a multiset of strings, and status
has type Status. Initially, pending is set to {name(i)} and status to waiting. The input action
receive(m, left(i), i) compares the name received from the Process automaton to the left of
this automaton in the ring and the name of the automaton itself. There are two output actions:
send(m, i, right(i)), which simply sends a message in pending to the Process automaton on the
right in the ring, and leader(m, i), which announces successful election. The two kinds of output
actions are placed in separate tasks, so that a Process automaton whose status is elected must
eventually perform a leader action.

Editorial note: Should we say something about why the transitions are specified as send(m, %, 3)
and receive(m, j, i)? The signature of the automaton restricts the values of 5 to be left(i) and
checking to ensure that this convention is being respected?

SEventually IOA will also provide notations for renaming actions.

16

