Logical Time

 Each event 1s assigned a logical time from a
totally ordered set T

* The logical times for the events must
respect any possible dependencies between
events

— If event A happens before event B at some

process or in some channel, then the logical
time of A must precede the logical time of B



Logical Time
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Logical Time
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Convenient Fact (Theorem 18.1)

e Take any allowable assignment of logical
times to an execution $,a,5,a,S,...

— That 1s, ltimes are in order for a.’s at the same
process and for sends and receives
e If the execution 1s reordered by logical
times, 1t looks exactly the same to each
process
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Send/recerve diagram
aka Call Flow or Message Sequence Chart
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Non-blocking time-keeping

e Each host maintains a clock

* Before 1t sends, it timestamps the message
with the next value of the clock

* When it receives it updates the clock to be
strictly greater than the timestamp on the
message and the local clock



Blocking time-keeping

e Each process assigns a logical time as the
time of the clock + the order of events at the
process

e It timestamps each message with the current
time on the clock

e It holds messages 1in a queue until the local
clock catches up
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The Banking Problem

Asynchronous send/receive network

Banking system with a balance at each
process

Transfers between banks
Each process has a local balance

The total of the local balances is the correct
amount in the system



The Banking Problem

Using logical times to define snapshot
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The Money Counting Algorithm

* For each process of A, determine its local
balance after all events with logical times
before t and before any event with logical
time after t

e For each channel, determine the amount of
money 1n messages sent before t but
received after t



Computing the local balance

e For process values:
— Attach a timestamp to each send event

— Record money value just before the first event with
time >t

e For channel values:

— Record incoming messages that arrive after time t until
the first message sent at time >t

e The balance: sum of the process value and all
incoming channels



Global Snapshot Problem

* A global snapshot returns a state of the system

— States of all processes and channels

— Looks to each process as if it was taken at the same
instant everywhere

* The bank problem is a special case

* Note that the actual values computed in the bank
algorithm may never have been observable



