Logical Time

 Each event 1s assigned a logical time from a
totally ordered set T

* The logical times for the events must
respect any possible dependencies between
events

— If event A happens before event B at some

process or in some channel, then the logical
time of A must precede the logical time of B

Logical Time

ATM 1 ATM 2 ATM 3
$1000 $1000 $1000
wlt
s(1,2) Wj[bdr
ay $]00

s(1,3)

r(1,2)

w2

Wi
b%wé”m()
r(1,3)
+w3

Logical Time

ATM 1 ATM 2 ATM 3 Evt Time
$1000 $1000 $1000 wl 1111
wit s(1.2) 2122
5(1,2) %bdraw s(1,3) 31513
s(1,3) 00 r(1,2) 41316
1(1,2) w2 51417
A 13) |66 |4
r(1,
”G't/;d
b 5, w3 717 |5
0

wl <s(1.2) < s(1.3)

o(.3) s(1.2) <1(12)

TW3 r(1,2) < w2

s(1.3) < 1(1.3)

r(1,3) < w3

Convenient Fact (Theorem 18.1)

e Take any allowable assignment of logical
times to an execution $,a,5,a,S,...

— That 1s, ltimes are in order for a.’s at the same
process and for sends and receives
e If the execution 1s reordered by logical
times, 1t looks exactly the same to each
process

Logical Time

ATM 1 ATM 2 ATM 3 Evt Time
$1000 $1000 $1000 wl 1111
wit s(1.2) 2122
5(1,2) %bdraw s(1,3) 31513
s(1,3) 00 r(1,2) 41316
1(1,2) w2 51417
A 13) |66 |4
r(1,
”G't/;d
b 5, w3 717 |5
0

wl <s(1.2) < s(1.3)

o(.3) s(1.2) <1(12)

TW3 r(1,2) < w2

s(1.3) < 1(1.3)

r(1,3) < w3

Send/recerve diagram
aka Call Flow or Message Sequence Chart

ATM 1 ATM 2 ATM 3
$1000 $1000 $1000
wlt
$(1.2) %bdra
W

s(1.3) $100

r(1.2)

w2

LV.
M‘
90
r(1,3)

+w3

Non-blocking time-keeping

e Each host maintains a clock

* Before 1t sends, it timestamps the message
with the next value of the clock

* When it receives it updates the clock to be
strictly greater than the timestamp on the
message and the local clock

Blocking time-keeping

e Each process assigns a logical time as the
time of the clock + the order of events at the
process

e It timestamps each message with the current
time on the clock

e It holds messages 1in a queue until the local
clock catches up

Logical time

ATM 1-fast ATM 2 - slow ATM 3- medium
$1000 $1000 $1000
wlr+
s(1.2)~_ W, o
ay $]00
s(1,3)
r(1,2)
w2
%}bdfaw
r(1,3)
+w3

The Banking Problem

Asynchronous send/receive network

Banking system with a balance at each
process

Transfers between banks
Each process has a local balance

The total of the local balances is the correct
amount in the system

The Banking Problem

Using logical times to define snapshot

$10 $20 $30

10

The Money Counting Algorithm

* For each process of A, determine its local
balance after all events with logical times
before t and before any event with logical
time after t

e For each channel, determine the amount of
money 1n messages sent before t but
received after t

Computing the local balance

e For process values:
— Attach a timestamp to each send event

— Record money value just before the first event with
time >t

e For channel values:

— Record incoming messages that arrive after time t until
the first message sent at time >t

e The balance: sum of the process value and all
incoming channels

Global Snapshot Problem

* A global snapshot returns a state of the system

— States of all processes and channels

— Looks to each process as if it was taken at the same
instant everywhere

* The bank problem is a special case

* Note that the actual values computed in the bank
algorithm may never have been observable

