CSc72010

The Asynchronous Model and Properties

Examples

Leader

type Status = enumeration of leader, unknown 

automaton Process (pos : Int, prev : Int, next : Int,  rank: Int)

  signature

    input RECEIVE(m: Int , const prev, const pos : Int)

    output SEND (m: Int , const pos , const next : Int)

    output leader(const rank)

  states

%    pending : Mset [Int] := {rank},

    pending : Int := rank,

    status : Status := unknown,

    ready : Bool := true

  transitions

     input RECEIVE(m, j, i) where m > pending

       eff pending := m; ready := true

     input RECEIVE(m, j, i) where m < pending

     input RECEIVE(m, j, i) where m = rank

       eff status := leader

     output SEND (m, i, j)

       pre status ~= leader /\ m = pending /\ ready

       eff ready := false

     output leader(rank)

       pre status = leader
Representation of state: <4, T, unknown>, <7,F,leader>  

That is, <pending, ready, status>      

Channel

automaton Channel(i:Int , j:Int)

  signature

    input SEND (m: Int , const i : Int, const j : Int)

    output RECEIVE(m : Int, const i : Int ,const j : Int)

  states

    queue : Seq[Int] := {} 

  transitions 

    input SEND (m, i, j)

      eff queue := queue |- m 

    output RECEIVE(m,i,j)

      pre head(queue) = m 

      eff queue := tail(queue)

Representaton of state: {}, {4}, {4,7}

That is, queue
Composition

automaton LCR

  components

   P1: Process(1, 4, 2, 7);

   P2: Process(2, 1, 3, 3);

   P3: Process(3, 2, 4, 2);

   P4: Process(4, 3, 1, 5);

   C1: Channel(1, 2);

   C2: Channel(2, 3);

   C3: Channel(3, 4);

   C4: Channel(4, 1)
Schedule

schedule

  do

    while(true) do

      fire output P1.SEND(P1.pending,1,2);

      fire output P2.SEND(P2.pending,2,3);

      fire output P3.SEND(P3.pending,3,4);

      fire output P4.SEND(P4.pending,4,1);

      fire output C1.RECEIVE(C1.toSend,1,2);

      fire output C2.RECEIVE(C2.toSend,2,3);

      fire output C3.RECEIVE(C3.toSend,3,4);

      fire output C4.RECEIVE(C4.toSend,4,1)

    od

  od
Executions

[<7,T,unknown>, {}, <3,T,unknown>, {}, <2,T,unknown>,{},<5,T,unknown>,{}],

SEND(2,3,4),

[<7,T,unknown>,{},<3,T,unknown>,{},<2,F,unknown>,{2},<5,T,unknown>,{}],

SEND(3,2,3),

[<7,T,unknown>,{},<3,F,unknown>,{3},<2,F,unknown>,{2},<5,T,unknown>,{}],

RECEIVE(3,2,3),

[<7,T,unknown>,{},<3,F,unknown>,{},<3,T,unknown>,{2},<5,T,unknown>,{}],

SEND(7,1,2),
[<7,F,unknown>,{7},<3,F,unknown>,{},<3,T,unknown>,{2},<5,T,,unknown>,{}],

SEND(3,3,4),

[<7,F,unknown>,{7},<3,F,unknown>,{},<3,F,unknown>,{2,3},<5,T,unknown>,{}],

RECEIVE(7,1,2),

[<7,F,unknown>,{},<7,T,unknown>,{},<3,F,unknown>,{2,3},<5,T,unknown>,{}],

SEND(7,2,3),

[<7,F,unknown>,{},<7,F,unknown>,{7},<3,F,unknown>,{2,3},<5,T,unknown>,{}],

RECEIVE(7,2,3),

[<7,F,unknown>,{},<7,F,unknown>,{},<7,T,unknown>,{2,3},<5,T,unknown>,{}],

SEND(7,3,4),

[<7,F,unknown>,{},<7,F,unknown>,{},<7,F,unknown>,{2,3,7},<5,T,unknown>,{}]
Composition

Properties

We would like composition to behave appropriately, i.e., we can recover the original automata from the composition.  

Definition.  For an execution and an automaton Ai, define the restriction of to Ai as |Ai = the same execution with all actions not in Ai (and the subsequent states) removed, and with states projected onto states of Ai.

Restriction onto Process(1,4,2,7):

For a trace and an automaton Ai, define the restriction of to Ai as |Ai = the same trace with all actions not in Ai removed.

Example: see red, above, for restriction to P(3,2,4,2).  Actions of P(3,2,4,2) are:

RECEIVE(m, 2, 3)

SEND(m, 3, 4)

leader(2)

Theorem 8.1.  Projection.

1.  If execs(A) then |Ai  execs(Ai) for every i

2.  If traces(A) then |Ai traces(Ai) for every i

Exercise for May 5

Theorem 8.2.  Pasting.

1.  If i execs(Ai) for all i, is a sequence of actions in ext(A) such that |Ai = trace(i) for all i, then there is an execution of A such that = trace() and i = |Ai for all i.

2.  If is a sequence of actions in ext(A) and |Ai e traces(Ai) for all i then traces(A).  

Part 1 is exercise to hand in on May 5

Consider SEND(7,1,2), SEND(3,2,3), SEND(2,3,4), SEND(5,4,1), RECEIVE(7,1,2), RECEIVE(3,2,3), RECEIVE(2,3,4), RECEIVE(5,4,1), SEND(7,2,3), SEND(3,3,4), RECEIVE(7,2,3), RECEIVE(3,3,4), SEND(7,3,4), RECEIVE(7,3,4), SEND(7,4,1), RECEIVE(7,4,1)

Note that it is significant that restricted to Ai must be legal for each Ai

Consider building up the execution  inductively.

Implementation

We say that A implements A' if every trace of A is a trace of A'.  Very important.  

Consider the reliable FIFO channel.  We can show that it implements a reliable channel that doesn’t guarantee in-order delivery, which in turn implements a channel that delivers every message at least once, but possibly out of order, which in turn implements a best-effort channel.  (This should be intuitively obvious.)  

So, if an algorithm works with an unreliable channel, for example, we don’t have to prove it again for a reliable channel.  This relies on the following substitutivity result:

Use above theorems to prove:

Theorem 3.  Substitutivity

Suppose A and A' have the same external signature and traces(A) ( traces(A').  Similarly for B and B'.  Then traces(AxB) ( traces(A'xB').

Proof: Let (’ (traces(AxB).  Then by Theorem 8.1 (’|A (traces(A) and  (’|B (traces(B) and so (’|A’(traces(A’) and (’|B’(traces(B’).   Then (using part 2 of Theorem 8.3) implies that (’(traces(A’(B’).

Fairness

We need to know that each task keeps getting turns to do steps (even if no steps are enabled).

Definition

Formally, an execution fragment ( is defined to be fair if for all C ( tasks(A), one of the following holds:

1) ( is finite and no action of C is enabled in the final state of (.

2) ( is infinite and contains infinitely many steps with actions in C.

3) ( is infinite and contains infinitely many states in which C is not enabled.

fairexecs(A) is the set of fair executions

fairtraces(A) is the set of fair traces (i.e., traces of fair executions)

Examples 

Universal reliable FIFO channel

{}, send(i,j,a), {}|-a, receive(i,j,a), {}, send(i,j,b), {b}, receive(i,j,b), {} is fair

{}, send(i,j,a), {}|-a, receive(i,j,a), {}, send(i,j,b), {b} is not fair, because receive is enabled

{}, send(i,j,a), {}|-a, send(i,j,a), {}|-a|-a, send(i,j,a), {}|-a|-a|-a, ..., send(i,j,a), {}|-a|-a...|-a, ...

is unfair because one of j’s tasks (the set of receive actions) never gets to execute.

What are the fair sequences?  

Finite: must end in empty queue

Infinite: Every message sent is received (note this is part of the definition of a reliable channel – without the fairness condition, we can’t prove reliability, because the channel could just stop otherwise.)

Clock

Clock, p. 213 (actually, this is a translation to the language)

automaton Clock

signature

  input request

  internal tick

  output clock(t:Int)

states

  counter:Int := 0,

  flag:Bool := false

transitions 

input request

eff

  flag := true

output clock(t:Int)

pre

  flag = true /\ counter = t

eff

  flag := false

internal tick

pre

  true

eff

  counter := counter+1

tasks

  { tick };

  { clock(t:Int) }
What are the fair sequences?

No finite sequence of ticks because tick is always enabled

Every request for time must be answered

Properties

Theorem 8.4:  Let {Ai}iI be a compatible collection of automata and let A = iIAi.

1. If  fairexecs(A), then |Ai  fairexecs(Ai), for every i  I.

2. If  fairtraces(A), then |Ai  fairtraces(Ai), for every i  I.

Exercise – part 1 to hand in for May 5

The following are analogous to pasting for arbitrary executions:

Theorem 8.5: Let {Ai}iI be a compatible collection of automata and let A = iIAi.  Suppose i is a fair execution of Ai for every i  I, and suppose  is a sequence of actions in ext(A) such that  |Ai = trace(i) for every i  I.  Then there is a fair execution  of A such that  = trace() and i = |Ai for every i  I.

Exercise.

Theorem 8.6: Let {Ai}iI be a compatible collection of automata and let A = iIAi.

Suppose  is a sequence of actions in ext(A).  If  |Ai  fairtraces(Ai) for every i  I, then   fairtraces(A).

Exercise.  By using 8.5

Theorem 8.7:  Every finite execution (or finite trace) can be extended to a fair execution (or fair trace).  

Exercise.

