CSc72010

The Asynchronous Model and Properties

Examples

Leader

type Status = enumeration of leader, unknown

automaton Process (pos : Int, prev : Int, next : Int, rank: Int)

 signature

 input RECEIVE(m: Int , const prev, const pos : Int)

 output SEND (m: Int , const pos , const next : Int)

 output leader(const rank)

 states

% pending : Mset [Int] := {rank},

 pending : Int := rank,

 status : Status := unknown,

 ready : Bool := true

 transitions

 input RECEIVE(m, j, i) where m > pending

 eff pending := m; ready := true

 input RECEIVE(m, j, i) where m < pending

 input RECEIVE(m, j, i) where m = rank

 eff status := leader

 output SEND (m, i, j)

 pre status ~= leader /\ m = pending /\ ready

 eff ready := false

 output leader(rank)

 pre status = leader
Representation of state: <4, T, unknown>, <7,F,leader>

That is, <pending, ready, status>

Channel

automaton Channel(i:Int , j:Int)

 signature

 input SEND (m: Int , const i : Int, const j : Int)

 output RECEIVE(m : Int, const i : Int ,const j : Int)

 states

 queue : Seq[Int] := {}

 transitions

 input SEND (m, i, j)

 eff queue := queue |- m

 output RECEIVE(m,i,j)

 pre head(queue) = m

 eff queue := tail(queue)

Representaton of state: {}, {4}, {4,7}

That is, queue
Composition

automaton LCR

 components

 P1: Process(1, 4, 2, 7);

 P2: Process(2, 1, 3, 3);

 P3: Process(3, 2, 4, 2);

 P4: Process(4, 3, 1, 5);

 C1: Channel(1, 2);

 C2: Channel(2, 3);

 C3: Channel(3, 4);

 C4: Channel(4, 1)
Schedule

schedule

 do

 while(true) do

 fire output P1.SEND(P1.pending,1,2);

 fire output P2.SEND(P2.pending,2,3);

 fire output P3.SEND(P3.pending,3,4);

 fire output P4.SEND(P4.pending,4,1);

 fire output C1.RECEIVE(C1.toSend,1,2);

 fire output C2.RECEIVE(C2.toSend,2,3);

 fire output C3.RECEIVE(C3.toSend,3,4);

 fire output C4.RECEIVE(C4.toSend,4,1)

 od

 od
Executions

[<7,T,unknown>, {}, <3,T,unknown>, {}, <2,T,unknown>,{},<5,T,unknown>,{}],

SEND(2,3,4),

[<7,T,unknown>,{},<3,T,unknown>,{},<2,F,unknown>,{2},<5,T,unknown>,{}],

SEND(3,2,3),

[<7,T,unknown>,{},<3,F,unknown>,{3},<2,F,unknown>,{2},<5,T,unknown>,{}],

RECEIVE(3,2,3),

[<7,T,unknown>,{},<3,F,unknown>,{},<3,T,unknown>,{2},<5,T,unknown>,{}],

SEND(7,1,2),
[<7,F,unknown>,{7},<3,F,unknown>,{},<3,T,unknown>,{2},<5,T,,unknown>,{}],

SEND(3,3,4),

[<7,F,unknown>,{7},<3,F,unknown>,{},<3,F,unknown>,{2,3},<5,T,unknown>,{}],

RECEIVE(7,1,2),

[<7,F,unknown>,{},<7,T,unknown>,{},<3,F,unknown>,{2,3},<5,T,unknown>,{}],

SEND(7,2,3),

[<7,F,unknown>,{},<7,F,unknown>,{7},<3,F,unknown>,{2,3},<5,T,unknown>,{}],

RECEIVE(7,2,3),

[<7,F,unknown>,{},<7,F,unknown>,{},<7,T,unknown>,{2,3},<5,T,unknown>,{}],

SEND(7,3,4),

[<7,F,unknown>,{},<7,F,unknown>,{},<7,F,unknown>,{2,3,7},<5,T,unknown>,{}]
Composition

Properties

We would like composition to behave appropriately, i.e., we can recover the original automata from the composition.

Definition. For an execution and an automaton Ai, define the restriction of to Ai as |Ai = the same execution with all actions not in Ai (and the subsequent states) removed, and with states projected onto states of Ai.

Restriction onto Process(1,4,2,7):

For a trace and an automaton Ai, define the restriction of to Ai as |Ai = the same trace with all actions not in Ai removed.

Example: see red, above, for restriction to P(3,2,4,2). Actions of P(3,2,4,2) are:

RECEIVE(m, 2, 3)

SEND(m, 3, 4)

leader(2)

Theorem 8.1. Projection.

1. If execs(A) then |Ai  execs(Ai) for every i

2. If traces(A) then |Ai traces(Ai) for every i

Exercise for May 5

Theorem 8.2. Pasting.

1. If i execs(Ai) for all i, is a sequence of actions in ext(A) such that |Ai = trace(i) for all i, then there is an execution of A such that = trace() and i = |Ai for all i.

2. If is a sequence of actions in ext(A) and |Ai e traces(Ai) for all i then traces(A).

Part 1 is exercise to hand in on May 5

Consider SEND(7,1,2), SEND(3,2,3), SEND(2,3,4), SEND(5,4,1), RECEIVE(7,1,2), RECEIVE(3,2,3), RECEIVE(2,3,4), RECEIVE(5,4,1), SEND(7,2,3), SEND(3,3,4), RECEIVE(7,2,3), RECEIVE(3,3,4), SEND(7,3,4), RECEIVE(7,3,4), SEND(7,4,1), RECEIVE(7,4,1)

Note that it is significant that restricted to Ai must be legal for each Ai

Consider building up the execution  inductively.

Implementation

We say that A implements A' if every trace of A is a trace of A'. Very important.

Consider the reliable FIFO channel. We can show that it implements a reliable channel that doesn’t guarantee in-order delivery, which in turn implements a channel that delivers every message at least once, but possibly out of order, which in turn implements a best-effort channel. (This should be intuitively obvious.)

So, if an algorithm works with an unreliable channel, for example, we don’t have to prove it again for a reliable channel. This relies on the following substitutivity result:

Use above theorems to prove:

Theorem 3. Substitutivity

Suppose A and A' have the same external signature and traces(A) (traces(A'). Similarly for B and B'. Then traces(AxB) (traces(A'xB').

Proof: Let (’ (traces(AxB). Then by Theorem 8.1 (’|A (traces(A) and (’|B (traces(B) and so (’|A’(traces(A’) and (’|B’(traces(B’). Then (using part 2 of Theorem 8.3) implies that (’(traces(A’(B’).

Fairness

We need to know that each task keeps getting turns to do steps (even if no steps are enabled).

Definition

Formally, an execution fragment (is defined to be fair if for all C (tasks(A), one of the following holds:

1) (is finite and no action of C is enabled in the final state of (.

2) (is infinite and contains infinitely many steps with actions in C.

3) (is infinite and contains infinitely many states in which C is not enabled.

fairexecs(A) is the set of fair executions

fairtraces(A) is the set of fair traces (i.e., traces of fair executions)

Examples

Universal reliable FIFO channel

{}, send(i,j,a), {}|-a, receive(i,j,a), {}, send(i,j,b), {b}, receive(i,j,b), {} is fair

{}, send(i,j,a), {}|-a, receive(i,j,a), {}, send(i,j,b), {b} is not fair, because receive is enabled

{}, send(i,j,a), {}|-a, send(i,j,a), {}|-a|-a, send(i,j,a), {}|-a|-a|-a, ..., send(i,j,a), {}|-a|-a...|-a, ...

is unfair because one of j’s tasks (the set of receive actions) never gets to execute.

What are the fair sequences?

Finite: must end in empty queue

Infinite: Every message sent is received (note this is part of the definition of a reliable channel – without the fairness condition, we can’t prove reliability, because the channel could just stop otherwise.)

Clock

Clock, p. 213 (actually, this is a translation to the language)

automaton Clock

signature

 input request

 internal tick

 output clock(t:Int)

states

 counter:Int := 0,

 flag:Bool := false

transitions

input request

eff

 flag := true

output clock(t:Int)

pre

 flag = true /\ counter = t

eff

 flag := false

internal tick

pre

 true

eff

 counter := counter+1

tasks

 { tick };

 { clock(t:Int) }
What are the fair sequences?

No finite sequence of ticks because tick is always enabled

Every request for time must be answered

Properties

Theorem 8.4: Let {Ai}iI be a compatible collection of automata and let A = iIAi.

1. If  fairexecs(A), then |Ai  fairexecs(Ai), for every i  I.

2. If  fairtraces(A), then |Ai  fairtraces(Ai), for every i  I.

Exercise – part 1 to hand in for May 5

The following are analogous to pasting for arbitrary executions:

Theorem 8.5: Let {Ai}iI be a compatible collection of automata and let A = iIAi. Suppose i is a fair execution of Ai for every i  I, and suppose  is a sequence of actions in ext(A) such that  |Ai = trace(i) for every i  I. Then there is a fair execution  of A such that  = trace() and i = |Ai for every i  I.

Exercise.

Theorem 8.6: Let {Ai}iI be a compatible collection of automata and let A = iIAi.

Suppose  is a sequence of actions in ext(A). If  |Ai  fairtraces(Ai) for every i  I, then   fairtraces(A).

Exercise. By using 8.5

Theorem 8.7: Every finite execution (or finite trace) can be extended to a fair execution (or fair trace).

Exercise.

