CSc72010

Asynchronous Model

Class Business

Reading

Chapter 8

Chapter 14

Manual

Midterm

See Constantinos comments & answers

Project

Goals:

1) Learn gory details of one real Internet protocol

2) Learn to recognize and isolate interesting properties of protocols

a.
IP properties?

b.
DHCP properties?

3) Learn to build a formal model (a lot like programming)

4) Learn to make good choices in what you model (relates to the property)

Impossibility Results

Impossibility of agreement in the presence of link failures
Allow some probability of failure to agree: can write a probabilistic algorithm that works (to give no more than allowed probability of failure)

Agreement with no link failures:

Stopping failures: need rounds > f

Byzantine failure: need supermajority of non-failing nodes (n>3f) and rounds > f

Logical time/global snapshots: because of delays in message delivery, we can’t know the exact time or the exact state at other hosts (synchronous systems, e.g. SONET, can sort of eliminate this problem) – Theorem 18.1

Lecture

This is covered in Chapter 8

The Model

Asynchronous I/O automata model

No more rounds – nodes run at different, arbitrary speeds

Two kinds of asynchronous models:

Networks: processes and channels – this is what we will do

Shared memory: communication via shared variables or shared objects

This is a general mathematical model for reactive components. It imposes very little structure – you add it for various kinds of systems.

The basic structure is processes communicating via channels

[image: image1.png]Simple Asynch Model

The Pi’s and Ci’s are reactive components, i.e., modules that interact with their environments using input and output actions (send and receive).

P1, P2, P3 are processes and have input actions receive and output actions send

Cij are channels and have input actions send and output actions receive

The process and channel actions correspond where there is an arrow. So for example P1 has outputs send(m,1,2) and send(m,1,3), while C12 has input send(m,1,2) and C13 has input send(m,1,3).

Also, P1 has inputs receive(m,2,1) and receive(m,3,1) and C21 has output receive(m,2,1) and C31 has output receive(m,3,1).

The above diagram is the network we will use for algorithms in the book. However, it is a point-to-point network, and Ethernets are shared (broadcast) networks, so they need to be modeled a little differently. See the diagram below.

[image: image2.png]Broadcast Model

A point-to-point network is implicitly specified by giving the endpoints; in the broadcast model, the network needs its own id. So, the actions would be send(n,i,j,m) and receive(n,i,j,m), where n is the network, i is the source, j is the destination, and m is the message. The action send(n,i,j,m) is an ouput of process i and an input of network n. The action receive(n,i,j,m) is an output of network n and an input of process j.

The I/O automaton model is designed to make it easy to organize the description of a system and to prove things about it:

1) We can compose components to form a larger system – we could have started just with P1, P3, and P4, and then added N2, P5, and P2.

2) We can describe systems at different levels of abstraction - e.g., N1 could be a collection of switches running learning bridge and spanning tree algorithms, but all we need to use is that this collection of switches lets P1, P3, and P4 send messages to each other.

[image: image3.png]Broadcast Model

3) We have good proof methods

a.
Invariants

b.
Composition and projection

c.
Simulation relations

Definitions

An I/O automaton A consists of

1 sig(A), a signature, which specifies the input, the outut, and the internal actions of the automaton.

o
in(A) is the set of input actions

o
out(A) is the set of output actions

o
internal(A) is the set of internal actions

o
local(A) = out(A)  internal(A) is the set of locally-controlled actions

o
acts(A) is the set of all actions

2 a set of states states(A), which may be infinite

3 a set of start states start(A)states(A)

4 a set of transitions trans(A)states(A)acts(A)states(A)

5 an equivalence relation tasks(A) on the local actions of A (i.e., internal and output actions).

There’s one restriction on all of this: any input is enabled in any state, i.e., there is a transition involving that input.

For all sstates(A) and in(A), there is a transition <s, , t> in trans(A).

This is because we don’t want an automaton to be able to prevent the environment from doing something. This requires us to model behavior in “bad” environments, which do unexpected things. If we really want to restrict inputs, we can model the “good” environment as another automaton that only passes on the good inputs from the real environment.

In other words, inputs are controlled by the environment and can happen at any time. Input and output are external and can be seen by the environment. Output and internal are locally controlled, i.e., happen under control of the automaton.

States can be infinite, to let us model queues that grow without bound, files, and so on. This may not be realistic sometimes, but usually simplifies the model.

Tasks are groups of locally-controlled actions that should get an opportunity to happen. They are use to model “fair” executions. For example, we may want to say that we’re only interested in networks where every process gets to send a message infinitely often (that is, it’s not blocked forever from sending). Then for each network that a process is connected to, it would have a task containing all possible send(n,i,j,m), i.e., n and i are fixed but j and m can be any values.

Digression to explain tasks: There are two kinds of properties, safety and liveness. Safety properties say that bad things don’t happen; liveness properties say that good things will eventually happen. Usually, we have to know that processes continue to interact with each other in order to guarantee that good things happen. Thus we don’t try to prove the “good things” for sequences of events in which one process stops doing anything.

Examples

Channel automaton

This is a reliable FIFO channel, unidirectional between 2 processes.

Fix a message alphabet M.

The signature is:

inputs: { send(m): mM }

output: { receive(m): mM }

states: a FIFO queue of messages, call it queue, initially empty.

transitions: these are described by code fragments

In the executable language:

automaton Channel(i, j: Int) % the i and j identify which channel (the channel

 % connecting processes i and j)

 % inside the automaton, i and j are constants

 signature

 input send(const i, const j, m: Int)

 output receive(const i, const j, m: Int)

 states

 queue: Seq[Int] := {}

 transitions

 input send(i, j, m)

 eff queue := queue |- m % the effect clause defines the change to the

 % automaton state

 output receive(i, j, m)

 pre m = head(queue) % the precondition clause defines when the

 % transition is enabled, i.e., when it can happen

 % valid only for locally-controlled actions

 eff queue := tail(queue)
Process automaton

Here is a trivial process:

automaton Process(n: Int)

 signature

 input receive(const n-1, const n, x:Int)

 output send(const n, const n+1, x:Int)

 states

 toSend:Seq[Int]:= {}|-n

 transitions

 input receive(i, j, x)

 eff toSend := toSend |- x

 output send(i, j, x)

 pre x = head(toSend)

 eff toSend := tail(toSend)
How does an IOA execute?

Formal notion of execution:

s01s12s2...

where s0 is a start state and each <si, i, si+1> is a transition. Any prefix of an execution is also an execution.

In an execution fragment, we don’t require s0 to be a start state.

A state is reachable if there is an execution that ends in the state.

An execution of the channel, above:

empty, send(1,2,5), 5, send(1,2,3), 35, receive(1,2,5), 3, receive(1,2,3}, empty

A trace is a restriction of an execution to external actions only. You can't see state or internal actions.

trace(a) = restriction of a to external actions only.

send(1,2,5),send(1,2,3),receive(1,2,5),receive(1,2,3)

Composition

Automata A and B are compatible if local(A) intersect local(B) is empty. That is, they cannot both control the same action. Note that we can always rename actions to make automata compatible.

Now define the composition A = PI Ai assuming the Ai are compatible. The goal is to be able to combine automata like Channel and Process above in the obvious way: when Process(i) does a send(i,j,m), Channel(i,j) also does a send(i,j,m) and the message m ends up in the channel. Similary, when Channel(i,j) does a receive(i,j,m), i.e., when it delivers the message, Process(j) does a receive(i,j,m) and the message ends up at Process(j).

To define the composition automaton A, we need to say what the signature is, what the states are, including the start states, what the transitions are, and what the tasks are.

sig(A):

out(A) = union out(Ai)

in(A) = union in(Ai)

states(A) = Product states(Ai)

start(A) = Product start(Ai)

trans(A) = { <s, , t> | for all i, if acts(Ai) then <si, , ti> trans(Ai) else si = ti }

Example

We will compose the channels above with the consensus process defined earlier. In the diagrams, we disambiguate

actions of different automata with indexes eg send(m)i,j In the IOA language the indexes become parameters, at least one of which is usually an automaton identifier and therefore a constant.

[Picture

 Pi -> Cij -> Pj

Pi's have initi and decidei actions as well as send and receive

Note that Cij's M must include messages of both Pi and Pj (not a problem in the case that they are the same).

This gives a single I/O automaton representing the composed system.

inputs: init(v)i for all i

outputs: decide(v)i

 send(v)i,j

 receive(v)i,j

All outputs are still outputs There is a hiding operator: hideA is the same as A but with actions in classified as internal.

Properties

We would like composition to behave appropriately, i.e., we can recover the original automata from the composition. For an execution and an automaton Ai, define the restriction of to Ai as |Ai = the same execution with all actions not in Ai (and the following states) removed, and with states projected onto states of Ai

For a trace and an automaton Ai, define the restriction of to Ai as |Ai = the same trace with all actions not in Ai removed.

Theorem 8.1. Projection.

1. If execs(A) then |Ai  execs(Ai) for every i

2. If traces(A) then |Ai traces(Ai) for every i

Theorem 8.2 Pasting.

1. If i execs(Ai) for all i, is a sequence of actions in ext(A) such that |Ai =trace(i) for all i, then there is an execution of A such that = trace() and i = |Ai for all i.

2. If is a sequence of actions in ext(A) and |Ai e traces(Ai) for all i then traces(A).

Proofs are in Section 8.2

We say that A implements A' if every trace of A is a trace of A'.

Use above to prove:

Theorem 3. Substitutivity

Suppose A and A' have the same external signature and traces(A) subset traces(A'). Similarly for B and B'. Then traces(AxB) subset traces(A'xB').

.

