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Proofs for asynchronous systems

Examples
Leader
type Status = enumeration of leader, unknown

automaton Process (pos : Int, prev : Int, next : Int,  rank: Int)
  signature
    input RECEIVE(m: Int , const prev, const pos : Int)
    output SEND (m: Int , const pos , const next : Int)
    output leader(const rank)

  states
%    pending : Mset [Int] := {rank},
    pending : Int := rank,
    status : Status := unknown,
    ready : Bool := true

  transitions
     input RECEIVE(m, j, i) where m > pending
       eff pending := m; ready := true

     input RECEIVE(m, j, i) where m < pending

     input RECEIVE(m, j, i) where m = rank
       eff status := leader

     output SEND (m, i, j)
       pre status ~= leader /\ m = pending /\ ready
       eff ready := false

     output leader(rank)
       pre status = leader

Representation of state: <4, T, unknown>, <7,F,leader>
That is, <pending, ready, status>

Channel
automaton Channel(i:Int , j:Int)
  signature
    input SEND (m: Int , const i : Int, const j : Int)
    output RECEIVE(m : Int, const i : Int ,const j : Int)

  states
    queue : Seq[Int] := {}

  transitions
    input SEND (m, i, j)
      eff queue := queue |- m

    output RECEIVE(m,i,j)
      pre head(queue) = m
      eff queue := tail(queue)
Representaton of state: {}, {4}, {4,7}



That is, queue

Composition
automaton LCR
  components

   P1: Process(1, 4, 2, 7);
   P2: Process(2, 1, 3, 3);
   P3: Process(3, 2, 4, 2);
   P4: Process(4, 3, 1, 5);
   C1: Channel(1, 2);
   C2: Channel(2, 3);
   C3: Channel(3, 4);
   C4: Channel(4, 1)

Proof Techniques
Types of properties

Invariants
Properties of states that are true in all reachable states.  Usually proof by induction.  Step
granularity is finer than rounds, so proofs are harder.

Here are invariants for leader:
p.pending >= p.rank for all processes p
Another:
cij.queue[k] >= pi.rank for all i,j,k

Exercise – think about the inductive proof of these

How to state properties (section 14.1.2):
1) As an automaton – example, the Channel example that we are using can be used

to specify the traces allowed by a reliable FIFO channel (so it is both a
specification of such a channel and an example)

2) As axioms:
There is a function cause mapping each receive to a send and satisfying

a. For every receive event !, ! and cause(!) contain the same message
argument.

b. cause is surjective (onto).
c. cause is injective (one-to-one).
d. cause preserves order, that is, there do not exist receive events !1 and !2

with !1 preceding !2 in " and cause(!2) preceding cause(!1) in ".
Interpretation:

a. Every message received was first sent
b. Every send corresponds to a receive (reliable)
c. Different receives correspond to different sends (no duplicates).
d. This is the FIFO property.



Trace properties
Any property of the external behavior sequences of automata.  Formally, a trace property
P is an external signature together with a set of sequences of actions in the signature, i.e.,
the allowable sequences:
<sig(P), traces(P)>

An automaton A satisfies a trace property P if it has the same external signature and
traces(A) # traces(P) or maybe fairtraces(A) # traces(P).

All of the problems we will consider in asynchronous systems can be formulated as trace
properties.  Also, we’ll usually be concerned with fairness, i.e., we’ll be making
statements about trace properties that hold for fair traces.

A trace property for leader:
In every trace, there is at most one leader(x) action:
Define the property by:

sig(P) = { SEND(m,i,j), RECEIVE(m,i,j), leader(r) | m $M, i,j $%, r $% }
traces(P) = { &1, &2, ... | 'i(&i$sig(P)) ( ¬)i, j, r, s (&i = leader(r) (&j = leader(s) ) }

Safety properties
A safety property says that bad things don’t happen.
In other words, traces(P) is non-empty, prefix-closed, limit-closed:

1. * is in P
2. if + is in P, all prefixes of + are in P
3. if all prefixes of + are in P, then + is in P

Examples:
At most one process declares itself as leader.  (The traces are those including only one
leader action.)
DHCP: No two processes get the same IP address
ARP: No two processes respond to the same ARP message
HTTP: No response to a GET is returned before the response to an earlier GET.
RIP (or any other routing protocol): No loops in routing tables.  The path taken by any
packet is the shortest path.
Mutual exclusion: No two simultaneous grants of resources

How to prove a safety property:
1. Relate it to a state invariant
2. Prove the state invariant

Liveness properties
A liveness property says that good things do happen.  traces(P) includes only those traces
with the good things in them:
Every finite sequence over sig(P) has an extenson in traces(P).



Examples
A leader is eventually elected

traces(P) = { &1, &2, ... | 'i(&i$sig(P)) ( )i, r (&i = leader(r)) }
A process eventually gets an IP address
A browser eventually gets a page

Note: you will have to assum fairness to get these properties.
What we can say is that “Every trace of a correct leader election algorithm contains at
most one leader action” and “Every fair trace of a correct leader election contains a
leader action.”

Surprising fact
Every trace property can be expressed as a combination of a liveness property and a
safety property.   (e.g., a trace of a correct leader election algorithm contains exactly one
leader action)

If <sig(P), traces(P)> is a trace property then
there exists a safety property <sig(P), traces(S)> and
there exists a liveness property <sig(P), traces(L)>
such that traces(P) = traces(S) , traces(L).

So a good way to organize a specification is as a sequence of safety properties followed
by a sequence of liveness properties.

Proof of theorem:
Let traces(S) = the prefix and limit closure of traces(P), making it a safety property, and
obviously traces(S) contains traces(P)
Let traces(L) = traces(P) - {" | "  is a finite sequence and no extension of " is in
traces(P) }.

We show that L is a liveness property:
Take any finite sequence " of actions in sig(P).  Either some extension of " is in traces(P)
or not.  If it is, then it is “live”; if not, " ( an extension of itself) is in traces(L).  Hence L
is a liveness property.

Clearly, traces(P) # traces(S) , traces(L).

Let "$(traces(S) , traces(L)) - traces(P).  This implies "$traces(L) - traces(P).  So "
must be a finite sequence with no extension in traces(P).  But also "$traces(S), and it is
finite, so it must be a prefix of something in traces(P).  Contradiction.

Hierarchical proofs
This is an important strategy for complex algorithms.  We formulate the algorithm in a
series of levels.  For example, we could have a high-level centralized algorithm (easy to



prove, almost a specification), then do a simple but inefficient decentralized version, then
do an optimized version.
High level version:

Simulation Relations
Lower levels are harder to understand, so we relate them to higher levels with a
simulation invariant rather than trying to deal with them directly.  This is similar to the
simulation relation for synchronous algorithms:
Run them side by side.
Define an invariant relating the states.
The invariant is called a simulation relation and is usually shown via induction.

Show that for each execution of the lower-level algorithm, there exists a related execution
of the higher-level algorithm.

Definition: Assume A and B have the same external signature.  Let f be a binary relation
on states(A)xstates(B).
Notation: (s,u) $f or u$f(s)
Then f is a simulation relation from A to B provided that

1. If s $start(A) then f(s) , start(B) . /
2. If s,u are reachable states of A and B respectively, with u$f(s), and if (s, !, s’) is a

transition of A, then there is an execution fragment + of B starting with u, and
ending with u’ $f(s’), with trace(+) = trace(!).



Theorem.  If there’s a simulation relation from A to B then traces(A) # traces(B).
Proof: Take any execution of A, and iteratively construct the corresponding execution of
B.

Example proof
Example: Implementing the reliable FIFO channel with TCP (sort of)

Altered spec
Add fail(i.j) transition to Reliable FIFO: all messages up to some point get sent in order.
At some point there is a fail.  No more messages can be sent after some point, but a
subset of the messages in the queue can be received.

either there is a fail action or the cause is surjective.
if a send cause(!) is in range(cause) then so is every earlier send

Implementation
This is an adaptation of TCP.



Discussion:
Sender(i,j) puts arriving messages in Sender(i,j).Array[last+1] and increments
last.  It sends messages in Sender(i,j).Array[lastAcked+1...last] repeatedly
until it receives ack1(n,i,j).  Then it sets lastAcked to max(lastAcked, n).

Loser(i,j) puts messages in Loser(i,j).Set when send1(m,i,j) happens.  The
precondition for send2(m,i,j) and for delete(m,i,j) is that m $ Loser(i,j).Set.
The effect of delete(m,i,j) is to remove the message from the set, but send2(m,i,j)
causes no change.  This means that Loser(i,j) delivers each message to Recover(i,j)
0 or more times.

Recover(i,j) puts each message in its proper position in Recover(i,j).Array.
Recover(i,j).ack2(n,i,j) is enabled when there are no holes in
Recover(i,j).Array[1..n] and n > lastAckSent.  Its effect is to update
lastAckSent to n.
Recover(i,j).receive(m,i,j) is enabled if m =
Recover(i,j).Array[lastReceived+1] and lastAckSent > lastReceived.

Simulation relation
We are comparing the composition of Sender, Loser, and Recover with all actions
hidden except send(m,i,j), receive(m,i,j), and fail(i,j).  We need to show that
the traces of this composition are contained in the traces of Channel(i,j), modified by
the fail action.

The important parts of the state are:
Sender(i,j).Array
Recover(i,j).Array
lastReceived



lastAcked

Facts:
Recover(i,j).Array # Sender(i,j).Array[1...lastSent] (with holes)
Recover(i,j).Array[1...lastReceived] 0 Sender(i,j).Array[1...lastAcked]

Recover(i,j).Array[1...lastAckSent] is the messages already delivered plus those
that are ready to be delivered

The correspondence is that Channel(i,j).Queue corresponds to any state with all
messages in Channel(i,j).Queue sent and no messages in Channel(i,j).Queue
received (yet) – that is,

Channel(i,j).Queue corresponds to all states such that there exists n with
Send(i,j).Array[n...last] = Channel(i,j).Queue and
n = Recover(i,j).lastReceived+1

We must show that the simulation relation is preserved by all actions.  Consider actions
of the composition:
send adds a message to Channel(i,j).Queue and to Sender(i,j).Array[last+1] –
this preserves the simulation relation
send1, send2 don’t change any of the relevant parts of the state
receive increases Recover(i,j).lastReceived and Recover(i,j).lastAckSent;
also removes an element from Channel(i,j).Queue – this preserves the simulation
relation
ack2 and ack1 have no effect on relevant parts of state
fail can happen any time but after fail, Sender quits doing anything - the
only other thing that can happen is that messages get through the system
and received.  In Channel, no more messages can be sent but some subset of the
messages already in the channel can be delivered.


