
Csc72010
Switches and Bridges

Initial Algorithms

OSI Layers
Seven layers
The data link layer

Switches and Bridges
Interfaces

Forwarding
My intent with these algorithms was to illustrate simple Ethernet LAN algorithms that
bridges and switches use. Links in these networks are bidirectional. When I discussed
these algorithms today, I was thinking bidirectional edges, as I think most of you were
(otherwise, there should have been a few more questions).

There are networks that have unidirectional links (SONET, wireless), but the properties
of these algorithms are much more complicated for unidirectional links, and they’re
unlikely to be used in that environment. So, using in-nbrs and out-nbrs is misleading, and
I have changed the model to collapse in-nbrs and out-nbrs into nbrs. I also assume that
the network graph is an undirected graph for this particular purpose. I encourage you to
think about what happens in a directed network graph, but make sure you understand the
bidirectional case first.

Forwarding algorithm idea
Each message received on an interface of a bridge is sent out every other interface.

Forwarding algorithm messages
I distinguish between the initial end-to-end messages sent by hosts and the collections of
end-to-end messages sent by switches.

Let D be the set of all possible end-to-end messages. Members of D are uninterpreted
symbols, and a switch can’t do anything with them but copy them and collect them in
vectors.
Let M=!D be the set of all finite vectors having components in D1

We want to consider both hosts and switches as nodes of the network graph, without
differentiating between them. To make this work, the type of message sent on a host-to-

1 In class, I said sets. However, we really need to allow the same member of D to appear
in M more than once, because we can’t tell whether two messages that we receive at
different times are the same message or different ones.

switch link is the same as the type sent on a switch-to-host link. This means a host must
encapsulate a message d in a vector <d> when sending it. Also, the switch sends vectors
of messages to each connected host. We assume that the host can figure out which
messages are addressed to it.

Forwarding Algorithm
states

inbuf: Array[Int, M " {null}], initially constant(null) 2

outbuf: Array[Int, M], initially constant(< >)

msgs
for each i # nbrs

if inbuf[i] != null then
outbuf[j] = outbuf[j] + inbuf[i] for all j # nbrs with j != i

for each i # nbrs
if outbuf[i] != < > then

send outbuf[i]

trans
for each i #nbrs

inbuf[i] = message on link i
outbuf[i] = < >

Correctness
Correctness conditions that we would like to have are:

Each message eventually arrives at its destination.
No message continues being forwarded forever.

The first correctness condition will hold for this algorithm if the network graph is
connected (i.e., there is an undirected path from each node to every other node) and there
are no changes to the graph during the execution. The intuition for the proof is that after
round r, the message will have reached all nodes whose distance from the source is r. If
the distance(src,dst) is n, then after n rounds, the message will have reached the
destination.

An invariant that you can use to prove this is:
If source host i sends message m at the beginning of round 1, then for every node
j of the graph such that distance(i,j) = r, inbuf[j] contains m at the end of round r.

The claim is that the invariant holds for all r; you can prove it by induction on r. Where
do you use the connectedness of the graph?

The second correctness condition will hold only for graphs without cycles, that is, trees.
An invariant that you could use to prove the second condition is:

2 I distinguish between null (no message was sent) and < > (a message containing no end-
to-end messages was sent)

At any round r, if node i is on the path from the source of the message to node j,
and i != j, and if m has appeared in inbuf[j], then m is not in inbuf[i] in round r.

In other words, the message never goes backwards. Once you show this, then you can
show that once m has appeared in inbuf[j] for a leaf j of the tree, it cannot be in inbuf[i]
for any interior node on the path from the source.
Again, use induction on r to prove the invariant.

Complexity:
Communication: In a connected graph, each message traverses every edge of the network
graph at least once. If the graph is a tree, the message traverses each edge exactly once.
So communication complexity is |E| in a tree and infinite if there are cycles in the graph.
Time: The time complexity for a message to go from src to dst is distance(src, dst) rounds
from the time the originating host sends the message until it arrives at the destination
host. Worst case time complexity for a message to go from src to dst is diam(G).

Learning bridges
Learning bridge idea
The bridge associates the source address on an incoming message with the interface;
sends messages destined for that source out that interface only. Note that this is not much
use in an arbitrary directed graph. It requires bidirectional links.

Learning bridge messages
Let D be the set of all possible end-to-end messages, as above.
Let A be the set of addresses
Let M = !(tuple of src:A,dst:A,msg:D) be finite vectors over tuples src:A, dst:A, msg:D
Let this designate the index of the node running the algorithm

Learning bridge algorithm
states

inbuf: Array[Int, M " {null}], initially constant(null)
outbuf: Array[Int, M], initially constant(< >)
mac-address-table:Array[A, Int " {null}], initially constant(null)
this:Int

msgs
for each i #nbrs

 for each m # inbuf[i]
if m.dst != this then

if mac-address-table[m.dst] != null then
add inbuf[i].msg to outbuf[mac-address-table[m.dst]]

else
add inbuf[i].msg to outbuf[j] for all j $ I

end if
end if

for each i #nbrs
send outbuf[i]

trans
for each i # nbrs

inbuf[i] = message on link from i
for each m # inbuf[i]

if mac-address-table[m.src] = null then
mac-address-table[m.src] = i

end if

Correctness
For Thursday, February 17, prove:
1. In any connected graph, every message eventually gets to its destination.
2. If the network graph is a tree, no message continues being forwarded forever.

