
CSc72010
Homework (Due Thursday March 3)

Answers
3.1 Fill in more of the details for the inductive proof of the correctness of the LCR algorithm.

In order to prove the correctness of the LCR algorithm, we must prove two Lemmas. The first
one claims that some process has to become a leader, and the second one that only one process
can become a leader. Using the textbook notations, imax is the process with the maximum UID,
which is equal to umax. Also, each process has a unique UID u, which never changes during the
process of leader election.

Lemma 3.2: Process imax outputs leader by the end of round n.

To prove this Lemma, it is enough to prove the following assertion:

Assertion 3.3.1: After n rounds, statusimax
=leader.

This assertion can be proved by induction on the number of rounds. The preliminary
invariant about smaller numbers of rounds needs to be used.

Assertion 3.2.2: For 0 ≤ r ≤ n – 1, after r rounds, sendimax+r = umax.

Base r=0: Each process at r=0 initializes its sendi to ui. So, sendimax
=umax.

Induction Hypothesis: Suppose that this is true for r. This means that the process at
distance r from the process imax has sendimax+r = umax.

Induction Step: By the induction hypothesis we know that process imax+r has received the
umax and placed it at sendimax+r. At round r+1, process imax+r+1 will receive a message from imax+r

containing umax. Based on the fact that umax is the unique maximum UID in the ring, umax > ur+1.

So, the process imax+r+1 will place umax in sendimax+r+1, thus proving assertion 3.2.2

We then use assertion 3.2.2 and the special case, where r=n-1. Since assertion 3.2.2 holds
also for round r+1, process imax at round n receives its own UID. So, it declares itself a leader.

Lemma 3.3: No process other than imax ever outputs the value leader.

To prove Lemma 3.3 it’s enough to show that all processes other than imax always have
their status = unknown. Again, it helps to state a stronger invariant.

Assertion 3.3.1: No process other than imax can receive its own UID in a message.

This assertion can be proved by induction on the number of rounds. In order to do this,
we need the preliminary invariant that says something about smaller numbers of rounds. So, it’s
enough to show that at any round r no message can pass through the imax



Assertion 3.3.2: For every r and any i, j, the following holds: After r rounds, if i ≠ imax

and j !  [imax, i), then sendj ≠ ui

Base r=0: Each process at r=0 initializes its sendi to ui. So, ! i,j sendj ≠ ui for all i≠j.
Induction Hypothesis: Suppose that this is true for r. This means that no process j

between [imax, i) can have sendj = ui.
Induction Step: From the induction hypothesis, we know that at the end of round r no

process j between [imax, i) can have sendj = ui. At round r+1, a process j in [imax, i) can only have
sendj = ui when a new UID comes in this segment ([imax, i)) of the ring. This can only happen
when a message carrying ui passes from imax. However, this is impossible to happen since umax is
the maximum UID in the ring.

We then use assertion 3.3.2 and the special case, where r=n. So, at round n no process j ≠
imax has sendj = uj. This means that the only message survived after n rounds is the message
carrying umax. So, only imax will receive back its own UID, something that proves 3.3.1

Theorem 3.4: LCR solves the leader election problem.
Lemmas 3.2 and 3.3 together imply theorem 3.4.



4.1 Fill in more of the details for the inductive proof of the correctness of the FloodMax
algorithm.

Theorem 4.1: In the FloodMax algorithm, process imax outputs leader and each other
process outputs non-leader, within diam rounds.

To prove theorem 4.1, it is enough to prove the following assertion:

Assertion 4.1.1: After diam rounds, statusimax
 = leader and statusj = non-leader for every

j≠imax.

The key to prove assertion 4.1.1 is the fact that after r rounds, the maximum UID has
reached every process that is within distance r of imax, as measured along directed paths in G.
This condition is captured by the invariant:

Assertion 4.1.2: For 0 ≤ r ≤ diam and for every j after r rounds, if the distance from imax

to j is at most r, then max-uidj = umax. Two additional auxiliary invariants are useful, in order to
prove assertion 4.1.2. The first one says that all processes run synchronously. So the state roundsi

is the same at all processes. The second invariant says that no process can ever receive a UID >
umax.   

Assertion 4.1.3: For every r and j, after r rounds, roundsj = r.
This can be proved using induction on the number of rounds.
Base r=0: It is correct, since at the beginning each process i initializes its roundsi to 0.
Induction Hypothesis: Suppose that this is true for r – 1.
Induction Step: By the induction hypothesis we know that at round r – 1 every process j,

has roundsj = r – 1. Since FloodMax is running on a synchronous network, at the next round all
processes will execute the command “rounds := rounds + 1”. So, at round r every process j will
have roundsj = r, something that proves assertion 4.1.3.

Assertion 4.1.4: For every r and j, after r rounds, max-uidj ≤ umax.
This is true since umax > ui for all i ≠ imax. So, at any round r no process can ever receive

an UID > imax, which implies assertion 4.1.4

Having proved that all processes run simultaneously and that no process can ever receive
a UID > umax, we can now prove assertion 4.1.2 using induction.

Base r=0: imax has max_uidimax
 = umax, since each process j initializes max_uidj = uj.

Induction Hypothesis: Suppose that this is true for r < diam - 1. This means that all
processes j at distance r from the process imax have max-uidj= umax.

Induction Step: By the induction hypothesis we know that if process j is distance r from
imax, then j has set max-uidj to umax by the end of round r. Suppose process k is distance r+1 from
imax.  Then there is a process j0 that is a neighbor of k and that is distance r from imax.   During



round r+1, k will receive a message from jo containing umax. Since umax is larger than max-uidk by
assertion 4.1.4, process k will set max-uidk to umax at round r + 1.

We then use assertion 4.1.2 and the special case for r=diam. Since assertion 4.1.2 holds
also for round diam, it means that each process at distance diam from imax will have set its max-
uid to umax.  It follows from the algorithm that each process outputs either leader or non-leader at
the end of round diam.

Mac-address-tables:
From hulk to lantern (0012.80a8.2480):

22 out of hulk into port 1 on giant, 11 out of giant into port 21 on lantern
From lantern to goblin(000e.8494.c980):

21 out of lantern to 11 on giant, 12 out of giant into 23 on goblin
From goblin to giant (000e.83f0.9600):

23 out of goblin to 12 on giant
From giant to hulk (0012.daa1.0700):

1 out of giant to 22 on hulk


