CMP 338

Programming Assignment 3
Due October 30, 2003
Specifications for Program 3
Program Description

Create a class CardDeck with a main method and an instance variable deck having class Deque. You will write a program to shuffle and deal cards for an unspecified game.

The main method of CardDeck starts by reading from standard input. The input file tells it how many decks to use (1-10), how many players there are (3-10), how many times to shuffle the deck, and how many cards to deal to each player. The main method first creates a single card deck out of the specified number of decks; then shuffles the deck the specified number of times; then deals the cards to the players. Finally, the main method prints all the hands that it dealt.
You must implement and document two classes: the class CardDeck and a class Deque implementing the Abstract Data Type deque.
Implementing the class Deque. Use a doubly-linked list with front and back pointers. The methods must include add_front, add_back, get_front, get_back, remove_front, remove_back, size, and a constructor. You will need a class DLNode with next and prev links to implement this.

Representing the cards. Represent each card as a two character code. The first character is the rank of the card (A, 2, 3, …, 10, J, Q, K) and the second character is the suit (S for spades, H for hearts, D for diamonds, C for clubs).

Creating the card deck. A constructor for the class CardDeck creates a deck in a deque. The deque contains a specified number of 52-card decks, one after the other, with each deck in increasing order by rank and suit of card, going from front to back of the deque. For example, with two decks, the deque would contain:

Front-> 2C, …, AC, 2D, …, AD, 2H, …, AH, 2S, …, AS, 2C, …, AC, etc

Shuffling a deck. A shuffle is done by taking a random number of cards (see next paragraph) from the front of the deque, adding them to the front of a second deque, then taking a random number of cards from the back of the original deque, and adding them to the front of the second deque. Continue this until are cards are removed from the original deque. When you have finished each shuffle, make the instance variable representing the card deck reference the newly-created deque.

To decide how many cards to work with at each step, use the function Math.random() to generate a random number between 1 and 3.
User Interface

The input file should contain four lines. The first line contains the number of decks, the second line contains the number of players, the third line contains the number of times to shuffle, and the fourth line contains the number of cards in a hand.

The output file should contain one line for each player. The contents of the line should be player number (1-10), followed by ‘:’, followed by the cards dealt to the player. For example:

Player 1: AH, KH, QH, JH, 9C

Player 2: QC, QS, JD, JC, JS

Player 3: 2H, 3H, 4H, 5H, 6H
Extra Credit

1. (10 points) Change the implementation of the Deque from reference-based to array-based. The methods and their signatures must be the same, but the data structure used for the entries in the Deque is an array. Do you need a resizeable array?
Note that DLNode is not needed for this version.

2. (5 points) Create a class Card implementing class Comparable (it will need at least a constructor and a method compareTo (Object o). You may find it convenient to implement toString() as well.

3. (10 points) Create a class Hand. Hand must include an array instance variable that represents the cards in the hand. Each card must be represented as a Card. Methods on Hand must include:
A constructor, which creates an empty hand
add(String card) – adds a new card to the hand (can be used when dealing)
play(String card) – removes a card from a hand

sort() – put the cards in ascending order, using an efficient sort (you may use code from the book)
