CMP 338

Programming Assignment 2

Due October 2, 2003

Specifications for Program 2

Program Description

Create a class to represent a post-fix expression. Use a stack to store the expression as a private instance variable. You must create three variants of the class, differing only in the implementation of the stack. They should be identical, except for the names of the classes, the constructors, and the type declaration and initialization of the instance variable.

For the array-based version, the class name and constructor name must be APostfix and the instance variable defined by:

StackArrayBased expr = new StackArrayBased();

For the reference-based version, the class name and constructor name must be RPostfix and the instance variable defined by:

StackReferenceBased expr = new StackReferenceBased();

For the list-based version, the class name and constructor name must be LPostfix and the instance variable defined by:

StackListBased expr = new StackListBased();

Note that you can write one of the three classes, and then make the appropriate changes to get the other two. No other changes should be necessary if you use StackInterface whenever you need to refer to the class of the stack.

The public methods of the postfix classes must include:

A constructor that takes a String as a parameter. This string must be a valid postfix expression. The constructor converts the string to the stack representation.

A method evaluate that returns the value of the expression stored in the stack. This method “ uses up” the expression, so that the stack is empty after evaluation.

A method toString, which converts the stack back to the original string. This method must not use up the expression; the value of the stack should be unchanged. However, to implement this you must use a modification of the peek method on the StackInterface.

A main method, which reads the string from input; prints it using toString; and evaluates it using evaluate.

Modification to peek: Change the signature of peek in each of the three implementations to accept an index, which gives the distance from the top of the node to be returned (0= top node, 1= the node below the top, etc). Peek must return the requested item or throw an IllegalArgumentException if the index is bigger than the size of the stack. Note that you may want to add an instance variable to the reference-based implementation of stack to keep track of the size.

Do not make any other changes to the implementations of the stack.

Input and Output

The input will be a sequence of lines in a file, each of which may or may not contain a valid postfix expression. Your program should read each line and if it is a valid postfix expression, print:

Value of <line> = <value>

If it is not a valid postscript expression, print

Illegal argument: string <line> is not a valid postfix expression

You can use the same loop as for Program 1 (see below). To read the input from a file instead of from the console, run the program using a command like this:

java APostfix < testfile

Here is the loop for reading input:

try

{

BufferedReader in = new BufferedReader(new InputStreamReader(System.in));

while((line = in.readLine()) != null)

{

…

}

}

catch (IOException e)

{

System.out.println("I/O Exception: " + e.getMessage());

System.exit(0);

}

To use this, you must import the following classes at the beginning of the program file:

import java.io.BufferedReader;

import java.io.InputStreamReader;

import java.io.IOException;

Sample Test Set

Here is a sample test set for the program:

12+

1+2-

28*3-

12+34+*7+8-

The result should be:

The value of 12+ = 3

Illegal argument: string 1+2- is not a valid postfix expression

The value of 28*3- = 13

The value of 12+34+87+8- = 20

Extra Credit

1. Add code to compute the number of nodes of the stack that have to be touched in each method of each of the three implementations, and compare the results.

2. Make the method evaluate non-destructive, so that it doesn't change the stack (this would usually be desirable). Hint: Make a copy of the stack and use (and destroy) the copy to evaluate the expression.

3. Write a class Infix that extends Postfix. Infix must accept an infix string instead of a postfix string as input, but it should store it as postfix in a stack. toString will still print the value as a postfix string.

