

Touring Machine: A Software Platform for
Distributed Multimedia Applications∗

M. Arango P. Bates R. Fish G. Gopal N. Griffeth G. Herman
T. Hickey W. Leland C. Lowery V. Mak J. Patterson L. Ruston

M. Segal M. Vecchi A. Weinrib S. Wuu

Bellcore†

445 South St.
Morristown, NJ 07962-1910

Abstract

The goal of the Touring Machine project is to provide a reliable and extensible software plat-
form that supports independently-developed distributed multimedia applications. The project
includes an experimental testbed composed of a network of desktop video and audio devices
controlled via user workstations. Touring Machine is more than a research testbed; it is the
basis of the communications tools used daily by 100 users in two Bellcore locations 50 miles
apart. It supports multimedia conferencing and information services as well as point-to-point
communications. This paper describes Touring Machine, its system model and its software
architecture.

1 Introduction

With the technological advances in computing and communication networks in recent years, we have
seen the emergence of a variety of distributed multimedia applications[7, 22]. Examples of such
applications include Computer Supported Cooperative Work (CSCW)[11], medical applications[9],
multimedia conferencing[19, 21], and distance education[20]. Although most research in this area
centers on individual multimedia applications on stand-alone hardware, great potential for multime-
dia computing lies in the widespread development and use of distributed multimedia applications on
top of a common platform or system infrastructure. Without the system infrastructure, distributed
multimedia applications would have to deal with the complexities of multimedia communications:
routing, resource allocation, session control, network management, presentation control, multime-
dia device control, and media synchronization, in addition to the complexities of managing the
application itself. The system infrastructure can reduce the burden on the application developer
by providing the basic common functionalities.

A primary goal of the Touring Machine project is to provide an open software platform that
facilitates the widespread development and use of distributed multimedia applications on a vari-
ety of wide area networks. Touring Machine is designed to separate the concerns of application

∗Submitted to the 1992 IFIP International Conference on Upper Layer Protocols, Architectures, and Applications,
Vancouver, Canada, May 1992.

†Contact author: Victor Mak, 445 South St., 2P-254, Morristown, NJ 07962-1910, (201) 829-4470, Internet:
vicmak@bellcore.com

1

development from the complexities and details of establishing and modifying multimedia commu-
nication sessions. A general Application Programming Interface (API), supporting a rich set of
capabilities of the system, is provided to the application developer. The API defines the set of
messages passed between user applications and Touring Machine. This API has been designed in
close collaboration with distributed multimedia application developers from the CRUISER1[6, 8]
and RENDEZVOUS2[17] projects within Bellcore, and has incorporated many concepts from work
on Broadband ISDN (B-ISDN) signaling[16] from the EXPANSE project[1]. The CRUISER service
is a multimedia communications application designed to support informal communications among
remotely located co-workers through the medium of an audio and video network. It allows users
in different physical locations to construct and participate in a virtual workplace without leaving
their own desks. The RENDEZVOUS system is an architecture for creating synchronous multi-
user applications, such as a multi-user whiteboard and multi-user games. The EXPANSE signaling
protocol supports the establishment and modification of complex multimedia services for B-ISDN
in light of the limitations of Q.931, the user-network signaling protocol for narrowband ISDN.

An important objective in designing Touring Machine has been to impose a strict separation
of policy from mechanism for communication session management. Policy is set by applications;
Touring Machine does not impose any particular policy. This separation of policy from mechanism
allows Touring Machine to support independently-developed distributed multimedia applications
that may have very different policies in their communication models.

Touring Machine provides a set of logical abstractions for specifying the transport topology of a
communication session. These abstractions hide the details of the underlying physical network from
the application developer, and allow arbitrary configurations to be specified. The Touring Machine
API provides the capability for an application to set up and modify multiple concurrent multi-user
multimedia communication sessions. These sessions can share the same set of station resources. An
application has separate control of all supported media: audio, video, and data. Each component of
a communication session can be individually suspended or resumed. Touring Machine also includes
an integrated name server that acts as the repository of both static and dynamic information about
the system. The information listed in the name server can be browsed by user applications, subject
to privacy policies, to implement various intelligent services that require knowledge of the current
system state.

Beyond defining the API, a second goal of the project is to investigate research issues important
to the development and maintenance of a large communication control system that operates in a
public environment. Issues such as scalability, extensibility, fault tolerance, maintenance, multiple
administrative domains, and heterogeneity must be addressed. The internal architecture of Touring
Machine has been designed to address some of these issues. In this paper, however, we focus on
describing the system functionalities provided to applications; more details on the motivation for
the internal architecture are provided in [10].

The current version of Touring Machine software is structured as a set of distributed objects
working cooperatively to provide the services supported by the API. The system controls desk-top
video and audio devices connected through a network of multiple switches and other specialized
hardware resources such as audio and video bridges and mixers. The current version uses analog
audio and video hardware; while not sophisticated, this choice allows us to support a large and active
user population (about 100 users across two Bellcore locations 50 miles apart with digital links), and
concentrate our efforts on developing the software platform and multimedia applications. Touring
Machine is an evolving project. The current version represents the second iteration of system design

1CRUISER is a trademark and service mark of Bellcore.
2RENDEZVOUS is a trademark of Bellcore.

2

Touring Machine

Client

Client Client

Station Manager

Client Client

Station Manager

Station A Station B Station C

Figure 1: System Model of Touring Machine

and is implemented by 100K lines of C code; the first version of the system was described in [2].
The rest of this paper is organized as follows. Section 2 describes Touring Machine’s system

model and the API provided to the application developer to develop distributed multimedia appli-
cations. This section describes the relationships among the various abstractions used in the system
model and summarizes the services provided by the API. Section 3 presents the software archi-
tecture of the current version of Touring Machine. This section describes the functionality of and
relationships among the set of distributed objects that make up the platform. Section 4 concludes
the paper by contrasting Touring Machine with related work and discussing ongoing research.

2 Touring Machine System Model

A primary goal of the Touring Machine project is to provide a platform upon which applications re-
quiring complex multimedia communications can be developed, independent of the actual network
fabric used to provide transport. To achieve this goal, Touring Machine provides an abstract model
of communication that enables the application developer to concentrate on the logical specification
of the application itself, instead of worrying about the physical realization of the communication
service, such as routing across multiple switches and bridging for multi-party sessions. The com-
plexities in session management, resource allocation, and network management are hidden from
the application.

The relationship between application software and Touring Machine is of the client-server type.
Touring machine is a server providing multimedia communication services to a number of clients
(application software that act as agents of users in the system) at various geographically distributed
stations (see Figure 1). A user represents the responsible entity on whose behalf service is autho-
rized. Typically, a user instantiates a person, but it might be a network service provider which

3

video out

video in

audio out

audio in

data out

vid
eo

 o
ut

vid
eo

 in

au
di

o
ou

t

au
di

o
in

ports endpoints

video out1

video in

audio out

audio in

data in

video out2

assignment
mapping

audio
connector

data
connector

video
connector

Figure 2: The relationships among Touring Machine abstractions for a three-party multimedia
session

offers some communication applications to other users. A station in a user’s office consists of an
arbitrary configuration of audio/video equipment; network access for a station is controlled by
Touring Machine, and can be shared among the clients (belonging to the same user or different
users) at that station. A user may have one or more clients requesting services from Touring Ma-
chine simultaneously. For instance, a user can have one client handle video conferences and another
handle a shared whiteboard application. An optional specialized client called the station manager
may be used to coordinate among the other clients at that station. The station manager imple-
ments various policies for resource sharing among clients at that station. It also provides common
features (such as session screening and forwarding) to the other clients.

One of the most important aspects of Touring Machine is the separation of the management
policy from the mechanism that enforces the policy, both to support a diverse set of applications and
to more easily evolve the system as the number of supported application grows. This design decision
is based on the observation that dealing with embedded policy gets complex as system functionality
evolves and can lead to conflicts among applications, feature interactions, which are hard to detect
and resolve[5]. The explicit assertion of policy as in Touring Machine allows mechanized detection
of conflicts.

A session represents a multi-client, multimedia communication. Touring Machine provides the
mechanism to enforce different session policies that are specified and agreed to by the participating
clients on a per-session basis. Currently supported policies include privacy and permission. Privacy
policy controls whether other clients can find out the session’s existence and its attributes such as
a member list. Permission policy controls which clients can issue change requests to the session.

The transport topology of a session is specified logically as a set of typed connectors (see

4

Figure 2). A connector represents a multi-way transport connection between endpoints (logical
ports). A connector is an abstraction of a communications bridge, including point-to-point (two-
way) as well as multi-point connections. Since bridging is a medium-specific operation, connectors
are typed by medium. A session may have one or more connectors per medium, with source
and sink endpoints from participating clients. An endpoint represents a connector termination
point. Endpoints are distinguished by medium, direction of flow, and client receiving or providing
transport. An endpoint represents only a logical transport termination point; it yields real transport
when mapped onto a port. A port is typed by its medium and direction of flow, and represents a
network access channel to which a station’s audio/video/data equipment may be attached. A client
specifies the port to which each of its endpoints is assigned in a session, and may then map and
unmap its endpoints to the ports to share the access channels among multiple concurrent sessions.
Unmapping an endpoint-to-port assignment places a component of a session on hold, while mapping
an assignment resumes that component.

The Touring Machine Application Programming Interface (API) defines the set of messages
passed between a client and Touring Machine for requesting services from Touring Machine. The
functionality of the API can be divided into the following five categories: client registration, session
management, network access control, name server query, and inter-client message passing.

2.1 Client Registration

A client must register at a station before it can issue a request to Touring Machine or participate in
a session. Touring Machine authenticates the client and allows the client’s current physical location
to be known to other clients. A client can specify at registration, and later change, information
such as its set of endpoints, privacy, and other attributes that may be of interest to other clients.

2.2 Session Management

A client creates a session by specifying the initial attributes (the set of participating clients, the
transport topology, and the policies) for the session. Creation of a new session involves two stages:
negotiation of session management policies and resource allocation. After all clients agree on the
session, Touring Machine translates the logical specification of the transport topology, in terms of
connectors, into network resource requirements, such as trunks and bridges, and enters the resource
allocation stage. If the second stage is also successful, a new session is created. Clients may leave or
join a session, and may modify the transport topology and/or policies of an existing session using
messages defined by the API.

2.3 Network Access Control

The API allows a client to specify and change its endpoint-to-port assignments as well as its
endpoint mappings during a session. For example, a client may change the assignment of its video
source endpoint from a camera pointing to the user, to a camera pointing to a document, or
may change the assignment of its audio sink endpoint from a speaker to an audio recorder. The
flexibility in changing the endpoint to port assignment dynamically allows a user to change the local
termination of a connector without changing the session’s logical topology. The endpoint-to-port
assignments can be mapped and unmapped to resume and suspend certain components of a session.
However, network resources are not released when an endpoint is unmapped so that connectivity
is guaranteed when the endpoint is later mapped.

A client may dynamically create a new port at the local station. Since the transport mechanisms
for audio and video in the current release of Touring Machine are analog (and thus audio and video

5

ports are pre-created and fixed in number), only data port creation is currently supported. However,
in the future when the system migrates to a digital domain, ports of all media will be created and
destroyed dynamically, limited only by the available network access bandwidth.

2.4 Name Server Query

The name server acts as the central repository of both static and dynamic information for Touring
Machine. It contains information of the following categories: authorized users, registered clients,
ongoing sessions, Touring Machine stations and their ports. A client can query the name server
to find out, for instance, all registered clients supporting a particular application, all interesting
sessions to join, or all clients in a particular session, subject to the privacy policies set on the stored
information. The name server enables the development of intelligent applications that require
knowledge of both static and dynamic information of the system.

2.5 Inter-Client Message Passing

Touring Machine provides a datagram service for inter-client message passing. Unlike the data
medium in a session that provides a stream connection and requires session setup procedures, the
inter-client message passing service provides an efficient way to send datagram messages between
clients without the overhead of session setup.

3 Touring Machine Software Architecture

The current version of the Touring Machine software is structured as a set of distributed objects
that work cooperatively to realize the API. The software architecture includes two types of objects:
permanent objects, which exist as long as the system remains available to users, and transient
objects, which exist for a limited amount of time. Touring Machine does not require any object to
execute at a particular physical location, unless it controls a piece of hardware that is physically
connected to a particular processor.

All Touring Machine objects communicate by asynchronous message passing. Inter-process
communication among objects in Touring Machine is provided by the Connection Manager[3]. The
Connection Manager is a high-level message-based inter-process communication interface layered
on top of BSD UNIX3 sockets. It also provides a set of routines and support programs that simplify
the creation of complex communication protocols.

Touring Machine exhibits a layered architecture (see Figure 3). Above Touring Machine lie
applications that use the API to request services provided by the infrastructure. The Touring
Machine infrastructure itself is separated into two levels: session control and transport control4.
The session control level provides logical control of communication sessions. It contains the station
object and the session object. The transport control level takes care of physical resource allocation
and provides network transparency. It contains the transport object, the resource manager, and
various resource objects. A special object, the name server, is accessible by objects in both levels
and maintains system information. The subsequent sections describe each of these objects in more
detail.

3UNIX is a registered trademark of UNIX System Laboratories, Inc.
4The Touring Machine’s session control and transport control levels are not the same as the session and transport

layers defined in the ISO reference model. Our session control level belongs to the application layer in the ISO
reference model, whereas our transport control level belongs to the network and transport layers in the ISO reference
model.

6

Application Programming Interface

Client Client

Station
Object

Session Object

Transport
Object

Resource
Manager

Bridge
Object

Data Switch
Object

A/V Switch
Object

Station
Object

Trunk Group
Object

Station
Manager

Client Client
Client

Name
Server

Session
Control
Level

Transport
Control
Level

Figure 3: Touring Machine Software Architecture

3.1 Station Object

The station object is the interface point between clients and Touring Machine. Prior to making any
requests, a client must first be authenticated and registered with a station object. Once registered,
a client sends API requests to that station object. Explicit registration and deregistration requests
allow support of mobile users by Touring Machine. The station object checks each message received
from a client for syntactic and semantic errors, and routes it to the appropriate Touring Machine
object. If a request involves the creation of a new session, the station object instantiates a new
session object that handles subsequent messages related to that session. The station object also
manages the sharing of network access ports among multiple clients registered at the station using
a default policy of first-come-first-served. If other policies are desired, they can be specified and
enforced outside Touring Machine, possibly in a station manager.

3.2 Session Object

The session object is a transient object created by the station object upon a client’s request to
create a new session. The session object coordinates negotiation among clients and maintains the
logical state of the session. Currently, the negotiation stage involves only reaching agreement on
the session management policies specified in the request by the originating client. A more elaborate
form of negotiation that can provide compromises as well as consensus is under investigation[12].
Because session is a named object and is listed in the name server, clients can join an existing
session by sending a join request to the appropriate session object, subject to the permission of the
session.

7

The session object lacks knowledge of the underlying physical network. It maintains the logical
state of the transport in terms of a set of connectors and their endpoints. Any changes in the
transport, for example, as clients are added to a multi-user conference, are passed on to an available
resource manager for physical realization. Currently, resource allocation is performed only after
the negotiation stage. It is possible in the future to use other policies that allow pre-allocation of
resources.

3.3 Resource Manager

The resource manager coordinates the allocation and deallocation of system resources, such as
trunks and bridges, to realize the physical transport of a session. Requests from a session object
can be served by any one of the available resource managers in the system. Maintaining exact,
timely, and consistent states of system resources among multiple resource managers is expensive.
Instead, an optimistic strategy is employed as a performance optimization: each resource manager
maintains approximate information on the system resources and uses these data as hints for the
heuristic routing and resource allocation algorithms it employs. (Only the resource objects them-
selves maintain the exact state of network resources.) A resource manager allocates, deallocates,
and updates its state information about a given resource by sending requests to the resource object
controlling that resource. If a request is rejected, the rejection supplies updated state information
to allow the resource manager to update its state model and, if desired, re-evaluate its routing and
allocation decisions.

3.4 Transport Object

While the session object maintains the logical state of the transport of a session, the transport ob-
ject, the second transient object, maintains the logical-to-physical mapping. The transport object
is instantiated by the resource manager upon initial successful allocation, and keeps track of the
results of subsequent allocation and deallocation requests pertaining to that session. The instan-
tiation of a transport object for each session is designed to alleviate the fault-tolerance problem:
the failure of a resource manager does not result in the loss of any session, and the failure of the
transport object results in a loss of at only one session.

3.5 Resource Objects

Resource objects manage specific sets of physical resources. They keep track of the exact state of
the physical resources, and are the only objects that communicate directly with network hardware.
The use of resource objects allows the rest of Touring Machine to remain isolated from the details
of particular pieces of hardware. In general, these objects have two interfaces: an interface for
communicating with other Touring Machine objects, and a specialized interface for communicating
with their associated hardware.

The current release of Touring Machine includes four types of resource objects. The A/V
switch object makes audio/video connections. The data switch makes data stream connections.
The bridge object allocates and releases audio and video bridges for multi-way communication.
The trunk object allocates trunks between different switches.

3.6 Name Server

The name server acts as a repository of static and dynamic information for Touring Machine. The
stored information is accessible by clients using the API via the station objects, as well as by

8

objects at all levels. Queries to the name server may include conjunction (A AND B), disjunction
(A OR B), and wildcards (user = bob*). The name server provides mechanisms to implement
various privacy policies. Access to the information listed in the name server is controlled. For
example, information on a client or a session can be kept private, or known only to a user-defined
group of clients. The use of the name server to keep client-to-station associations enables personal
communication services where clients are called by names rather than by location specific addresses.

4 Discussion

Touring Machine is distinct from other work in the area in its emphasis on defining and supporting
an Applications Programming Interface. The API makes available various network-provided ca-
pabilities, and core services to a large class of multimedia applications. Related research includes
Xerox PARC’s work on the software for the Etherphone system[23] and later extensions to include
video[21]. Their software architecture is object-based with negotiation among peer objects, but they
focus on a single powerful desk-top conferencing application, rather than on providing an open plat-
form that supports multiple applications with their own individual policies and requirements. The
multimedia conference control program (MMCC)[19], is designed to control a multimedia confer-
encing system based on the TWBnet experimental testbed; in its current realization MMCC is also
a single conferencing application that enforces a predetermined set of control policies. Leung et
al.[15] concentrate on abstractions for handling digital multimedia streams. Blair et al. at Lan-
caster University[4, 18] start with models emerging from the Open Distributed Processing (ODP)
standardization process in Europe, extending them to incorporate multimedia services; they pro-
pose abstractions similar to some of ours. The Pandora’s Box system experiment[13] comprises a
combination of hardware and software to realize video- and audio-based applications on an underly-
ing packet network; they emphasize custom-built hardware to accelerate video processing. Finally,
the PX project[14] focuses on voice communications; their focus, similar to ours, is on developing
a collection of toolkits that provide common functions to voice applications.

A unique value of the Touring Machine project is that it is a large system experiment with a
significant user community, a number of independent applications developers who plan to use the
system to conduct sociological and other experiments, and support for heterogeneous multimedia
hardware. This mix of features allows (and forces) us to address numerous interesting topics for
research, and provides an environment to test our research ideas in practice.

The Touring Machine project is still at an early stage, with many areas of ongoing work on
both API and system-software issues. Examples of areas of active API-related research include:

• Support for hybrid (analog and digital) networks, to evolve the API to support both analog
networks as well as the rich abstractions available in an digital environment. An important
example is support for synchronization of different media types.

• Presentation control, to give clients the ability to specify the presentation of information at
their stations. For example, a client ought to be able to specify the positions on the screen
of separate video sources being bridged together, and set the volumes of audio streams.

• Applications structuring issues relating to managing multiple clients registered at the same
station that have conflicting needs. We are investigating mechanisms for discovering and
controlling such interactions between clients. Some of these issues have surfaced only recently,
through actual experience with developing multiple applications for Touring Machine.

Systems-software research includes, among others, support for multiple administrative domains,
enhanced fault tolerance and availability, privacy and security, naming and addressing, network

9

management, software maintenance, and system instrumentation and observation. Beyond work
on the system itself, we are actively developing collaborative relationships with other institutions
to expand and enrich the Touring Machine user community.

References

[1] Albanese, A., Bussey, H., Weinstein, S., and Wolff, R., “A Multi-Network Research Testbed
for Multimedia Communications Services,” Proc. IEEE ICC’91, June 1991.

[2] Bates, P., and Segal, M., “Touring Machine: A Video Telecommunications Software Testbed,”
Proc. First International Workshop on Network and Operating System Support for Digital
Audio and Video, Berkeley, CA, November 1990.

[3] Bates, P., “A Connection Manager for Rapid Prototyping of Distributed Systems,” in prepa-
ration, 1992.

[4] Blair, G.S., Coulson, G., Davies, N., and Williams, N., “Incorporating Multimedia in Dis-
tributed Open Systems,” Proc. EUUG Spring ’91 Conference on Distributed Open Systems in
Perspective, Tromso, Norway, May 1991.

[5] Bowen, T.F., Dworak, F.S., Chow, C.-H., Griffeth, N.D., Herman, G.E., Lin, Y.-J., “Views
on the Feature Interaction Problem,” Proc. of the 7th International Conference on Software
Engineering for Telecommunications Switching Systems, July 1989.

[6] Clayton, R., “Patch Cords — An Infrastructure for Distributed, Multimedia Applications,”
submitted for publication, 1991.

[7] Davies, N.A., and Nicol, J.R., “A Technological Perspective on Multimedia Computing,” Com-
puter Communications, Vol. 14, No. 5, June 1991.

[8] Fish, R. S., “Cruiser: A Multi-media System for Social Browsing,” The ACM SIGGRAPH
Video Review Supplement to Computer Graphics, Vol. 45, No. 6, Videotape, 1989.

[9] Goldberg, M., Georganas, N.D., Robertson, J., Mastronardi, J., and Reed, S., “A Prototype
Multimedia Radiology Communication System,” Proc. 2nd IEEE International Workshop on
Multimedia Communications, Ottawa, Canada, April 1989.

[10] Gopal, G., Herman, G., Vecchi, M.P., “The Touring Machine Project: Toward a Public Net-
work Platform for Multimedia Applications,” Proc. 8th International Conference on Software
Engineering for Telecommunications Systems and Services, Florence, Italy, March 1992.

[11] Greenberg, S., “Sharing Views and Interactions with Single-User Applications,” Proc. Confer-
ence on Office Information Systems (COIS ’90), April 1990.

[12] Griffeth, N. and Velthuijsen, H., “The Negotiating Agent Model for Rapid Feature Develop-
ment,” Proc. 8th International Conference on Software Engineering for Telecommunications
Systems and Services, Florence, Italy, March 1992.

[13] Hopper, A., “Pandora - an Experimental System for Multimedia Applications,” Operating
Systems Review, Vol. 24, No. 2, April 1990.

[14] Kamel, R., Emami, K., and Eckert, R., “PX: Supporting Voice in Workstations,” Computer,
August 1990.

10

[15] Leung, W-H. F., Baumgartner, T.J., Hwang, Y.H., Morgan, M.J., Tu, S.C., “A Software Archi-
tecture for Workstations Supporting Multimedia Conferencing in Packet Switching Networks,”
IEEE Journal on Selected Areas in Communications, Vol. 8, No. 3, April 1990.

[16] Minzer, S.E., “Signaling and Control for Multimedia Services,” IEEE Multimedia ’90, Novem-
ber 1990.

[17] Patterson, J.R., Hill, R.D., Rohall, S.L., and Meeks, W.S., “Rendezvous: An Architecture for
Synchronous Multi-User Applications,” Proc. CSCW ’90, October 1990.

[18] Ruston, L., Blair, G., Coulson, G., and Davies, N., “Integrating Computing and Telecommu-
nications: A Tale of Two Architectures,” Proc. 2nd International Workshop on Network and
Operating Support for Digital Audio and Video, Heidelberg, Germany, November 1991.

[19] Schooler, E.V., “A Distributed Architecture for Multimedia Conference Control,” ISI Technical
Report No. ISI/RR-91-289, November 1991.

[20] Smith, R.B., “A Prototype Futuristic Technology for Distance Education,” in NATO Research
Workshop on New Directions in Education Technology, November 1988.

[21] Vin, H.V., Zellweger, P.T., Swinehart, D.C., and Rangan, P.V., “Multimedia Conferencing in
the Etherphone Environment,” IEEE Computer, Vol. 24, No. 10, pp. 69–79, October 1991.

[22] Weinstein, S., “ISDN Multimedia Services,” in ISDN Systems: Architecture, Technology, and
Applications, Prentice-Hall, 1990.

[23] Zellweger, P.T., Terry, D.B., and D.C. Swinehart, “An Overview of the Etherphone System
and its Applications,” Proc. 2nd IEEE Conf. Computer Workstations, IEEE, New York, pp.
160–168, 1988.

11

