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Abstract

We describe a language called Chisel and an editing tool for Chisel called Sculptor for
defining requirements for communications services. The purpose of Sculptor and Chisel
is to speed the service creation process by improving communication between
organizations, by automating tedious manual work, and by enabling application of
formal methods. The design of both the Chisel language and the Sculptor tool was
based on user studies, and the initial response from users has been positive. By
improving communication between organizations, Chisel potentially benefits every
phase of the service creation process.

1. Introduction

We have defined a new language called Chisel and an editing tool for Chisel called Sculptor, for

defining requirements for communications services and service features.  The language Chisel reflects

current practice for writing these requirements, because its design originated at a usability workshop

involving practitioners.  Chisel is unambiguous, it applies to a variety of network technologies, and it

has a sound basis for translation to commonly used formal software specification languages.

The purpose of Chisel is to improve communication between the diverse people and organizations

involved in the telecommunications service creation process.  Ideally, the service creation process

starts with high-level requirements that are repeatedly refined in subsequent specification and

development steps until a correct implementation has been done.  However, observations of actual

practice indicate that communication may be poor at hand-off points between different organizations.

                                               

1 Authors’ contact information: Alfred Aho, Columbia University, New York City; Sean Gallagher, Bellcore, Red Bank,
NJ; Nancy Griffeth, Bell Labs, Murray Hill, NJ; Cynthia Schell, Hewlett-Packard, Florham Park, NJ; and Deborah
Swayne, AT&T Research Labs, Florham Park, NJ.  This work was funded by Bellcore’s SCF3! project, while the
authors were at Bellcore.
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As a result, work produced in one step may be incorrectly refined or even ignored and re-done in the

next step.

We believe that an important part of the solution to this problem must be the use of formal methods to

verify the output of one step against its input from the previous step.  However, formal  methods have

rarely been used in the service creation process.  This is largely because, currently, the requirements

engineers must learn a formal language, they must reverse-engineer the existing systems to define the

old features, and they must write the requirements for the new features [38].  This is exceedingly

difficult without adequate tools to support the application of formal methods [31].  An alternative to

direct application of formal methods is to provide a  language for requirements that is natural to

practitioners, that eliminates the tedium involved in producing detailed requirements, and that is

sufficiently precise to support automated translation to more formal languages.  This is what we have

tried to do.

This work has been motivated by problems in creating service features for the telecommunications

network [1, 15, 17, 18, 20, 22], but many similar problems arise for Internet services and the work

may be useful in that domain as well.

In Section 2, we discuss the particular problems of the service creation process in today’s

telecommunications network and explain why a new requirements language is needed.  The essence

and the difficulty of service creation is determining how to add new functions to the

telecommunications network without adversely changing or disrupting existing functions.  This can be

hard even in a monolithic system.  The diverse technology and decentralized operation of the public

telecommunications network presents an exquisitely complex challenge to service creators.

In Section 3, we define the conceptual basis of our language.  A feature is characterized by the set of

sequences of events that it enables in the network.  We use this characterization to define composition,

projection, and other operations on features.  Our language permits analyzing composed sets of

features for feature interactions and addressing questions such as “Will this feature work on different

versions of a system?” or “How do we generate a minimum covering set of acceptance tests?”  The

language is also simple enough to encourage creation and sharing of feature definitions, which is a

prerequisite for analyzing the interworking of features of different vendors. In Section  3.3, we
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describe how feature requirements can be translated to other forms, such as message sequence charts

[28] and temporal logic [41].

In Section 4, we discuss how Chisel address many of the problems in the service creation process.

In Section 5, we discuss the benefits and limitations of Chisel, we describe its application to solving the

feature interaction problem, and we describe some interesting open questions.

2. Background and Motivation

2.1 Business environment

Although the process of creating telecommunications services is similar to that for creating any other

software, the business and technological environments of today’s telecommunications systems raise

some difficult issues.  On the one hand, the network is a single universal communications system,

providing connectivity between any two people with communications devices.  On the other hand, it is

maintained and operated by diverse companies using a variety of technologies, some decades old. New

technologies are being introduced in the network, such as tone dialing, SS7 (Signaling System 7, a

packet-switched network that carries the messages controlling the public voice network), and ISDN

(Integrated Services Digital Network, which provides high-bandwidth data channels along with a voice

line).  However, the scale and decentralized operation of the network require incremental

incorporation of new technology.  Hence each technology, whether hardware or software, must

interwork with a variety of other technologies.

Also, the service creation process and the requirements documents will be somewhat different for

features implemented on different platforms.  Before telecommunications deregulation, features were

normally implemented on switching systems, because the switching system vendors were also the

communications service providers.  After deregulation, service providers cooperated to define a

standard platform for implementing new features, called the Intelligent Network (IN) internationally,

or the Advanced Intelligent Network (AIN) in North America.  An AIN platform is called a Service

Creation Point (SCP).  This is a computer that uses the IN (or AIN) messages to communicate with a

switch about the disposition of a user’s call, according to the IN (or AIN) features active on the call.

Call processing features are incremental modifications to the logic that controls call processing. A new
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feature must work correctly for enough subscribers to provide an adequate market for the feature.  It

must also work correctly in conjunction with the other features of the same subscriber and whatever

features other parties to a call may use.  Because of the decentralized operation of the network, the

service designer may not know what other features will be active on a call. Ironically, the service

designer must anticipate that unanticipated new features will be introduced by other service providers.

In spite of all these complications, users expect a feature to be as universal as possible, to work the

same way regardless of technology or service provider, to be highly available, and to be usable by a

subscriber untrained in the communication system.

2.2 Terminology

In this section, and again in section 4, we use some terms that we should clarify before starting.

First, we use the words “service” and “feature” colloquially, as they are used by service designers.  It

would be awkward to talk about the "Feature Creation Process" and one rarely hears discussion of

"Service Interaction Detection."  In the rest of this section and in Sections 4 and 5, we will usually use

the term “service” in referring to the process and “feature” in referring to the product of the process.

In Section 3, we will introduce a more technical definition of feature, which we use only in that

section.

We also discuss the role of validation and verification in the service creation process, and we mean

them in the sense that Boehm used those terms in [14].  For us, the validation of a feature is checking

that the correct feature is being designed, and verification is checking that the feature is being designed

correctly.

In our description of the software engineering process, we will follow Sommerville’s text on software

engineering [42].  He defines three levels of description produced in the requirements engineering

process:

1. Requirements definition, stating, “in a natural language plus diagrams, what services a system is

expected to provide and the constraints under which it must operate.  It is generated using

customer-supplied information.”

2. Requirements specification, setting out “the system services in detail.  [It is] sometimes called a

functional specification, and should be precise.  It may serve as a contract between the system
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buyer and software developer.”

3. Software specification, “an abstract description of the software which is a basis for design and

implementation.”

In this paper, we focus on the use of Chisel and Sculptor for producing the first two kinds of

document.  Also, we illustrate automatic translation to other forms.   Some of these may be necessary

or convenient documentation, while others may be initial versions of a software specification.

2.3 The service creation process today

Current practice in the process of creating features utilizes a waterfall model.  The steps involved in

creating a new feature include[27]:

1. Needs Analysis: Determine what market needs a new feature can address

2. Service Description:  Create the user-oriented feature requirements definition, and then extend it

to create the requirements specification, detailing  how network elements (already in the system

requirements model)  communicate with one another to provide the (new) service.

3. Service Specification:  Write the software specification; that is, detailed service logic in individual

network elements; verify it against the requirements specification.

4. Service Development:  Write or generate code for executing the feature on network platforms.

5.  Service Verification:  Verify the feature using integration and acceptance tests.

6.  Service Deployment: Add the feature to the network elements.

7. On-going Operations: Provide the feature to new subscribers, bill existing subscribers, monitor

the feature, and provide other continuing functions associated with serving end users.

2.4 Problems in the service creation process

Building highly available, usable, multiplatform software requires a good software development

process to assure quality even in the best of circumstances.  One may well ask whether assurances of

quality are remotely feasible when there is no single controlling authority to oversee the software

quality process.  Assuring quality is especially problematic when features must interwork correctly

with all of the technologies, platforms, and other features in the network.
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Bellcore is developing a tool suite called SCF3! (standing for "Service Creation: Form, Fit and

Function") to improve the process by automating certain steps in the process and simplifying

communication between organizations responsible for the different steps.

The problems with current practice are apparent in every phase of service creation.  The following list

summarizes some observations of the early stages of service creation at several companies and

enumerates some of the problems that service creators encounter in practice.

1. Needs Analysis:

 a)   Input:  Market studies and currently available features.

 b)  Output: An informal description of a new feature, sometimes as short as one line, prepared for

the service designer.

 c)  Current practice:  This informal description can come from a variety of sources, such as the

marketing organization of the equipment vendor, or a similar organization within the customer’s

company.

 d)  Problems:

i) Competing companies naturally do not share their market analyses, so a service designer

knows few of the features actively being planned for introduction in the network.  Thus

competitive pressures can hinder analysis of potential feature interaction problems.

ii) The communication between marketers and service designers is sometimes disrupted,

resulting in development of a different feature from the one requested.

2. Service Description:

 a)  Input:  An informal description of a new feature, from marketing.

 b)  Output: A decision on whether it is technically feasible to proceed, and if so, the requirements

definition and the requirements specification for the feature.  These must cover the call processing,

deployment, activation, and interfaces to operations systems.   The requirements specification should

be validated against the informal description.  The requirements specification is normally written in

English, with message sequence charts to illustrate the operation of a few of the functions.



Chisel 4/10/98

7

 c)  Current Practice:  A service designer is usually a requirements engineer having extensive

network expertise but little programming or computer science background. To design the feature, the

service designer first determines how a user interacts with the network to use the feature; that is, she

determines what should be the feature’s external interface.  The result is a requirements definition for

the "user view" of the feature.  The requirements definition is usually validated against the information

feature description.

Next, a possibly different service designer determines how the network elements must communicate to

provide the feature.  The resulting requirements specification is called the "network view."  From the

network view, the designer can determine if there is a feasible implementation on a sufficiently

representative set of platforms and end-user terminals to reach an adequate market base. The designer

also checks if the feature can interwork in a reasonable way with other features that are likely to be

present, producing a set of feature interaction requirements.  Acceptance tests may be generated.

The need for the “network view” as part of the external specification of a feature may seem counter-

intuitive, but when the customer is a service provider and the product is a feature to run on one box or

another in the network, the requirements need to describe the behavior on those interfaces as well as

the end-to-end behavior.

 d)  Problems:

i) The network contains many different kinds of network elements.  Even for one kind of

network element, a variety of technologies may be used.  The service designer must filter

the relevant information from masses of documents about the network elements. The

information overload is even larger than may be immediately apparent, because the service

designer must consider not only the standards, but also the vendor implementations, which

usually vary somewhat from the standards.

ii) The documents involved are both numerous and voluminous. Since the divestiture of the

local telephone companies by AT&T, Bellcore has documented the generic requirements for

the North American telecommunications system.  Bellcore's internal catalog lists 2,799

generic requirements documents.  there is a single 625-page Bellcore document that

describes only the interworking of switch-based features with AIN features.  Most Bellcore

requirements documents are matched by vendor documents describing what the vendor
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equipment actually does.

iii) The available documentation of feature requirements is almost always in natural

language, interspersed with message sequence charts (MSC’s).  At Bellcore, and at other

companies, MSC’s are prepared using general-purpose commercial presentation tools, rather

than specialized MSC editors, so they cannot be processed easily.  Also, the conventions for

preparing MSC’s charts are idiosyncratic to a company or even to a specific service

designer.

iv) When the user view and the network view requirements writers are different people, they

may duplicate each other’s work on Message Sequence Charts, because most often the

designers communicate the requirements entirely in English.

v) Acceptance tests are not always created; when they are, they are created manually, and

their correctness and completeness are taken on faith.

vi) Analysis of feature interactions is frequently based on personal interpretations of feature

behavior. It is impossible to evaluate different methods of analysis because there is no

common base of features; even the proposed benchmark [18] is interpreted differently by

different researchers.

3. Service Specification

 a)  Input: The user view (requirements definition) and the network view (requirements

specification) from the service design step, and the informal description of the feature, from marketing.

 b)  Output:  A software specification; that is, detailed service logic, verified against the

requirements for consistency and completeness.

 c)  Current practice:  Usually, a feature executes on only one network element2.  The service

specifier uses the requirements specification together with the required functions from the market

analysis to define the detailed service logic for the network element with the feature will execute.

                                               

2 This is probably a result of both marketing and technical considerations.  Usually the company that
develops and markets the service is an equipment vendor, and the service is offered as part of the sale
of a network element.
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Languages like SDL are used in this step. If appropriate tools are available, it is valuable to verify the

service logic against the requirements at this step, ensuring that it is complete and consistent. Software

is available for this purpose, including Promela/Spin, StateCharts, and SDL.

 d)  Problems:

i) Most of the input to this step is in natural language and hence ambiguous.  The service

specifier must resolve any ambiguities, perhaps in consultation with the marketer and the

service designer.

ii) In practice, the software specification is rarely complete enough to permit thorough

verification.  It may ignore error and exception conditions altogether.  In some cases we

have seen, the only scenario specified is the "sunny day" scenario; even busy conditions may

be ignored.  Since the service logic typically executes on a single network element, the

verification applies only to the behavior on that network element and not to the end-to-end

behavior of the feature.

iii) The definition of service logic may be repeated in the service development step,

especially if the development language uses an entirely different paradigm than the software

specification language.  If the paradigm changes, the likelihood is that the specification will

be translated back to English before being passed on to the development step.  For example,

Bellcore’s Service Creation Platform, SPACE, provides a graphical language for defining

features that is quite different from common specification languages.

iv) Because specification of detailed service logic is tedious and expensive without

producing executable code, it is most frequently not done at all.  If automatic generation of

code from the software specifications were available for the platforms on which features run

and if the generated code were adequately optimized, the verification of specifications

would be much more useful in practice.

4. Service Development:

 a)  Input:  The requirements specification, from the service design step, and the software

specification from the service specification step.  The requirements specification is likely to be in

English rather than a formal language, and the software specification is likely to be incomplete.
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 b)  Output:  Code and documentation.

 c)  Current practice: The design is usually based on English descriptions of the requirements and

logic. Switch-based features are coded in C or in a proprietary vendor language. Since performance is

a major issue, higher-level languages are viewed with skepticism.  AIN features are usually coded in C

or in a proprietary SCP vendor language.

 d)  Problems.

i) Intricate and spaghetti-like code has sometimes resulted from the incremental

modifications required by features. Implementation decisions made for one feature may

affect its interactions with a new feature, one that was not anticipated when the

implementation decision was made.

ii) The AIN architecture was created to allow more rapid creation of new features, but as

more AIN features are added the complexity of introducing new ones increases, thereby

slowing their introduction.

iii) Determining what should be the behavior of a feature in the presence of anomalous

behavior elsewhere in the network can be difficult. For example, if an SCP does not respond

to a message, should the switch abort the call, continue with normal processing of switch-

based features, or follow the feature interaction requirements on the message?

The reader may be skeptical about this description of the service creation process.  Can it really be true

that natural language is used as late in the process as service specification?  It is indeed.  Because

different individuals with different skills using different tools may be working on each step in the

process, every handoff is potentially problematic.  At each step, the person doing the work may revert

to the natural language description generated at earlier steps, and use that as the starting point for the

current work.

The handoffs become even more complicated when more than one company is involved.  The informal

design and some part of the requirements might be written by the customer (a Regional Bell Operating

Company, for instance) instead of the vendor, or several operating companies might hire Bellcore to

write the requirements.
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2.5 Why a new requirements language?

Much excellent research has been done in the area of formal specifications.   Our goal is not to add to

this work, but to complement it, enabling requirements engineers to use formal methods without

having to learn the theory.  We agree with Gerard Holzmann in his distinction between requirements

and design [31].  Formal description techniques such as Z, SDL, and LOTOS are most appropriate for

formalizing an abstract design and for refining the design. Separate correctness requirements are

needed, to make statements about the design that can be proved or disproved.   Successful creation of

correctness requirements in a production environment demands a requirements language that is both

precise and natural to the requirements engineers.  Since requirements documents often provide

several different representations of the requirements, it also demands a tool that simplifies writing

requirements in a variety of forms.

To define the language for the requirements engineers and to determine the functions of the tool, we

held a series of user workshops in 1996 involving requirements engineers and software specifiers.

These workshops follow a “user-centered design” methodology developed at Bellcore [21].  The

individuals involved in the service creation process stepped through the first three steps of the service

creation process for sample features, describing what problems they address and how they solve them,

what documents they produce, and what parts of the process are most difficult for them.  In later

phases of the workshop they brainstormed what improvements they would like to see in the process

and what tools they would like to have.  The Chisel language and Sculptor editing tool were

outgrowths of these workshops.

This effort was inspired by prior efforts to apply formal methods to in the service creation process.

Yow-Jian Lin developed methods for using logic programming to verify services and detect feature

interactions in [19, 35], but his methods were not applied to solving the problem in Bellcore’s service

creation efforts because of the time involved for requirements engineers to learn a formal language, to

reverse-engineer the existing systems to define the old features, and to write the requirements for the

new features [38].

Gerard Holzmann designed and led a successful effort to use formal verification techniques in the

design and implementation of part of the SS7 protocol for Lucent’s 5ESS switching system [31].  The

work was done by a team of 4-5 developers.  In order to fit in the existing design environment, they
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needed to use SDL, which they restricted to make verification possible and extended to express

correctness requirements in a language patterned after temporal logic.   The work of Holzmann’s team

began at the software specification step.   A graceful hand-off from the service description step would

translate the correctness requirements to an appropriate form – in this case, temporal logic, which is

one of the languages to which Sculptor translates Chisel.

Luigi Logrippo and his students have used LOTOS to develop powerful formal specification

techniques to identify feature interactions in a software specification  [ 24, 25, 43].   In his Ph.D.

thesis, M. Faci introduces a method for detecting interactions among features using LOTOS.  In the

LOTOS specifications, he uses four concurrent processes to define Plain Ordinary Telephone Service

(POTS).  Because the specification includes an architecture for the execution of the processes, we

consider it a software specification rather than a requirements specification.   (Other architectural

approaches, such as that of Lin [36] and Turner [44], would also be software specifications rather than

requirements.)  Since there is a natural translation of Chisel requirements to process algebra, and hence

to LOTOS, Chisel should be usable in a LOTOS environment as well.

We also investigated the use of a language developed by Tadashi Ohta and his colleagues at ATR in

Japan.  They developed a state-transition rule based specification language STR (for State Transition

Rules) and built an impressive collection of complete feature specifications for analysis [ 34, 40].  But

like the LOTOS group, Ohta’s addresses the problem of detecting feature interactions in the formal

software specifications rather than requirements.

Formal definition techniques are most appropriate verifying the properties of the software

specification, including feature interaction or non-interaction.  Our requirements language has been

designed to address several problems that arise in the service creation process that cannot be addressed

by formal definition techniques alone:

1. Creating the initial requirements based on the needs analysis.

2. Reverse-engineering the requirements for existing features.

3. Supporting better communication between steps of the service creation process by providing tools

that verify the output of each step against the requirements.

We have also defined a composition operator for Chisel requirements in order to define feature
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interactions without relying on manual composition of features.  A number of authors have noted that

the feature interaction problem is usually stated by saying that features behave differently when they

have been combined, and the combination is left to the designer.  This means that interaction is a

product of design choices as well as of the behavior of the features and the preferences of the feature

designer.  We have defined a composition operation on features to support a more objective approach

to the study of feature interactions.

3. The Conceptual Basis of the Language

3.1 Events and event sequences

In this section, we will be more precise in our use of the terms  service and  feature.  A  feature will be

defined as a set of sequences of events that can occur when a feature is active.  A  service will be

defined as a union of two or more features.

Chisel is a language for creating the requirements definition and requirements specifications for a

feature of a communications network.  We consider a communications network to be a collection of

subscribers and communicating computers (called  network elements) whose behavior includes

requesting, providing, and using network connectivity.  We have investigated primarily features of the

voice telephone network, but we believe that the same ideas can be transferred to video networks and

to the Internet.

We define a Chisel  feature as a set of sequences of events.  A feature designer chooses those

sequences that capture the essence of the feature’s behavior, where behavior refers to the sequences of

messages that subscribers and network elements send to one another and interpret, on receiving them,

according to the feature’s function.  Thus, the events are messages.

We consider a feature to be any function of a reactive system.  Representing feature requirements as

sequences of events is especially appropriate to a reactive system, because the functions of a reactive

system are usually provided as sequences of events (often but not always pairs of requests and

responses).   An end-user uses and memorizes the sequences for the functions that are important to

him. Internally, also, the network elements communicate with one another using sequences of events

according to defined protocols.  A customer (such as a service provider) for a feature implemented on
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a network element will want requirements stating the sequences of messages sent and received on the

network element interfaces.

A feature designer focuses on a particular set of network participants (subscribers and network

elements) when describing the communication behavior of a feature, in order to reflect a desired

viewpoint and level of detail for the feature requirements.  The designer may produce several different

versions of the requirements, from different viewpoints and at different levels of detail.  A set of

network participants used in a feature requirements, together with the protocols that are available

between them, is called a  platform.

A feature designer may choose to specify only the “user view” of a call, so that the platform includes

only subscribers and a black box representing the network. Requirements for AIN features define the

communication among various network elements such as Service Switching Points (SSP’s), Service

Control Points (SCP’s), and Intelligent Peripherals (IP’s).  All of these network elements are included

in the “network view” platform for an AIN feature.

Chisel characterizes a feature as the set of event sequences that are essential to the feature’s behavior.

The feature designer should include only those sequences whose omission would change the nature of

the feature.  For example, the behavior of Call Waiting is characterized by event sequences in which a

call arrives at a busy telephone.  Even though event sequences in which no call arrives at a busy

telephone can happen when Call Waiting is active, they are not essential to the definition of Call

Waiting.

The communication behavior of a feature is restricted by the communication that is possible between

the participants in the platform.  Each network element originates and recognizes a restricted set of

event types.  Also, only certain sequences of event types are possible for a given protocol or network

element.

For example, POTS (Plain Ordinary Telephone Service) allows the messages in Table 1 between a user

and a switching system (via a telephone).
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User to Switch Switch to User
Off-hook A:Address DialTone A:Address
On-hook A:Address Start AudibleRinging A:Address B:Address
Dial A:Address B:Address Start Ringing A:Address B: Address
Flash A:Address Start CallWaitingTone A: Address B: Address

Stop AudibleRinging A:Address B:Address
Stop Ringing A:Address B:Address
Stop CallWaitingTone A:Address B:Address
LineBusyTone A: Address
Announce A:Address R:Recording
Disconnect A:Address B:Address
Display A:Address R:Recording

Table 1.  POTS events, based on Bellcore’s Generic Requirements for Switching Systems [6].

The format of an event is: <event> <parameter>:<type> …  <parameter>:<type> where <event> is an

event name, <parameter> is a symbol, and <type> indicates the type of the parameter.  We use types

Address (for a telephone number), and Recording (for a set of recordings that can be played back or

visually displayed, as on a caller ID box).  As illustrated in Table 1, events are messages that are sent

by one party to the communication to one or more of the other parties.   Most of these events are self-

explanatory, but the event Disconnect A B may be confusing.  This event occurs at the subscriber A’s

telephone, informing her that the connection has been broken by another party to the active call

(subscriber B).

The  Dial A B event can be defined from a sequence of more primitive events, which we might call

Enter A digit.  Sequences composed of  Enter A digit events may be useful for distinguishing between

ordinary numbers, 800 numbers, and feature activation codes.  In this paper, as in the current version

of Sculptor, we assume that no events are composed of more primitive events.

One example of a feature from the telephone network is the function of receiving a call.  Table 2

contains several sequences of events from Table 1 that are involved in receiving a call.
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Sequence of Events Explanation
Start Ringing A B, Off-hook A, Stop Ringing A B,
On-hook A

The telephone rings, a user answers (goes
off-hook), and later hangs up (goes on-hook)
to terminate the call.

Start Ringing A B, Off-hook A, Stop Ringing A B,
Disconnect A B, On-hook A

As above, except that the calling party
disconnects before the called party goes on-
hook

Start Ringing A B, Disconnect A B, Stop Ringing A B The telephone rings and the calling party
disconnects before it is answered.

Table 2.  Sequences of events for receiving a call.

On a telephone that permits only incoming calls, and has no other features, the only sequences that can

occur are repetitions of the above three sequences.

The sequences in Table 2 use event types, which contain variable symbols taken from a finite set.  The

event types in a sequence diagram can be turned into events by substituting values from the domain of

the variable for the variable throughout the sequence diagram.  We use only event types in this paper,

and usually refer to them as events rather than event types.

In this paper, we will describe only those protocols and network elements for which there is a standard

or an implementation.  Because the primary purpose of Chisel is to describe communication between

disparate systems, perhaps belonging to unrelated organizations, we recommend that all requirements

also be restricted in this manner. The service design editor Sculptor, for creating Chisel requirements,

actually provides menus of event types for various platforms, such as POTS, the IN and AIN standards

IN CS-1, AIN 0.1, AIN 0.2, and AIN 0.x, and the mobile communications standard IS-41, and suggest

possible next events as the feature designer prepares the requirements.

In Section 3.2, we define Chisel requirements and describe how to specify both platforms and features.

In Section 3.2.1, we describe how to define the events and event sequences that are allowed on a given

platform.  Sculptor can use this definition to limit a feature intended for a POTS telephone to events

and event sequences allowed on a POTS telephone and similarly to limit an IN/AIN feature to allowed

events and event sequences.  In Section 3.2.2, we describe how to use Chisel to define a feature and

give an example of a feature definition. In Section 3.3, we show how the Chisel feature definitions can

be translated to different forms for other kinds of analysis.  In Section 3.3.4, we define the operations
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of composition and projection on features, and use these in Section 3.5 to make precise the idea of a

feature interaction.

3.2 Chisel specifications

A Chisel requirements definition or requirements specification consists of a feature name  N, a

requirements type  S, a set  P of participants, a set  T of event types, and a set of sequences of event

types.  The requirements types that are discussed in this paper and used in Sculptor are  platform and

feature.  The interpretation of Chisel requirements differs depending on the type of the requirements:

Platform requirements specify a set of event sequences that are allowed on the platform, while feature

requirements specify a set of event sequences that characterize the feature.

Textual expressions describing sequences are relatively hard to create and edit, so we simplify the job

of the feature designer by providing a graphical notation in Chisel and Sculptor for describing feature

behavior.  This notation is called a  sequence diagram.

1
Start Ringing B A

2
Off-hook B

3
Stop Ringing B A

4 
Disconnect B A

5 On-hook B7 
Disconnect B A

6
On-hook B

8
Disconnect B A

9
Stop Ringing B A

Figure 1.  Tree Diagram for Receiving a Call

This graphical notation was adapted from the current practice of requirements engineers.  It was

elicited at a series of workshops in which we observed their practices in creating the feature

requirements.  In current practice, a requirements engineer defines the sequences of event types for a

feature using a picture called a “tree diagram.”  The tree diagram gives the possible choices of next
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event as children of the preceding event.  The tree diagram for the sequences of events involved in

receiving a call is given in Figure 1.

By convention, the set of sequences corresponding to a tree diagram are those that begin at designated

start events and end at designated finish events.

To encourage conciseness in the diagrams, it is useful to permit branching when identical subgraphs

appear at multiple places in the same diagram.  Thus we permit branching, including loops, and hence

we allow arbitrary graphs.  For this reason, we call the diagrams “sequence diagrams” instead of “tree

diagrams.”   For those familiar with process algebra, a sequence diagram corresponds to a process

graph of a regular process, using trace semantics.   This correspondence is discussed in more detail in

Section 3.3.4.

Let  T  be the set of event types for a Chisel sequence diagram.  We assume that the parameters of the

events taken on values over finite sets, so that the set of event types is finite.  Since events are

messages between participants in the platform, we define attributes  sender(e) and  receivers(e) for

each event  e.  All of the senders and receivers should be participants in the platform, that is, for each

event  e belonging to  T,  sender(e) is in participant in  P and  receivers(e) is a subset of the

participants in P.

A sequence diagram has four components: V, VS, VF, and  E.

1. V is a set of typed, labeled vertices.  Each vertex  v belonging to  V has attributes  type(v) and

label(v).  The sequences of events that characterize a feature are constructed from event types, so

type(v) belongs to  T.  The label  label(v) of a vertex is used only to identify the vertex.  The labels

do not appear in the sequences of events.

2. VS " V is the set of start events in the sequence diagram.

3. VF  " V is the set of finish events.

4. E " V × V is a set of directed edges.

In Figure 1, VS = {1} and VF = {3,5,6}.  In many cases, nodes of VS  will not be root nodes of a

sequence diagram and nodes of VF   will not be leaf nodes, so these sets must be defined.
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The set of sequences generated by a sequence diagram is the set of sequences of event types

encountered when following paths of the diagram from a start vertex to a finish vertex.

To simplify drawing certain sequence diagrams, we assume that T contains an event type  noevent,

which is ignored when constructing event sequences.  Thus the sequence  a, noevent, b is the same as

the sequence  a, b.  To include an empty sequence in the set of event sequences represented by a

sequence diagram, include a vertex with event type  noevent as both a start and a finish vertex.

3.2.1 Defining Platforms Using Chisel

A Chisel specification of type  platform defines not only the event types allowed on the platform, but

also the sequences that are allowed on the platform.  For example, using a plain, ordinary telephone

(POTS), user-originated events Off-hook  and On-hook  must alternate.  Start Ringing  should never

happen unless the user telephone is on-hook and Stop Ringing  must happen immediately after it goes

off-hook, to avoid dangerously loud sounds in a user’s ear.  These are the only hard and fast rules

concerning a POTS telephone.  Because the POTS platform is so simple and non-restrictive,  it is not

especially interesting and we do not show the sequence diagram here.

The sequence diagram for an IN or AIN platform is much more interesting since it is more restrictive.

It specifies the allowed communication behavior among Service Switching Points (SSP’s), Service

Control Points (SCP’s), and Intelligent Peripherals (IP’s).  This behavior is specified in the various

AIN Generic Requirements documents, and is far more complicated than POTS.  We gave a brief,

simplified description of AIN here.

Features running on an AIN platform can modify the normal switch-based processing of a subscriber’s

call.  In order for an AIN feature to be used, the switch must be compliant with the AIN requirements.

These requirements define a state machine and a set of input and output messages and their parameters

[7, 8].  The messages include the usual messages between a user and a switch.  They also include a

collection of messages between a switch and an SCP.  The following table gives a simplified version of

some of these messages:
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Switch to SCP
Trigger N:TriggerName S:Address A:Address B:Address
Resource S:Address A:Address R:Recording

SCP to Switch
Response R:ResponseType S:Address A:Address … (see below)

Table 3.  Switch/SCP messages.

The format of the above message definitions is <messagename> <parameter>:<parameter type> … .

The type TriggerName is an enumeration of the names of IN triggers.  Some valid TriggerName’s are

ORIGINATION_ATTEMPT, INFO_COLLECTED, INFO_ANALYZED, and NETWORK_BUSY.

In the trigger message, the first address parameter is that of the subscriber, the second of the calling

party, and the third of the called party.  The type ResponseType is an enumeration of the SCP

responses to trigger messages.  Some valid ResponseType’s are ANALYZE_ROUTE, CONTINUE,

FORWARD_CALL, and  SEND_TO_RESOURCE.    The Resource S A D message responds to the

SEND_TO_RESOURCE message.  The string D is a string of collected digits. Additional parameters

(after the subscriber and calling party addresses) for the ResponseTypes are given in the following

table.

Response Type Additional Parameters
ANALYZE_ROUTE B:Address C:Address
FORWARD_CALL B:Address C:Address
CONTINUE B:Address
SEND_TO_RESOURCE R:Recording
DISCONNECT

Table 4.  Parameters for response messages.

ANALYZE_ROUTE S A B C means to route a call from A to B with C as the paying party (normally,

C will be A).  S is the subscriber on whose behalf the trigger was activated, usually A or B.

FORWARD_CALL S A B C  means to forward a call to C, originated by A, with terminating address

B.  CONTINUE S A B means to continue processing the call as if no trigger had occurred.

SEND_TO_RESOURCE S A R means to play the recording R at address A and collect the response

(if any).  DISCONNECT S A means to terminate processing of calls from A until after A has gone on-

hook.
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Error! Reference source not found. gives a simplified version of the sequence diagram for the AIN

model, as defined in GR-CORE-1298.  Only two of the possible triggers are included.  The other

triggers would add more event types following the event types shown, but the sequences of events are

quite similar for each trigger.

1
Off-hook A

2 Trigger ORIGINATION_ATTEMPT S A 
B

3
Fesponse SEND_TO_RESOURCE S A R

4
Announce A R

5
Dial A D

6
Resource S A D

8 Response DISCONNECT S A

9
On-hook A

13
Response ANALYZE_ROUTE S A X Y

10
DialTone A

11 
Dial A B

12
Trigger INFO_COLLECTED S A B

14 
LineBusyTone A

15
On-hook A

16 
Start AudibleRinging A X

17 
On-hook A

18
Stop AudibleRinging A X

19 
Stop AudibleRinging A X

20 
On-hook A

21
Disconnect A B

23
 On-hook A

22
Disconnect A B

25
noevent

Figure 2.  A simplified sequence diagram for the AIN platform, with triggers
ORIGINATION_ATTEMPT and INFO_COLLECTED.  Switch processing is potentially
interrupted by the two triggers.  The responses from the SCP are the same for both of these
triggers (although some other triggers have different responses).  It is also possible that neither
trigger is used.
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The current version of Sculptor contains the platform rules for various versions of AIN, one version of

IN, and the wireless communication standard IS-41.  Sculptor discourages a service designer from

creating feature requirements that are not in the allowed set for the relevant platform (but doesn’t

prevent it altogether).  It does this by providing a menu of possible next events after each event has

been placed in the sequence diagram.  In order to add other sequences, the feature designer must edit

the sequence diagram without Sculptor support.

3.2.2 Defining Features Using Chisel

A Chisel specification of type  feature means that the feature can be considered implemented on a

platform only if all of the specified sequences of events can be executed on the platform.  That is, a

subscriber can use any of the event sequences defined by the sequence diagram.

The platform need not be stated explicitly as part of the feature requirements, because a simple test can

be used to determine if a feature can be used on a given platform.  A feature using event types  T and

specified by sequence diagram  G is allowed on a platform providing event types  T’ and specified by

sequence diagram  G’ if  T " T’ and every sequence of event types generated by  G is also generated

by  G’.

Feature Example (Call Waiting).  The Bellcore Feature Specification Document for Call Waiting

says (in part) that

“Call Waiting is a feature whereby a line in the talking state is alerted by a call waiting tone

when another call is attempting to complete to that line.  ... The feature also provides a hold

feature that is activated by a switch-hook flash.  Consecutive flashes allow the customer (with

the feature activated) to alternately talk to the original and the new calling party.”

There are many more pages of requirements, but this particular requirement states that the Call

Waiting feature recognizes the call-waiting events  Start CallWaitingTone m n and  Stop

CallWaitingTone m n and the event  Flash m in addition to the more usual POTS events.  Also, Call

Waiting must provide, among others, the following characterizing sequence of events:

Off-hook m, Dialtone m, Dial m n, Start AudibleRinging m n, Stop AudibleRinging m n, Start
CallWaitingTone m q, Flash m, Flash m, Flash m, Disconnect m q, Flash m, Disconnect m n,
On-hook m
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Additional sequences are needed to characterize Call Waiting.  The user view sequence diagram

including the most common Call Waiting sequences is given in Figure 3.

2
DialTone A

3
Dial A B

4
Start AudibleRinging A B

5
Stop AudibleRinging A B

6
Start CallWaitingTone A C

7 
Flash A

8 
Stop CallWaitingTone A C

9 
Flash A

10 
Flash A

11
Disconnect A C

12
Flash A

1
Off-hook A

40
Disconnect A B

41
Flash A

24
On-hook A

17
Disconnect A C

18 
Stop CallWaitingTone A C

25 
Stop CallWaitingTone A C

42
Disconnect A C

43
On-hook A

44
On-hook A

45
Disconnect A C

19
Disconnect A B

21
On-hook A

20
On-hook A

22
Disconnect A B

13
Disconnect A B

15
On-hook A

14 On-hook A 16
Disconnect A B

33
On-hook A

341 
Start Ringing A B

36
Disconnect A B

38
On-hook A

35
Off-hook A

37
On-hook A

39
Disconnect A B

26
On-hook A

27 
Start Ringing A C

29
Disconnect A C

30
On-hook A

28
Off-hook A

31
On-hook A

32
Disconnect A C

23
Disconnect A B

A

EC D

B

Figure 3.  A sequence diagram for the most common Call Waiting sequences.
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The start and finish vertices in Figure 3 are VS = { 1}, VF = { 20, 22, 30, 32, 38, 39, 14, 16, 43, 45 }.

The “expected” Call Waiting scenario, in which a call arrives to a busy line and the Call Waiting

subscriber switches back and forth, is in the top center of the diagram.  The subdiagram A applies if

the second call hangs up immediately. Subdiagram B or C applies if the subscriber hangs up while a

party is on hold.

All of the features described so far have been based on a “user view” platform between a single user

and the network.

2
DialTone A

3
Dial A B

4
Start AudibleRinging A B ||| 

Start Ringing B A

6 
Stop AudibleRinging A B ||| 

Stop Ringing B A

1
Off-hook A

5 
Off-hook B

7
On-hook A

10 
On-hook B

8 
Disconnect B A

11 
Disconnect A B

12
On-hook A

9 
On-hook B

15
LineBusyTone A

16
 On-hook A

17
On-hook A

13
On-hook A

14
Disconnect B A ||| 

Stop AudibleRinging A B |||
 Stop Ringing B A

Figure 4.  Two-party POTS sequence diagram.  In this diagram, we use a shorthand notation
E|||F for events that occur in succession, in either order EF or FE.
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We can also combine the views of the originating and terminating ends of the call to specify the impact

of features on the communication behavior of both parties to the call.  This platform includes the two

subscribers and the network. Here is a characterizing sequence of the basic POTS call service between

two parties:

Off-hook m, Dialtone m, Dial m n, Start AudibleRinging m n, Start Ringing n m, Off-hook n,

Stop Ringing n m, Stop AudibleRinging m n On-hook n, Disconnect m n, On-hook m

A complete sequence diagram for the two-party version of POTS is given in Figure 4.

We illustrate the Sculptor on-screen notation for an AIN feature in Figure 5. The feature is Originating

Call Screening, which requires the telephone user to enter a PIN before being allowed to originate

calls to screened numbers from the subscriber’s telephone.  The network view presented in Figure 5

specifies the effect of this feature on the communication behavior of the SSP, SCP, and IP.  The

Sculptor representation adds some visual cues to make it easier to distinguish which network elements

are involved.  It uses an ellipse to represent an SSP, a triangle an SCP, and a square an IP.  A message

from one network element to another is represented by drawing the symbol for the sender on top of

the symbol for the receiver.  The symbol for the receiver is offset up and to the right.

After the user has dialed, the SSP processing is interrupted and a trigger message,

INFO_COLLECTED, is sent to the SCP.  The SCP processes the trigger message by checking

whether the dialed number is allowed.  If it is, the SCP tells the SSP to route the call

(ANALYZE_ROUTE).  If not, the SCP gives the user an opportunity to enter a PIN to over-ride the

Originating Call Screening (SEND_TO_RESOURCE).  If the PIN is correct, the SCP will tell the SSP

to route the call; otherwise, it will tell the SSP to disconnect it.
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4 Trigger INFO_COLLECTED A A B

3 Dial A B

2 DialTone A

1 Off-hook A

5 Response ANALYZE_ROUTE A A B

7 LineBusyTone A6 Start AudibleRinging A B

8 Response SEND_TO_RESOURCE A A R

9 Announce A R

10 Dial A N

11 Resource A A N

12 Response DISCONNECT A A

13 On-hook A

Figure 5.  AIN Feature Originating Call Screening

3.3 Translation to and from other forms

3.3.1 Message sequence charts.

When designing a new feature, today’s feature designers produce several message sequence charts,
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also called call flow diagrams or call flows.  The call flow has a vertical bar (a fence post)

corresponding to each network element participating in the platform.  The arrows between fence posts

represent messages.  If a path can be drawn from the head of an arrow downward through the chart to

the tail of another, then the first message precedes the second one.

Figure 6 illustrates how to generate a message sequence chart from the selected path in a sequence

diagram of Figure 5 (the edges of the selected path are emboldened).  As mentioned in Section 2.4,

feature designers typically produce at least the call flow for the “sunny day scenario.”  They also

generate several call flows describing exception and error scenarios.  Each one of these scenarios

represents a single path, from root to leaf, in the sequence diagram.

Sculptor automatically generates call flows between two user-selected vertices of a sequence diagram.

If there are multiple paths, Sculptor selects a shortest path and generates the call flow corresponding

to that path. If there is more than one start vertex, the feature designer must designate the start vertex

as well.  A feature designer may designate a path other than the shortest one by selecting more

vertices.  The path used will be the shortest path including all of the vertices.

Off-hook A

DialTone A

Dial A B
Trigger INFO_COLLECTED A A B

Response SEND_TO_RESOURCE A A R

Announce A R

Dial A N

Resource A A N

Response DISCONNECT A A N

On-hook A

SSP SCP

Figure 6.  Converting a selected sequence from the sequence diagram in Figure 5 to a message
sequence chart
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Temporal logic statements can be derived from message sequence diagrams.  An algorithm for this

purpose can be found in [35].  Temporal logic statements are used in the SCF3 tool suite to validate a

detailed software specification against the requirements specification, using SPIN [30].

3.3.2 Text.

Sculptor also generates a textual representation of a sequence diagram in a modified outline format.

The textual representation has two key advantages:  First, it is easy to share among people who have

differing computing hardware and software.  Second, it is considerably terser than the corresponding

sequence diagram, requiring less than half the paper to print a readable and complete requirement.

To produce the textual form, the sequence diagram is traversed recursively, using a depth-first search

[2], and vertices are listed in the order in which they are encountered, so all the vertices in the

subgraph below vertex 1 are listed before those below vertex 2.  Vertices with siblings have labels and

all children of the same parent are indented the same amount.  A vertex that is an only child is listed

directly beneath its parent; it is not indented.

Our sequence diagrams are frequently graphs rather than trees, so we have to be able to account for

cycles and branches.  In the modified outline format, any vertex which has multiple parent vertices is

also labeled, and all parent vertices encountered after the first one are described by adding a  ’Goto ...’

line to the outline.  The textual form of the Call Waiting sequence diagram given in Figure 3 is

illustrated in Figure 8.

1: Switch: Start Ringing B A

1.1: User: Off-hook B
        User: Stop Ringing B A

1.1.1: Switch: Disconnect B A
          User: On-hook A

1.1.2: User: On-hook A

1.2: Switch: Stop Ringing A B

Figure 7.  Textual form of the sequence diagram for receiving a call,
from Figure 1.
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Service designers can edit the text rather than the sequence diagram.  Turning the text back into a

graph is a difficult problem, so we manage it in two stages:  First, we strip all the "Goto’s" from the

text form, giving a spanning tree of the sequence diagram. We can then use any one of the many

algorithms for drawing trees (Walker 1990), and redraw the additional edges afterwards.

3.3.3 Transforming sequence diagrams to finite state automata and regular expressions

In this section we describe how to define a state machine recognizing the same sequences as are

specified by a Chisel sequence diagram.  We define the state machine by defining a state corresponding

1: User: Off-hook A
 Switch: DialTone A

User: Dial A B
Switch: Start AudibleRinging A B
Switch: Stop AudibleRinging A B
1A: Switch: Start CallWaitingTone A C

1.1: User: On-hook A
Switch: Stop CallWaitingTone A C
Switch: Ringing A B
User: Off-hook A

1.1.1: Go to 1A

1.1.2: User: On-hook A

1.1.3: Switch: Disconnect
Go to 1.1.2

1.2: User: Flash A
Switch: Stop CallWaitingTone A C

1.2.2: User: Flash A

1.2.2.1: Switch: Disconnect A B
User: Flash A
1.2.2.1.1: Go to 1A
1.2.2.1.2: Switch: Disconnect A C

Go to 1.2.2.1.3
1.2.2.1.3: User: On-hook A

1.2.2.2: User: Flash A
1.2.2.2.1: Go to 1.2.2
1.2.2.2.2: Switch: Disconnect A C

User: Flash A
1.2.2.2.2.1: Switch: Disconnect A B

  Go to 1.2.2.2.2.2
1.2.2.2.2.2: User: On-hook A
1.2.2.2.2.3: Go to 1A

1.3  Switch: Disconnect A C
         Switch: Stop CallWaitingTone A C
         Go to 1A

Figure 8.  Textual form of Call Waiting requirement
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to each path in the sequence diagram beginning at a start vertex.  We also define a state corresponding

to the empty path.  For each sequence of event types along such a path, the transition on event e takes

state s to state se.  Figure 9  illustrates this translation, using the sequence diagram from Figure 1.

Table 5 summarizes the transitions of the finite state machine.

1
Ringing

2
Offhook

3
Disconnect

4
Disconnect

5
Onhook

6
Onhook

Ringing

Onhook

Onhook

Offhook, Onhook, Disconnect

Onhook Ringing

Offhook Onhook 
Ringing Disconnect

Offhook, Onhook, 
Ringing, Disconnect

0
empty

1
R

2
R Off

3
R D

Offhook Disconnect

Onhook Offhook 
Ringing Disconnect

4
R Off D

Disconnect

5
R Off On

Ringing Offhook

6
R Off D On

7
error

Offhook Ringing 
Disconnect

Figure 9.  Translation from a sequence diagram (left)to a state machine (right).  Event types are
abbreviated in the state machine: R=Ringing, Off=Off-hook, On=On-hook, D=Disconnect.
State 0 is the empty state.  State i corresponds to the sequence of event types defined by a path
terminating at vertex i.

The transitions of the finite state machine simulate a traversal of the sequence diagram from a start

vertex to a final vertex.  Thus the set of sequences of events accepted by the finite state machine is the

set generated by the sequence diagram.  From the finite state machine, we can compute the regular

expression for the set of sequences of event types.

Regular expressions (and hence also finite state machines) can be converted to sequence diagrams

using a construction very similar to that given on pp 122—124 of [2].
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Old State Event New State Condition

s e se If a vertex corresponding to s has a child with event type e

s e error No vertex corresponding to s has a child with event type e

error e error always

empty e e If e is the event type of a start vertex

empty e e If no start vertex has event type e

Table 5.  Defining transitions of a finite state machine from a sequence diagram

3.3.4 Defining a process algebra expression from a sequence diagram

Process algebra provides a algebraic framework for the problem of concurrent communicating

processes[29, 39].  We will show in this section that Chisel maps naturally to a process algebra.  Since

Chisel does not deal at all well with concurrency, the mapping to process algebra may be a good way

to address this limitation.  Using process algebra, we can also permit infinite sets of events.

The definitions we use here are based on Baeten’s text on process algebra [4].   A Basic Process

Algebra (BPA) is defined by its signature and its axioms.  The signature consists of constants and the

operators used to form expressions.  For Chisel, the constants are the event types and the operators

are sequencing and non-deterministic choice.  The operators as they appear in sequence diagrams are

shown in Figure 10.  In LOTOS, (a) would be written E;F, (b) would be written E[]F, and (c) would

be written E;(F[]G) [45].

The axioms of basic process algebra are:

E[]F = F[]E
E[](F[]G) = (E[]F)[]G
E[]E = E
(E[]F);G = E;G[]F;G
(E;F);G = E;(F;G)

Since with trace semantics, processes are equal if they have the same traces, we add the axiom:
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E;(F[]G) = E;F[]E;G

E

F

E

E

F

F

G

(a) (c)(b)

Figure 10.  (a) Sequential composition (E followed by F); (b) Non-deterministic choice (E or F);
(c) E followed by either F or G

With just the first five axioms, above, two expressions that represent the same process are said to be

bisimilar,  and the algebra is said to have bisimulation semantics.   To understand the difference

between trace and bisimulation semantics, consider the difference between the caller and called party in

setting up a call.  After the caller dials (the event Dial A B), the next event is either AudibleRinging A

B or LineBusyTone A.  The caller has no control over which event happens next.  This corresponds to

the expression  Dial A B ; AudibleRinging A B [] Dial A B; LineBusyTone A .   In contrast, the called

party does make the choice of which event occurs next.  (This choice is independent of the idle or busy

state of the called side – consider the Make Busy feature and the Call Waiting feature.)  From the

called side, the expression would be Dial A B ; (AudibleRinging A B []LineBusyTone A) .  Because of

the difference in choice points, the two expressions are not equal.

We have been using trace semantics for sequence diagrams because the requirements engineers treat

each feature as a single process, regardless of the number of  parties to the call or the number of “black

box” network elements involved.  Trace semantics seems to provide the most faithful reflection of
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their verbal description of their reasoning process as they create their tree diagrams.  However,

concurrency is implicit in communications systems.  This concurrency is implicitly recognized in the

sequence diagrams, since each event involves a sender and one or more receivers.  We leave it to

future work to determine how to decompose the monolithic requirements of the sequence diagrams

into a collection of requirements for concurrent processes.

3.4 Operations on Sequence Diagrams

 In this section, we define two operations for combining sequence diagrams (union and extension) and

one operation for focusing on a restricted view of a sequence diagram (projection).  To motivate the

operations, we consider how features execute.  Our model of feature execution is that the feature

executes on a network element.  A stream of messages arrives at the network element from other

network elements.  The arrival of each message is an event at the receiving network element.  It

processes the message and may respond, sending one or more messages back to the other network

elements.

A feature processes every event that belongs to an event type that it recognizes.  If the Chisel

specification has set T of event type, then the feature processes all incoming events that belong to T

and may generate outgoing events, which must also belong to T.  Thus the sequence of events visible

to the feature can be constructed from its sequence diagram using a projection operation.

Projection:  The projection #E(s) of a sequence s onto a set of event types E is the maximal

subsequence of s such that all events in s belong to E.  The projection of a set of sequences S

onto a set of event types E is the set { #E(s) | s belongs to S }.

When projecting onto the event types associated with a specific feature, we will write events(F) for the

set of event types of feature F.

The projection operation is useful for describing a specific view of a feature.  For example, a one-sided

user view for POTS can be obtained from the two-sided view in Figure 4 by projecting the sequence

diagram for POTS onto the terminating-side event types.  It’s easy to see that the projection onto the

terminating side event types Ringing n m, On-hook n, Off-hook n, and Disconnect n m gives the same

sequence diagram as Figure 1 for receiving a call.
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The union operation describes the combined behavior of two features, as defined by their sequence

diagrams.  The set of event sequences in a Chisel specification must all be available to a subscriber in

any implementation of the feature.  In this spirit, we say that we have implemented both features of a

subscriber if a subscriber can use all of the sequences characterizing either of the features.

Union:  Let LF be the set of sequences characterizing feature F and LG be the set of sequences

characterizing feature G.  Then the union F $ G of features F and G is characterized by the set

of sequences LF $ LG.

Union is the set union of the sets of event sequences, so that the requirements of the union of the

features is the union of the requirements.

Feature extension provides a shorthand for re-use of parts of the sequence diagram from other

features.  Feature F extends feature G when it behaves just like G until it is invoked or initiated by

some event, after which the behavior modifies G’s behavior.  F may also return to the strict behavior

of G.

Extension: If G is a sequence diagram with one entry vertex and one exit vertex and if the

sequence diagram F has a subgraph H with one entry vertex and one exit vertex, then we can

extend F by replacing the subgraph H with G, and possibly augmenting F’s start and finish

vertex sets with vertices from G.

[See attached drawings, figures 11a and 11b.]

Figure 11.  Extension of POTS with Call Waiting.  The subgraph of the POTS sequence
diagram (left) containing vertices 7, 8, and 9 can be replaced by the Call Waiting sequence
diagram with entry vertex 15 and exit vertex 28.
Figure 11 illustrates the use of extension to abbreviate the Call Waiting sequence diagram.  We permit

insertion of vertices having event type  noevent (vertices 7 and 9).  These vertices simplify

constructing a subgraph with only one entry and one exit point.

3.5 Feature Interactions

Researchers on feature interactions agree on an informal definition of feature interaction, that a feature

interaction occurs between two features if one feature changes the behavior of the other.  We use the

union and projection operations to formalize that notion here.  We say that one feature changes the
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behavior of the other if, after projecting the sequences in the combined requirement (the union of the

two sets of event sequences) onto the event types recognized by one of the features, the resulting set

of sequences is different from the original set of sequences for the feature

Feature Interaction: Given a feature F characterized by the set of event type sequences LF

and the feature G characterized by the set of event type sequences LG, if #events(F)(LF 
 $ LG) % LF

or #events(G)(LF $ LF) % LG, then there is a feature interaction between F and G.

We can be a little more specific.  If a sequence s is in LF and #events(G)(s) is not in LG, then feature G can

observe a sequence of events when F is active that it may not be able to process.  As a consequence,

additional requirements are needed for G’s behavior when F is active.

Feature interactions slow the service creation process considerably.  In practice, when two features do

interact, it is necessary to create extra requirements explaining how the two features behave in

combination.  Also, the software specifications and the code need to be altered for the case that both

features are active.  If features do not interact, a simple joint recognizer can be implemented by

running the individual recognizers in parallel.  Thus if two features do not interact, they can be used

without modification on the same call.

Discovering a large number of feature interactions in the Service Description phase may be reason for

reconsidering development of a new feature.

Feature Interaction Example (Three-Way Calling and Call Waiting).   The primary cause of

interactions between Three-Way Calling and Call Waiting is use of the same event (Flash) for different

purposes by the two features.  Once the Flash event has been used, the sequences possible for the two

features diverge.  The following sequence illustrates a Call Waiting sequence whose projection is not a

Three-Way Calling sequence.  The emboldened events are recognized by both features and the italic

events are recognized only by Call Waiting.

Ringing m n, Off-hook m, CallWaitingTone m q 1, Flash m, Disconnect m n, On-hook m

In this situation, after Flash, Three-Way Calling would provide Dialtone.

Conversely, the following Three-Way Calling sequence does not project onto any valid Call Waiting

sequence:
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Ringing m n, Off-hook m, Flash m, Dialtone m, Dial m q, LineBusyTone m, Flash m,

Disconnect m n, On-hook m

After the second Flash event, Three-Way Calling returns the subscriber to the original call, which is

eventually disconnected.  But Call Waiting would give Dialtone again after the second Flash.

Bergstra and Bouma [11] have defined features using interworkings, which are quite similar to

message sequence charts.  A feature interaction occurs if the interworkings representing two features

do not have a consistent merge.  Our definition of feature interaction reduces to this if each feature is

defined by only one sequence of events.  It is not clear what Bergstra and Bouma’s composition

operation is if each feature consists of several interworkings.  Our definition says that features

interwork (do not interact) if there is a single consistent interworking merge of the features.

Another interesting issue, which we leave to future work, involves generalizing the definition of

feature interaction to use bisimilarity instead of trace equality.

Unfortunately, absence of feature interactions in the “user view” means only that it is possible to

implement the features interactions.  If an implementation has already been chosen for one feature that

will interact with any reasonable way of implementing the second feature, then feature interactions will

still occur.  The practice, at present, is to define requirements for these feature interactions also.  For

example, current implementations of the switch-based Repeat Call feature cannot be used after dialing

an 800 number, because it is implemented by monitoring the number for busy, and it cannot do this

with 800 numbers.  Obviously, other ways of implementing Repeat Call (for example, re-processing

the call from the point at which the switch collected the digits) would work.

4. Using Chisel in the Service Creation Process

The importance of Chisel in the service creation process is that it provides a simple method for

capturing the essential behavior of a service.  As in the automation of many tasks, the hardest part is

not developing the algorithms or doing the computations. Instead, the hardest part is capturing correct

and unambiguous input at a reasonable cost.

Using Chisel, Sculptor provides a simple tool that automates tasks currently done manually by

requirements engineers (drawing sequence diagrams and message sequence charts).  By automating

the tasks, it aims to make them less tedious.  In addition, it reduces the number of errors by assuring
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that the events used are part of the protocol and that the message sequence charts are consistent with

each other and with the sequence diagram.  Finally, the generated requirements are unambiguous.

Defining feature requirements using Chisel and Sculptor supports better integration of the service

development process steps and simplifies validation of a feature in its various forms throughout the

service creation process.  Here we detail some of the benefits that Chisel and Sculptor can provide at

each step of the service creation process.  (The problem descriptions that follow are very terse

summaries of the descriptions in Section 2.)

1. Needs Analysis Problems.

i) Problem: Competitive pressure hinders analysis of feature interactions.

Contribution: Existing service features are easy and inexpensive to model with Sculptor, just

by observing their actual behavior. We hope that this will encourage sharing of requirements

for existing features in order to improve interoperation of network features.  We recognize,

however, that planning information is unlikely to be shared.

ii) Problem: Communication is disrupted at each handoff.

Contribution: Visualization and simulation tools can be developed for features defined in

Chisel, since they are easy to translate to other forms.  Such tools can encourage dialog

between requirements engineers and marketers, to check that the requirements describe the

intended feature accurately.  Some forms of usability testing are also possible based on Chisel

requirements.

2. Service Description Problems.

i) Problem: Designers must deal with documentation for a myriad of network elements,

technologies, and vendor implementations.

Contribution: Chisel supports automated techniques for restricting a requirement to available

events, as illustrated by the tool Sculptor.   The tool provides menus of the available events for

each message between a pair of network elements.  Which events are available can depend not

only on the messages defined on the platform, but on more specific rules such as those for AIN

messages and responses.  Sculptor currently contains the rules for AIN 0.1, AIN 0.2, AIN 0.x,

and IN, among others reducing the level of expertise and the need for either reference
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documents or eidetic memory while doing service design.

ii) Problem: The documents involved are both numerous and voluminous.

Contribution: Chisel does not address access to documents, but the SCF3 tool suite includes a

knowledge base to provide efficient access to relevant information about AIN feature

interactions.

iii) Problem: Most documents and charts are in forms that prevent easy automation.

Contribution: The Chisel language supports the current process of defining feature

requirements, so that service designers produce the same documentation more efficiently and in

a processable form. As shown in section 3.2, Chisel requirements specifications can be

translated to message sequence charts and various formalisms for processing and analysis.

iv) Problem: The network view designer may duplicate work performed by the user view designer.

Contribution: Because Chisel requirements specifications can be translated automatically to

message sequence charts, these can be available to anyone in the service creation process as

long as they have the Chisel requirements.  When we looked into current practice for

producing formal requirements specifications, we found that the reason that complete

specifications are seldom produced is the level of detail and consequent additional expense

required. Since Chisel supports current practice, we believe that it is much more likely to be

used in practice.

v) Problem: Acceptance tests are created manually.

Contribution: The Chisel requirements specifications can be used as the basis for generating

acceptance tests.

vi) Problem: Analysis of feature interactions is ill-defined.

Contribution: The Chisel requirements specification can be used for feature interaction

detection.

3. Service Specification Problems.

i) Problem: Most of the input to this step is in natural language and hence ambiguous.

Contribution: Chisel can provide unambiguous definitions of communication behavior.  Some

of the requirements on the service logic may still be ambiguous.
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ii) Problem: The software specification is rarely complete enough for verification.

Contribution: Because the Chisel requirements specification covers end-to-end behavior, the

service specifier can verify the impact of the service logic on end-to-end behavior.  Most

important, if verification of specifications against Chisel requirements is combined with

validation of Chisel requirements against end-user needs, the match between the specifications

and the end-user needs can be checked.

4. Service Development Problems.

i) Problem: Implementation decisions made for one feature may affect its interactions with an

unanticipated new feature.

Contribution: Chisel supports analysis of implementation decisions regarding the use of

messages for potential feature interactions.

ii) Problem: As more AIN features are added the complexity of introducing new ones increases,

slowing their introduction.

Contribution: Chisel simplifies feature interaction analysis, potentially improving understanding

of the complexity of adding a new feature and supporting decisions about how to resolve it.

iii) Problem: Defining the behavior of a service feature in the presence of anomalous behavior

elsewhere in the network can be difficult.

Contribution: Chisel can help to identify such issues.

5. Conclusions and Potential Extensions

Chisel and Sculptor reduce the gap between theory and practice in the design of communications

services.  They do this by providing an approach that is accessible to network requirements engineers

and that defines requirements specifications in a form that can be translated to some commonly used

formal languages.  They support a task that must be done, they are based on user studies to provide

usability, and they can improve the quality of the final feature by enabling better validation and

verification.

There are three basic limitations to Chisel: It is only a requirements language, so that the automatic

translation tools provided in Sculptor are crucial to its usefulness as part of the service creation

process.  It does not handle concurrency at all well.  And it doesn’t fix the process, although it should
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make it easier to follow a good process.

Since Chisel is a requirements language, it is natural that most of its contributions to the service

creation process occur during the Service Description step when the requirements specifications are

generated.  However, it can support better communication and verification at all steps of the process.

Chisel offers the opportunity to create and store feature requirements specifications in a formal

language, which reduces the extensive reliance on natural language in service creation, the source of

much ambiguity and rework.  This ambiguity slows down the work within a single company, and

results in misunderstandings between companies, since switch vendors may interpret feature

requirements differently.

Storing requirements specifications in a formal language has further benefits:  It makes it possible to

generate acceptance tests automatically, which suggests that testing is more likely to be thorough --

and more likely to be done.  It also becomes feasible to automate verification of the requirements

specification against the requirements.

Feature interaction analysis.  Chisel and Sculptor also suggest a path to improvement in the

interworking of services and their features.  Feature requirements in Chisel can be subjected to feature

interaction analysis, and some classes of feature interactions should be fairly easy to detect from any

formal requirements.  This is much earlier in the process than has been possible before.  This means

that marketers to make much earlier decisions to cancel feature development and feature designers can

modify the requirements if necessary to avoid feature interactions.

Other problems not addressed by Chisel.  There are several problems that arise in the service

creation process that are beyond the reach of a new requirements language.

Service specification:   Failure to communicate the software specification to the developers will not be

helped by Chisel or Sculptor.  We believe that before software specification will be used at all

extensively in practice, there must be tools that translate the specification to executable code that can

be used on the final platform (even if it must be modified first).

Service development:  Chisel and Sculptor do not provide support for this phase of service creation,

beyond communication of requirements and generation of acceptance tests.

Additional tools.  The use of a requirements language like Chisel and a tool like Sculptor suggest
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other possibilities for automating the service creation process.  Simulation and visualization tools

could provide feedback to marketers to determine if the specified service is indeed what they

requested.

Future work.  We find it intriguing that there is a close relationship between sequence diagrams,

which were developed entirely from a usability perspective, and process algebra, which is a theoretical

framework for proving properties of concurrent processes.  This close relationship promises the

possibility of developing usable tools for applying process algebraic techniques without forcing a

requirements engineer to understand the theory.  We hope to develop and to see extensions of this

work to make that possible.

Another interesting issue for further investigation is whether a tool like Sculptor would be useful for

Internet services.  The competitive environment and interworking issues arise for Internet services.

Internet telephony services could surely benefit from application of this technology.  We have found it

interesting to speculate about the applicability to Web technology.
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