
Using Self-Similarity to Increase Network Testing

Effectiveness

Constantinos Djouvas, Nancy D. Griffeth, Nancy A. Lynch

June 1, 2005

1 Introduction

Network testing presents different challenges from software testing. One chal-
lenge is that only a small number of networks, at best, can actually be tested,
even when the goal is to test a class of networks. For example, when vendors test
their network equipment, they are trying to verify that the equipment works in
an entire range of network topologies and configurations.

Networks vary in other contexts as well. An ISP network changes continu-
ously. Even small organizations add new hosts regularly. They also add or swap
in new network equipment as new technologies or higher bandwidths become
available, as for example adding new wireless access points. The remaining
equipment must continue working as expected.

This problem motivates the question of how to choose a network for testing,
when the real goal is to verify that an entire class of networks works. The central
goal of this work is to find a single representative of a class of networks, whose
correctness implies the correctness of the class. This paper investigates the use
of a subnetwork that is common to all of the networks in the class and whose
behavior looks like the behavior of any of the networks. When a subnetwork
has this property, we call the networks “self-similar” because each is similar to
a substructure of itself.

Perhaps the best-known example of this is the use of proxies in a network.
A Web server behind a proxy looks like a Web server to a client; similarly, a
proxy and client together look like a client to the Web server (Figure 1).

2 Related Work

Protocol conformance testing solves the network testing problem by verifying
that the implementation of each network device conforms to the required pro-
tocol standards. The network can then been assumed to have the required
properties, as long the protocol standards have been shown to have them. An
excellent review of protocol conformance testing appears in [9].

1



Figure 1: Self-Similarity Example

In practice, however, this requires a validated formal model of each protocol
and proofs that the models provide the required network properties. Internet
standards have rarely been formalized and the job of developing formal proofs
has barely begun. Some standards, such as BGP, have actually been shown
to have serious problems [6]. Others, such as DHCP, work correctly with high
probability, but will behave incorrectly on rare occasions [4]. Also, as exami-
nation of network configuration manuals and how-tos reveals, most protocols -
even if they have been proven correct - require careful configuration to operate
correctly (see, for example, [2]).

This situation requires a different approach to verifying that TCP/IP net-
works behave correctly. One such approach is to extend protocol conformance
testing to “network interoperability testing,” as in [5, 7]. This approach does
not assume that the model of the network has any particular relationship to the
actual states of the network. Instead, the network is a black box, whose external
behavior is known but whose internal behavior cannot be observed. The test
methodology requires coverage of all possible sequences of end-user actions.

However, the problem of determining what network to test has not been
addressed. In this paper, we suggest an initial approach to this. The approach
requires modeling the network at some level of abstraction. We use the I/O au-
tomata model [10], because it provides the ability to model at a variety of levels
of abstraction; because the composition operation provides a good reflection of
the interaction of components in a network; and because of the variety of proof
techniques available.

This paper proposes an approach to reducing the number of networks to
be tested and to minimizing the size, by using the concept that networks are
usually designed to hide substructures. Hence, most networks are built from
components that behave like the network as a whole. We show how this knowl-
edge can be used to justify testing a single bridge to determine its forwarding
behavior, instead of having to construct an entire network of bridges. In general,
the substructure to be tested will be larger than a single device.

The testing problems raised by the paucity of models for Internet protocols
are being addressed in work reported elsewhere [3]. The basic concept in that
work is to develop the formal model from the network itself, and ask whether
the model has the required properties, instead of developing the model from the
standard and asking whether the network implements it.

Section 3 introduces learning bridges and their functions. Section 4 con-

2



tains the necessary definitions for the I/O Automata model. Section 5 defines
self-similarity of I/O automata and presents some preliminary results for self-
similarity. Section 6 contains two proofs of self-similarity of learning bridges.
Section 7 presents the conclusions and some directions for future work.

3 Learning Bridges

A learning bridge incorporates two important algorithms, the learning bridge
algorithm and the spanning tree algorithm. In this section we give a brief
description of both algorithms.

3.1 Learning Bridge Algorithm

Learning bridges interconnect separate IEEE 802 LAN segments into a single
bridged LAN.

A learning bridge relays and filters frames “intelligently” between the sepa-
rate LAN segments [8]. Before the bridge learns the location of a MAC address,
it forwards every packet sent to that address out every port except the one it
arrived on. Once a learning bridge has learned the location, it forwards the
frame out only one port, which is the port leading to the destination address.
This reduces traffic in parts of the bridged LAN that do not lie in the path
between the source and destination.

The forwarding algorithm maintains a database, called the filtering database,
that records the port through which each LAN destination address can be
reached from the bridge. Each time the bridge receives a packet, the forwarding
algorithm updates the filtering database entry for the source address to reflect
the port at which it arrived.

Entries in the filtering database age. If no frame arrives having a given MAC
Address as a source for a configurable period of time, the entry for the MAC
address is removed from the database. Usually the ageing time is long (e.g.
Ciscos default value is 5 minutes), since during normal operation, information
in the database must change only after a physical relocation of stations (see [1],
page 13-8).

3.2 Spanning tree algorithm

The Spanning Tree Algorithm converts an arbitrary topology to a tree. This
eliminates cycles from the network so that frames won’t be forwarded forever.
Since this is a crucial property for correctness of a learning bridge, we assume
the following properties required by the standard are enforced by the Spanning
Tree Algorithm:

• The Spanning Tree Algorithm creates a single spanning tree for any bridged
LAN topology. Thus, there is a unique path between any two hosts and
cycles are eliminated.

3



• If there is a failure, the algorithm automatically reconfigures the spanning
tree topology.

• In the case of network expansion, the algorithm automatically adjusts the
network eliminating the possibility of cycles.

4 The I/O Automaton Model

We use the I/O Automata model [10] to model the network under test. This
model represents system components and their interaction with each other. For
our purposes, the important operations on automata are composition (of inter-
acting components) and hiding (making actions invisible to the environment of
an automaton).

The I/O Automaton Model also provides techniques for proving properties
of the protocols. An important technique for proving correctness of distributed
algorithms is simulation. The idea is that an algorithm that simulates a second
algorithm can be considered to implement the second algorithm. A simula-
tion relation relates the states of the simulating automaton to the simulated
automaton.

Properties of I/O Automata are often stated as trace properties, which are
properties of externally visible sequences of actions of the I/O automata.

4.1 Definitions

An I/O automaton A consists of the following five components:

• sig(A), a signature, consisting of three disjoint sets of actions: the in-
put actions in(sig(A)), output actions out(sig(A)), and internal actions
int(sig(A)). Output and internal actions are locally controlled; input ac-
tions are controlled by an automaton’s environment. The set of all actions
in the signature is denoted acts(sig(A)).

• states(A), a nonempty, possibly infinite set of states.

• start(A), a nonempty subset of states(A), called the start states.

• trans(A), a state-transition relation, contained in states(A)×acts(sig(A))×
states(A). We require that for each state s and input action π, there is a
transition (s, π, s′).

• tasks(A), a task partition, which is an equivalence relation on the locally
controlled actions of A and which has at most countably many equivalence
classes.

An execution of an I/O automaton is a sequence s0, π1, s1, ..., sn−1, πn, sn

where s0 is a start state and (si−1, πi, si) is a transition for each i ≥ 1. An exe-
cution can be finite or infinite. The set of executions of I/O automaton A is de-
noted as execs(A). We define traces(A) as the set of all sequences π1, π2, ..., πn, ...
obtained by removing the states from a sequence in execs(A).

4



A trace property of an automaton A is a property that holds for all traces
of A.

The composition operation allows the construction of complex I/O automata
by combining primitive I/O automata. To compose automata, we consider
actions with the same signature in different automata to be the same action,
and when any component performs an action π, it forces all the components
having the same action to perform it. Thus for composition to work, automata
must be compatible, that is, a countable collection {Si}i∈I is compatible if for
all i, j ∈ I, i 6= j, all of the following hold:

1. int(Si)
⋂

acts(Sj) = φ

2. out(Si)
⋂

out(Sj) = φ

3. No action is contained in infinitely many sets acts(Si)

Given a compatible collection {Ai}i∈I of automata, the composition A =
Πi∈IAi is defined by:

• sig(A) is defined by:

– out(sig(A)) =
⋃

i∈I out(sig(Ai))
– int(sig(A)) =

⋃
i∈I int(sig(Ai))

– in(sig(A)) =
⋃

i∈I in(sig(Ai))−
⋃

i∈I out(sig(Ai))

• states(A) = Πi∈Istates(Ai).

• start(A) = Πi∈Istart(Ai).

• trans(A) is the set of triples (s, π, s′) such that for all i ∈ I, if π ∈ acts(Ai)
then (si, π, s′i) ∈ trans(Ai)

• tasks(A) =
⋃

i∈I(Ai)

We denote a finite composition of automata A1, ..., An by A1 ‖ ... ‖ An.
After composing I/O Automata, we may want to hide actions used for com-

munication between components, turning them into internal actions of the com-
posed automaton. The operation ActHideΦ(A) for Φ ⊂ out(A) is defined as the
automaton obtained from A by changing each output action in Φ to an internal
action.

5 Self-Similarity

The problem that motivates this paper is the problem of finding a representative
network to test instead of testing all members of a class. If there is a subnetwork
N that looks like the entire network, then the smallest such subnetwork is an
obvious candidate. This is because we can test N by itself to determine the
properties of the entire network.

We say that if a subnetwork N looks like the entire network, then the network
is self-similar.

5



5.1 Defining Self-Similarity

Because we are interested in networks, we consider only automata with output
actions named send and input actions named receive. These automata are
parameterized by the number of interfaces they have on the network. Each
send action is associated with one of the interfaces, and sends the message
out the interface. Each receive action is also associated with an interface and
receives a message arriving on the interface.

An automaton with n interfaces has a signature containing at least the fol-
lowing actions:

send(m : Message, i : Int), where 1 ≤ i ≤ n
receive(m : Message, i : Int), where 1 ≤ i ≤ n

Message is the set of possible messages over the interface.
To combine automata, we use a channel automaton Channel(a, b)i,j , as de-

scribed in [10], which joins interface i of automaton a to interface j of automaton
b. When there are only two automata in the composition, we write Channeli,j
This automaton has input actions send(m, i)a and send(m, j)b and output ac-
tions receive(m, i)a and receive(m, j)b. In this paper, we assume a reliable,
FIFO channel automaton, guaranteeing that messages are delivered reliably,
in-order, and with no duplication, but a variety of possible channels can be
modelled. This is a reasonable assumption, since the channels we are modeling
are Category 5 or higher cables and these rarely fail.

Suppose that n denotes the number of interfaces of an automaton. Then we
say an automaton N(n) is self-similar if

ActHideΦ(traces(N(n)) ‖ Channeli,j ‖ traces(N(n))) ⊆ traces(N(2n−
2)),
where Φ = {send(m, i)a, send(m, j)b, receive(m, i)a, receive(m, j)b}.

In other words, the externally visible actions of the composition of N(n) with
itself, using a channel connecting interfaces i and j, looks like a single automaton
N(2n− 2).

We can generalize self-similarity in the obvious way to a set of channels and
networks having a more complex topology, but the above definition provides a
very basic view of self-similarity and suffices for the results of this paper.

We also define self-similarity for properties of networks, since it may be easier
to establish self-similarity of interesting properties than for entire automata. We
say that a trace property T is self-similar if the network N(n) ‖ Channeli,j ‖
N(n) has property T whenever network N(n) has property T . Thus test results
concerning a self-similar property of a network N(n) can be generalized to apply
to larger networks.

5.2 Using Self-Similarity in Testing

By the definition of self-similarity, correct behavior of a self-similar network N
implies correct behavior of any larger network composed of multiple instances
of N . Also, bugs in N implies that there are bugs in the larger network.

6



However, we have observed above that we may not be testing a network
N that is self-similar. We describe two approaches that still allow us to take
advantage of self-similarity to reduce the size of the network under test. First,
we may be able to define a generalized model of N that is self-similar and
still close enough to N to conform to the specification of N . Second, we can
define self-similar ¡em¿properties¡/em¿ and test for their presence in the smaller
network.

5.2.1 Self-Similar Models

This approach requires a generalized model M of the network that is self-similar.
If the specification holds for M and if we establish by testing that N implements
M , we can use the test results as if N itself were self-similar. The following
theorem is the basis of this claim.

Theorem 1. If M(n) is self-similar and if

traces(N(n)) ⊆ traces(M(n)) ⊆ traces(S)

then

ActHideΦ(traces(N(n)) ‖ Channeli,j ‖ traces(N(n))) ⊆ traces(S).

This theorem says that given a network N(n) and a self-similar model M(n),
where M(n) implements S and N(n) implements M(n), we can conclude that
two composed instances of network N(n) implements S. By induction, we can
compose any number of instances of N(n) and still conform to S.

Proof. The theorem follows easily from the properties of self-similarity and com-
position. traces(N(n)) ⊆ traces(M(n)) implies that
ActHideΦ(traces(N(n)) ‖ Channeli,j ‖ traces(N(n)))
⊆ ActHideΦ(traces(M(n)) ‖ Channeli,j ‖ traces(M(n))) by the composition
theorem [10]. Since M is self-similar, Theorem 5.1 follows.

5.2.2 Self-Similar Properties

As noted above, test results concerning a self-similar property of a network N(n)
can be generalized to apply to larger networks.

If self-similar trace properties S and T both hold for a network N , then
clearly so does the trace property S ∧ T . This can be used to show that if a
complex network requires that a number of properties T1, ..., Tn be true, it is
necessary to show only that each property is self-similar, rather than trying to
show that all are self-similar. We hope to use this fact to use self-similarity of
properties of TCP to show the overall self-similarity of TCP. This may provide
some insight into the observed performance behavior of TCP.

In general, we won’t be able to show self-similarity of every network property
that we are interested in. However, we may be able to show self-similarity of
a significant subset, so that testing of those properties can be carried out on a
smaller network.

7



6 Self-Similarity of learning bridges

This section contains two proofs that learning bridges are self-similar. The self-
similarity property allows a tester to use Theorem 5.1 to justify testing a single
learning bridge to verify the necessary properties for an entire network built
from a collection of identical learning bridges 1.

We first prove the result for bridges satisfying axioms that capture the es-
sential properties of a learning bridge. This proof appears in Section 6.1

Section 6.2 contains a model of a learning bridge as an I/O automaton M
and a proof that the composition of two such bridges implements a single bridge.
This proof is much more complicated than the property-based proof, but is of
interest because it contains the construction of the actual composed bridge.

6.1 Proof Using Self-Similar Properties

Given a set M of messages and an integer n, we define a set of actions Acts =
{send(m, i), receive(m, i)|m ∈ M ∧ 1 ≤ i ≤ n} and a mapping dest from mes-
sages m ∈ M to ports i with 1 ≤ i ≤ n.
Bridge Axioms
For any trace of a bridge IOA, over actions in Acts, there is a function f from
send actions to receive actions in the trace, satisfying the following axioms:

1. If f(send(m, i)) = receive(m, j) then receive(m, j) precedes send(m, i) in
the trace.

2. For each receive(m, i) in the trace, if i 6= dest(m), then there is an action
send(m, dest(m)) in the trace with f(send(m, dest(m))) = receive(m, i).

3. f doesn’t map different sends from the same port to the same receive.

4. If f(send(m, i)) = receive(m, j) then i 6= j.

5. If receive(m, i) = f(send(m, j)) precedes receive(m′, i) = f(send(m′, j))
in a trace then send(m, j) precedes send(m′, j) in the trace.

Theorem 1. Suppose that we have a failure-free network of bridges, connected
using universal reliable FIFO channels in a tree configuration. Let desti(m)
be the destination function for bridgei and let it satisfy the condition that the
unique path from bridgei to the host that is the destination of m goes out port
desti(m).

Then the composition of any pair of bridges, together with the channel (if
any) connecting them, in this network obeys the above axioms.

Proof: Let f1 be the mapping from send to receive actions in bridge1 and f2 be
the mapping from send to receive actions in bridge2 and let fC be the mapping
from receive to send actions in the channel. Let dest1 be the function mapping

1Note that we address only the forwarding of messages in this paper, not the construction
of the spanning tree.

8



messages to destination ports of bridge1 and let dest2 be the function mapping
messages to destination ports of bridge2.

If the bridges are not connected to each other in the tree, then f = f1 ∪ f2

satisfies the axioms.
If they are connected to each other, then let i0 be the port connecting bridge1

to the channel and let j0 be the port connecting bridge2 to the channel. Let
Φ = {send(m, i0)1, receive(m, j0)2, send(m, j0)2, receive(m, i0)1 and consider
any trace of the composition ActHideΦ(bridge1 ‖ Channel(1, 2) ‖ bridge2).

Note that the mapping fC from the receive actions of the Channel1,2 to
the send actions of the channel, as defined in [10] is injective (one-to-one) and
surjective (onto).

For purposes of this proof, we assume that all messages m are distinguishable
from each other, for example by a sequence number. Thus we can say that
fC(send(m, i0)1) = receive(m, j0)2 and fC(send(m, j0)2) = receive(m, i0)1.

We claim that one of the following must hold for the destination functions
dest1 and dest2. For all possible messages m, either dest1(m) = i0 or dest2(m) =
j0, but not both. This follows because the topology is a tree. Thus we can define
a function dest(m) for the composed automata as follows:

1. If dest1(m) = i0 then dest(m) = dest2(m).

2. If dest2(m) = j0 then dest(m) = dest1(m).

Define a mapping f from external send actions of the composition to receive
actions as follows:
If f1(send(m, i)1) = receive(m, i′)1 where i′ 6= i0, then f(send(m, i)1) = f1(send(m, i)1).
If f1(send(m, i)1) = receive(m, i0)1, then f(send(m, i)1) = f2(fC(receive(m, i0)1)) =
f2(send(m, j0)2).
If f2(send(m, j)2) = receive(m, j′)2 where j′ 6= j0, then f(send(m, j)2) =
f2(send(m, j)2).
If f2(send(m, j)2) = receive(m, j0)2, then f(send(m, j)1) = f1(fC(receive(m, j0)2)) =
f1(send(m, j0)1).
We claim that f satisfies the axioms above.

Axiom 1 Since each function has the property that its image precedes its argument,
this follows.

Axiom 2 Let receive(m, i)1 be a receive action in a trace of the composite bridge.
If i = dest1(m) there is nothing to prove. Suppose that receive(m, i)1 is
an action in the trace with i 6= dest1(m). Then, by axiom 2, there is an
action send(m, dest(m))1 with f1(send(m, dest(m))1) = receive(m, i)1.
If dest(m) 6= i0, then f(send(m, dest(m))1) = f1(send(m, dest(m))1) and
we are done. If dest(m) = i0, then m proceeds through Channel(1, 2) to
bridge2, arriving at port j0. Since dest1(m) = i0, dest2(m) 6= j0, so that
there is an action send(m, j)2 with f2(send(m, j)2) = receive(m, j0)2, and
f(send(m, j)2) = f1(fC(f2(send(m, j)2))) = f1(fC(receive(m, j0)2)) =
f1(send(m, i0)1), which by the above is receive(m, i).

9



Axiom 3 Suppose that send actions π1 and π2 from the same port are mapped to
the same receive action. If that action is on a port of the same bridge as
the send port, this contradicts the assumption that the axiom holds for the
component bridges. Hence π1 and π2 correspond to two receive actions
π′1 and π′2 that arrived at the port joining to the other bridge. Because
the channel connecting the bridges never duplicates messages, there are
two send actions ρ1 and ρ2 that happened at the other end of the channel.
And by axiom 3, these must be mapped to distinct receive actions. By
contradiction, axiom 3 holds for the composed bridges.

Axiom 4 If f(send(m, i)k) = receive(m, j)k then fk(send(m, i)k) = receive(m, j)k

for k ∈ {1, 2}, i.e., if f maps the send to a receive on the same bridge,
then since Axiom 4 holds for f1 and f2 and f is equal to one or the other
of these, Axiom 4 holds also for f . If f maps the send to a receive on a
different bridge, obviously the send and receive involve different ports.

Axiom 5 The only cases we need to prove is if f(send(m, i)1) = f2(fC(receive(m, i0)1)) =
f2(send(m, j0)2) = receive(m, j)2 and f(send(m, j)2 = f1(fC(receive(m, j0)2)) =
f1(send(m, i0)1) = receive(m, i)1.

Suppose receive(m, i)1) precedes receive(m′, i)1, then send(m, i0)1 pre-
cedes send(m′, i0)1, because the component automata keep the messages
in order by Axiom 5. Also, the channel keeps messages in order, so
receive(m, j0)2 precedes receive(m′, j0)2. By the hypothesis that the com-
ponent automata obey Axiom 5, this implies that send(m, j)2 precedes
send(m′, j)2.

6.2 Proof Using a Generalized, Self-Similar Model

The purpose of a learning bridge in a LAN is to deliver messages directly from
the source to the destination, while avoiding collisions and duplicated messages.
To avoid duplicating messages, the bridge maintains a filtering database that
maps each destination to the bridge port leading to the destination. Once the
bridge has the necessary information in its filtering database, it forwards a
message only through the port that leads to the destination.

A network of bridges that conform exactly to this requirement is not self-
similar. Consider the following example:

Bridges A and B are connected to each other, with A preceding B in
a path from S (source) to D (destination). Suppose that the filtering
database in A does not contain an entry for D, while the filtering
database of B does contain an entry for D. Then if a message
initiated is from S to D, A will forward this message to every active
port but B will forward it only to the correct port. Now suppose
we compose A and B to one bridge AB. If our model included the
requirement mentioned above, on external observer would expect the

10



trace of AB to have only one outgoing message having as destination
D. But this will not happen. Instead the message will forwarded to
all ports that have been inherited by A and to a single port inherited
by B, the same one as the B would have forwarded the message to.

So we define a generalized model in which it is required that the bridge
copies each message to the “correct port”, perhaps along with other ports. By
“correct port” P , we mean that P is the port that received the last message with
source equal to the destination of the current message. To implement this, each
time a message is received, the learning bridge algorithm records the source
address with the port at which the message arrived in the filtering database.
Subsequent messages sent to that address will be copied to the port. If no
message has been received from the destination address, the filtering database
will not have an entry for the address, and the bridge forwards the message to
all ports. This generalized model, models precisely the forwarding behavior of
connected learning bridges.

6.2.1 The Generalized Model

In this section, we model the generalized bridge as an I/O automaton. Each
bridge has a number of ports and it has four actions: input action receive,
output action send, and internal actions copy and delete. It also maintains a
filtering database, an input and output buffer for each port and a tracking array
to keep track of where messages have been copied to. The receive action adds
messages received from other bridges to the designated input buffer of the port
at which the message arrives and also updates the filtering database. The send
action sends the first message in the output buffer of a port to the channel that
the port is connected to. The copy action is responsible for copying messages
from input buffers to output buffers. It copies the first message m of an input
buffer to an output buffer, without duplicating messages, i.e. it copies m to each
output buffer at most one time. It uses the tracking array to avoid duplicate
copies. Finally the delete action deletes the first message m from an input
buffer. This action is enabled either when m has been copied to at least the
“correct” output buffer or m has been copied to all output buffers. An output
buffer is “correct” for a message m if its port, based on the filtering database,
leads to m’s destination.

automaton bridgei:

signature
input

receive(m, inPort)i

output
send(m, outPort)i

internal
copyIn(m, inPort)
copyOut(m, inPort, outPort)i

11



delete(m, inPort, outPort)i

states
inbuf, an array of input buffers, indexed by {1, ..., n }, one for each port
outbuf, an array of output buffers (FIFO queues) indexed by {1, ..., n},

one for each port, initially all empty.
table, an array of FIFO queues indexed by {1, ..., n} × {1, ..., n}

one for each pair of ports, initially all empty.
filterDB, a mapping of message destinations to ports of bridgei indexed

by {1, ..., n}, initially all nil.

transitions
receive(m, inPort)i

effect
add m to inbuf(inPort)
set filterDB(m.src) := inPort

send(m, outPort)i

precondition
m first element on outbuf(outPort)

effect
remove first element from outbuf(outPort)

copyIn(m, inPort)
precondition

m is the first element on inbuf [inPort]
effect

add m to table[inPort, i] for all i 6= inPort
remove m from inbuf [inPort]

copyOut(m, inPort, outPort)i

precondition
m first element on table[inPort,outPort]

effect
add m to outbuf[outPort]
remove m from table[inPort, outPort]

delete(m, inPort, outPort)i

precondition
m is in the queue table[inPort, outPort]∧
filteringdb[dest(m)] 6= nil ∧ filteringdb[dest(m)] 6= outPort

effect
remove m from table[inPort, outPort]

We assume that there are a finite number of active ports in any bridge and that
the spanning tree algorithm determines which ports are active.

12



6.2.2 Composition of Bridges

In this section we describe the composition of two bridges. This composition
will be used to prove that the learning bridges are self-similar. To do so, in
both sections 7 and 8, we are guided by the assumption that the Spanning Tree
Protocol has been run to completion by all the bridges in the network and that
there are no failures. As a result, there is only one active path between any two
bridges. We use the convention that port i is a port of bridge1 and j is a port
of bridge2.

To show that learning bridges are self-similar we first compose two primitive
bridges. Let bridge1 and bridge2 be two bridges running the IOA defined in
Section 6.2. Without loss of generality, we assume that port i0 of bridge1 is
connected with the port j0 of bridge2 through Channeli0,j0 and that these are
the only active ports connecting bridge1 and bridge2.

Let bridgec be the result of composing bridge1 and bridge2 and hiding the
send(m, i0)1 action of bridge1 and the receive(m, j0)2 action of bridge2, i.e.,

bridgec = ActHideΦ(bridge1 ‖ Channeli0,j0 ‖ bridge2)
and
Φ = {send(m, i0)1, receive(m, j0)2}.

The goal is to show that bridgec is essentially the same as a single bridge,
which we will call bridgep, running the IOA defined in Section 6.2. Our goal
requires that bridgep is able to handle the same number of connections as bridge1

and bridge2 can handle together. The number of ports of bridgep is two fewer
than the number of ports of bridge1 and bridge2 combined, since two ports are
used for the “internal” communication. Thus if bridge1 and bridge2 have n
active ports, bridgep has 2n-2 active ports. In other words, the active ports of
bridgep correspond to the active ports of bridge1 and bridge2, minus the two
“internal” ports. We also define bridgep so that port i ∈ portsp, where 1≤i≤n,
is connected to the same channel as the corresponding port i ∈ ports1 − i0
of bridge1. Similarly port j ∈ portsp , where n≤ j ≤2n, is connected to the
same channel as the corresponding port j ∈ ports2 − j0. Finally, the input and
output actions of bridgep are renamed so that the actions on port i, 1≤i≤n,
are receive(m, i)1 and send(m, i)1; similarly, actions on port j, n≤ j ≤2n, are
receive(m, j − n)2 and send(m, j − n)2.

6.2.3 Simulating a bridge with a composition of bridges

We use an important theorem about IOA to show the equivalence of the com-
position bridgec to the single bridge bridgep (Figure 2). The theorem says that
if there is a simulation relation (defined below) from an IOA A to an IOA B,
then traces(A) ⊆ traces(B). In this section, we define a relation between the
two bridges.

A simulation relation from an IOA A to an IOA B is a relation R ⊆
states(A)×states(B). Define f : states(A) → P(states(B)) by f(s) = {t|(s, t) ∈
R}. To be a simulation relation, R must satisfy the following conditions:

13



Figure 2: Composition and Simulation Relation

14



1. If s ∈ start(A), then f(s) ∩ start(B) 6= φ (start condition).

2. If s is a reachable state of A, u ∈ f(s) is a reachable state of B, and
(s, π, s′) ∈ trans(A), then there is an execution fragment α of B starting in
state u and ending in some state u′ ∈ f(s′) such that trace(α) = trace(π)
(step condition).

Now we define a relation from bridgec to bridgep. In sction 8.1 we will
prove that it is a simulation relation. The pair (s, t) with s ∈ states(bridgec)
and t ∈ states(bridgep) belongs to the relation R, provided that the following
conditions hold:

Condition 8 1. The filtering database of t.bridgep
2 contains the same entries

as the union of the filtering databases of s.bridge1 and s.bridge2, excluding the
entries for the “internal” ports:

t.bridgep.filterDB = s.bridge1.filterDB ∪ s.bridge2.filterDB
−{〈addr, port〉|port ∈ {s.bridge1.i0, s.bridge2.j0}}

Condition 8 2. The output buffer for each port of t.bridgep contains the same
messages as the output buffer of the corresponding port of s.bridgec:

t.bridgep.outbuf [i] = s.bridgec.outbuf [i] for i ∈ ports1

⋃
ports2 −

{i0, j0}.

(Note that t.bridgep does not contain any buffers corresponding to i0 and j0.
These buffers in s.bridgec may contain any messages consistent with the next
condition.)

Condition 8 3. The input buffer for each port of t.bridgep contains the same
messages as the input buffer of the corresponding port of s.bridgec:

t.bridgep.inbuf [i] = s.bridgec.inbuf [i] for i ∈ ports1

⋃
ports2 −

{i0, j0}.

Condition 8 4. The internal table of message queues tablep corresponds to the
combined tables table1 and table2 as follows:

• table[i, i′]p = table[i, i′]1 if i, i′ ∈ ports1, i, i
′ 6= i0

• table[j, j′]p = table[j, j′]2 if j, j′ ∈ ports2, j, j
′ 6= j0

• table[i, j]p is the concatenation of the following queues for i ∈ ports1, j ∈
ports2, with i 6= i0, j 6= j0:

– table[j0, j]2
– outbuf [j0]2
– queuej0,i0

2We use the dot notation to denote the value of a given variable in a state as well as to
denote a given bridge in the composition.

15



Figure 3: Buffers Correspondence

– inbuf [i0]1
– table[i, i0]1

• The relationship between table[j, i]p and table1 and table2 is defined sym-
metrically for i ∈ ports1, j ∈ ports2, with i 6= i0, j 6= j0:

6.2.4 Self-Similarity of the generalized bridge model

Self-similarity requires that traces(M ‖ M) ⊆ traces(M), i.e., traces(bridgec) ⊆
traces(bridgep). Based on the definition of simulation relation we must prove
two conditions, the start condition and the step condition. The former is trivial
because all the states of both bridges are initially empty. The latter condition
requires the proof that the states of bridgep and bridgec correspond after each
action. First we prove state correspondence for the filtering databases.

16



Invariant 8 1. At any time during the execution, the filtering database of
bridgec corresponds to the state of the filtering database of bridgep.

Proof. Invariant 8.1 can be proved using induction on the number of steps.
Base: At the beginning everything is empty so the state of the filtering

database of bridgec corresponds to the state of the filtering database of bridgep.
Inductive Hypothesis: Suppose that the invariant holds after t steps.
Inductive Step: Suppose that a message from source s is received at the

beginning of step t + 1. (If nothing is received, no changes will be made, so
the filtering databases remain in corresponding states.) Assume also that the
message is received at a port of bridge1 (the case for a message received at
bridge2 is symmetric).

There are four different cases:

• Only the filtering database inherited from bridge1 has an entry for the
source.

• Only the filtering inherited from bridge2 has an entry for the source.

• Both have an entry.

• Neither has an entry.

First we should note that entries in the filtering databases never change
(again once they are non-null), given our assumption that there are no failures
in the network and that the active ports form a tree. This is the case because
there is unique path between every pair of ports. As a result a message from
each source to each destination always follows the same unique path.

In the first case, bridgec already has an entry in the filtering database (for
bridge1), and so the state is unchanged. Bridgep also has an entry already
(based on the inductive hypothesis), and so changes nothing to its filtering
database, so the databases remain in corresponding state.

For the second case, the bridgec entry is in the filtering database for bridge2,
but the message arrives at a port inherited from bridge1. Again, because the
network is a tree and bridge2 has an entry but not bridge1, the message must
have come to bridge1 from bridge2. Thus the bridge1 port at which the mes-
sage arrives is i0 (the port connected to bridge2) and so the filtering database
of bridge1 will point to bridge2. In bridgep the “internal” entries, i.e. entries
pointing from bridge1 to bridge2 and vice versa, are omitted. Thus the corre-
spondence between bridgep and bridgec is unchanged.

In case 3, both bridges have an entry in their filtering databases. Since
entries never change, the filtering databases remain in corresponding states.

In case 4, neither database has an entry (hence the message cannot have
arrived on the port i0 connected to bridge2). Bridgep will set the entry for
the source in its filtering database to the arrival port. Similarly, bridgec will
set the entry in the filtering database for bridge1 to the arrival port. Thus the
databases maintain their correspondence.

17



We must also prove that the states of bridgep and bridgec correspond after
each action in spite of changes to input and output buffers. In order to do that
we must consider all the cases based on all actions π that can be taken. The
following table (Table 1.) summarizes all the possible actions of bridgec, the
corresponding execution fragment of bridgep and the trace which is the same for
both bridges (note that the action of bridgep in this table have been remained
to reflect the actions renaming provided in section 7.1).

Action of Bridgec Execution fragment
of Bridgep

Trace

1 receive(m, i)1, i 6= i0 receive(m, i)1 receive(m, i)1
2 receive(m, j)2, j 6= j0 receive(m, j)2 receive(m, j)2
3 receive(m, i0)1 λ λ
4 receive(m, j0)2 λ λ
5 send(m, i)1, i 6= i0 send(m, i)1 send(m, i)1
6 send(m, j)2, j 6= j0 send(m, j)2 send(m, j)2
7 send(m, i0)1 λ λ
8 send(m, j0)2 λ λ
9 delete(m, i, i′)1, i′ 6= i0 delete(m, i, i′)p λ
10 delete(m, j, j′)2, j′ 6= j0 delete(m, j, j′)p λ
11 delete(m, i, i0)1 Sequence

delete(m, i, j)p for
j ∈ ports2, j 6= j0

λ

12 delete(m, j, j0)2 Sequence
delete(m, j, i)p for
i ∈ ports1, i 6= i0

λ

13 copyIn(m, i)1, i 6= i0 copyIn(m, i)p λ
14 copyIn(m, j)2, j 6= j0 copyIn(m, j)p λ
15 copyIn(m, i0)1 λ λ
16 copyIn(m, j0)2 λ λ
17 copyOut(m, i, i′)1, i′ 6=

i0

copyOut(m, i, i′)p λ

18 copyOut(m, j, j′)2, j′ 6=
j0

copyOut(m, j, j′)p λ

19 copyOut(m, i, i0)1 λ λ
20 copyOut(m, j, j0)2 λ λ

Table 1: Correspondence between actions of Bridgec and Bridgep

Proof : We need to show that if bridgec is in state s and bridgep is in
state t and if t ∈ f(s) then for any action π of bridgec, with (s, π, s′) ∈
transitions(bridgec), the corresponding execution fragment of bridgep, given
by Table 1, takes bridgep to a state t′ such that t′ ∈ f(s′).

Line 1 π = receive(m, i)1, i 6= i0. This action adds a message to inbuf [i]1 in
bridge1 of bridgec. The corresponding action (also receive(m, i)1) in

18



bridgep adds a message to inbuf [i]p. Thus the messages in the input
buffers remain the same, so t′ ∈ f(s′).

Line 2 π = receive(m, j)2, j 6= j0. The reasoning is the same as for Line 1.

Line 3 π = receive(m, i0)1. This removes a message m from the head of queuei0,j0

and adds it to the end of inbuf [i0]1. This could affect the relationship
between table[filterDB(m.src), i]p and the various queues in the compo-
sition, since the concatenation involves inbuf [i0]1 and queue(i0, j0). How-
ever, for all i ∈ ports1, this leaves unchanged the value of the concatena-
tion

table[i0, i]1(̂ )inbuf [i0]1(̂ )queuej0,i0 (̂ )outbuf [j0]2(̂ )table[filterDB(m.src)2, j0]1

it follows for all t ∈ f(s) that t ∈ f(s′). This justifies the choice of λ,
which doesn’t change the state t, as the corresponding execution fragment
in bridgep.

Line 4 π = receive(m, j0)2. The reasoning is the symmetric to line 3.

Line 5 π = send(m, i)1, i 6= i0. This action removes the message m from the
queue outbuf [i]1 in bridge1 of bridgec. The corresponding action in bridgep

is also send(m, i)1, which also removes m from outbuf [i]p. Thus the state
t′ ∈ f(s′).

Line 6 π = send(m, j)2, j 6= j0.The reasoning is symmetric to Line 5.

Line 7 π = send(m, i0)1. This action removes a message m from outbuf [i0]1 and
adds it to queuei0,j0 in the composition bridge. As with the action in Line
3, this leaves the concatenation of queues between bridge1 and bridge2

unchanged, so that if s′ is the resulting state and t ∈ f(s) then t ∈ f(s′).

Line 8 π = send(m, j0)2. The reasoning is symmetric to Line 7.

Line 9 π = delete(m, i, i′)1, i′ 6= i0. This action removes m from queue[i, i′]1. If
i 6= i0, this entry is related by the simulation relation to the corresponding
entry of queue[i, i′] of bridgep and so the corresponding execution fragment
is just delete(m, i, i′)p, which removes the same entry from queue[i, i′]p.

Line 10 π = delete(m, j, j′)2, j′ 6= j0. The reasoning is the same as in Line 9.

Line 11 π = delete(m, i, i0)1. This removes the message m from table[i, i0]. This
queue is part of every concatenation of queues of the form:

table[j, j0]2(̂ )inbuf [j0]2(̂ )queuei0,j0 (̂ )outbuf [i0]1(̂ )table[i, i0]1

In other words, the corresponding queues in bridgep are the queues table[i, j]p
for every j ∈ ports2 with j 6= j0. Thus any sequence of deletes α that
removes m from all queues table[i, j]p with j ∈ ports2 and j 6= j0 will
leave each of these queues in correspondence with the above concatena-
tion, i.e., if (s, delete(m, i, i0)1, s′) is a transition of bridgec, then (t, α, t′)
is a ¡what’s the term?¿ of bridgep and t′ ∈ f(s′).

19



Line 12 π = delete(m, j, j0)2. The argument is symmetric to the argument for
Line 11.

Line 13 π = copyIn(m, i)1, i 6= i0. The result of this action is to put m in all
queues table[i, i′]1, i′ 6= i. The action copyIn(m, i)p does the same to the
corresponding queues table[i, i′]p for i′ ∈ ports1 and i′ 6= i0. The case of
i′ = i0 is more interesting. Adding m to the queue table[i, i0]1 adds m to
all concatenations of the form

table[j, j0]2(̂ )inbuf [j0]2(̂ )queuei0,j0 (̂ )outbuf [i0]1(̂ )table[i, i0]1

where j ∈ ports2, j 6= j0. But also, the action copyIn(m, i)p adds m to
all queues table[i, j]p with j ∈ ports2, j 6= j0. So the simulation relation is
preserved by these actions.

Line 14 π = copyIn(m, j)2, j 6= j0. The argument is symmetric to Line 13.

Line 15 π = copyIn(m, i0)1. This removes m from inbuf [i0]1 in bridge1 and adds
it to table[i0, j]1 for all j 6= i0. This doesn’t change the value of any of
the concatenations, and so using the corresponding execution fragment α
preserves the simulation relation.

Line 16 π = copyIn(m, j0)2. The argument is symmetric to Line 15.

Line 17 π = copyOut(m, i, i′)1, i′ 6= i0. This action removes m from table[i, i′]1
and adds it to outbuf [i′]1. The same effects are achieved in bridgep by
copyOut(m, i, i′)p.

Line 18 π = copyOut(m, j, j′)2, j′ 6= j0. The argument is the same as in Line 17.

Line 19 π = copyOut(m, i, i0)1. This action removes m from table[i, i0]1 and adds
it to outbuf [i0]1. This has no effect on the value of any of the relevant
concatenations, and so the empty execution fragment in bridgep preserves
the simulation relation.

Line 20 π = copyOut(m, j, j0)1. The argument is symmetric to Line 19.

Based on the above we can conclude that traces(bridgep) ⊆ traces(bridgec)

7 Conclusions

In this paper, we have shown that the self-similarity of network devices and their
properties provides a powerful tool for reducing the size of a network testing
effort. All networks in a class of self-similar networks can be tested by testing the
smallest self-similar subnetwork. This reduces to one the number of networks
to be tested while minimizing the size of the network.

A case study of the self-similarity of learning bridges illustrates two ap-
proaches to using self-similarity in network testing. One is to identify self-similar

20



Figure 4: Execution

properties to be tested. The second is identify self-similar network models that
the network should implement, in the formal sense, if it has been built correctly.

Additional work is needed to identify other self-similar networks and im-
portant self-similar properties of networks. Another line of investigation is to
determine how to evaluate the coverage of a set of tests for a network and to
develop ways to measure the level of confidence we have that a network works,
given a test suite for the network.

References

[1] Catalyst 2950 and catalyst 2955 switch software configuration guide,
12.1(22)ea5, 1992-2005.

[2] Cisco ios ip configuration guide, release 12.2, 1992-2005.

[3] Constantinos Djouvas and Nancy Griffeth. Experimental method for testing
networks. In Proceedings of SERP’05 - The 2005 International Conference
on Software Engineering Research and Practice, June 2005.

[4] Ralph Droms. Rfc 2131: Dynamic host configuration protocol, March 1997.

[5] Nancy Griffeth, Ruibing Hao, David Lee, and Rakesh Sinha. Integrated
system interoperability testing with applications to voip. In Proceedings of
FORTE/PSTV 2000, Pisa, Italy, October 2000.

[6] Timothy G. Griffin and Gordon T. Wilfong. An analysis of BGP conver-
gence properties. In Proceedings of SIGCOMM, pages 277–288, Cambridge,
MA, August 1999.

[7] Ruibing Hao, David Lee, Rakesh K. Sinha, and Nancy Griffeth. Integrated
system interoperability testing with applications to voip. IEEE/ACM
Trans. Netw., 12(5):823–836, 2004.

21



[8] Ieee standard for local and metropolitan area networks: Media access con-
trol (mac) bridges, June 2004.

[9] D. Lee and M. Yannakakis. Principles and Methods of Testing Finite State
Machines - A Survey. In Proceedings of the IEEE, volume 84, pages 1090–
1126, 1996.

[10] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc.,
March 1996.

22


