Experimental Method for Testing Networks

Nancy D. Griffeth1

Dept of Mathematics and Computer Science

Lehman College, City University of New York

Bronx, NY 10468

Constantinos Djouvas2

Department of Computer Science

Graduate Center, City University of New York

New York, NY 10016

To address problems of scale and validity in testing networks, we propose application of experimental method in the testing process. This means that testing will be an iterative process of running tests, developing models of the network, examining properties of the models to make predictions about the network, and validating (or invalidating) the predictions with further tests. We also propose the use of self-similar structures in networks to reduce the scale of the test effort. Identification of self-similar structures in a network allows the tester to understand the behavior of large networks by experimenting on smaller networks.

Keywords: testing, networks, experimental method distributed systems, model-checking, theorem-proving

1. Introduction

Conventional approaches to software testing begin with a list of requirements and a System Under Test (SUT). The tester designs and runs test cases to verify that the system meets its requirements or to find errors in the implementation. In the ideal case, the developers of the SUT adhered to a list of formal requirements and the tester verifies that these are met by the system. Most often, in reality, the requirements are sketchy and ambiguous.

The situation is even more difficult when the system under test is a network. Networks consist of multiple systems and exhibit non-determinism, making it harder to know whether they meet the requirements (if stated) and to isolate errors. It is difficult even to determine when a set of tests has shown that a network has a simple property.

Consider an example for which the requirements are clear. In today’s networks, hosts usually obtain their IP addresses automatically. A “lease” on an IP address is assigned for a stated period of time by a server, called a Dynamic Host Configuration Protocol (DHCP) server. DHCP servers often run in pairs, so that if one fails the other can provide the leases on IP addresses. However, they should never provide two different hosts with leases on the same IP address for overlapping times.

As a check on the process, each server and each host should probe the network to find out whether a potential lease would conflict with an address already in use. This makes the network harder to test, because it may appear to be operating correctly even though a DHCP server is misbehaving.

1Supported by NSF Award #0435130 and by PSC CUNY Award #60082-34-35

2Supported by NSF Award #0435130

Suppose a DHCP server sometimes assigns a second lease on an IP address before the first has expired, but only when the host with the first lease is not connected to the network. When the host originally assigned the IP address returns, it would normally have been able to continue its lease but instead is assigned a different IP address. There is no externally visible symptom of this other than a slight delay in assigning the address; however, there may be a message from the host signaling that it has detected this problem.

Detecting errors such as these requires running more than the obvious tests and doing more than the obvious monitoring. However, in a complex network the number of tests and the knowledge needed to create the tests from requirements is extensive.

Furthermore, when testing a network (unlike testing a software application), the tester is usually interested in the behavior of more than just that specific network. The behavior of an entire class of similar networks is also important. For example, a network equipment vendor needs to know what class of networks each network device it manufactures can support, and a network administrator needs to know how the network will behave when additional devices, such as new routers or new bridges, are added to enlarge the network.

For these reasons, we believe that it is not feasible to state what a network is supposed to do and then to verify that it does what it is supposed to with any level of confidence. So instead of asking “Is this the right network?” we propose to perform experiments asking “What network is this?” Once a model of the network has been developed that matches the network behavior at the required confidence level, the tester can use the model to decide whether it has the required behavior and properties.

The procedure is iterative. The tester runs tests, builds a model of the network, makes predictions based on the model, and use those predictions to generate new tests to run on the next iteration. Each iteration improves the model, until the testing has met the required confidence level.

This is a promising approach for several reasons. First, it should be easier to find errors in a model than in the actual network. So under the assumption that an accurate model can be constructed by observing the actual network, testers can find errors by examining the model instead of testing the network. Second, the model helps to make predictions about what happens when the network changes - an important benefit, and one that is unlikely to be achieved by normal testing. Third, it may be easier to construct a model of the network from the implemented network than it is to construct a model of what the network should do from the requirements. Fourth, and perhaps most important, because of the use of experimental method, the tester can compute the level of confidence that the network does what it should.

2. Background

1. Software Testing

The first idea that should occur to any network tester is to adapt time-tested techniques for software testing. Many approaches use the source code itself to evaluate the test cases or even to generate them. However, source code is rarely available for commercial network devices, so these methods would only rarely apply. Thus, we consider two other approaches:

1) Requirements-based approaches

2) Input-based approaches

In a requirements-based approach, the tester tries to devise a set of test cases that has a good chance to find any error that may be present. This can be done ad hoc, as in Myers famous experiment with the triangle program [11]. Both Myers and others [13] have demonstrated that even highly skilled testers are not good at this.

Input-based approaches [6, 9] rely on analyzing the input in order to find representative inputs that are more likely than any others to uncover errors. Ideally, the inputs are not determined in a vacuum; instead, the tester uses both the requirements and understanding of the inputs to develop the test cases.

There are general rules that apply to identifying errors. These rules idenfity domains of interest from the possible inputs, then select “representative” inputs [6]. Boundary cases, such as endpoints of important intervals and largest and smallest possible values, can be especially important in identifying errors.

The problem with this approach is that it requires the tester to structure the space of inputs. If the tester happens to see the same structure over the space of inputs as the developer, the tests would provide good coverage. However, if the developer, after giving the problem considerable thought, devised an unusual way to structure the input, the tester’s data is likely to completely overlook important errors.

2. Network Testing

Requirements can sometimes be used effectively for systematic test case generation for networks, as shown in [3]. This technique was based on protocol conformance testing, which generated tests from a model of the protocol. For networks, the tester models the desired behavior of the system as a state machine and generates test cases from the model. Although the approach worked well in relatively small initial tests, more extensive subsequent work uncovered problems. The problems include:

· Formal models based on requirements are difficult and time-consuming to develop and rarely available to testers prior to testing.

· The model itself may be incorrect unless carefully verified.

· Generating test cases from models requires management of very large (> 10 million node) graphs.

· Basing the test cases only on the desired behavior of the system may overlook entire classes of errors.

· As with inputs, the structure of the model may also cause entire classes of errors to be missed.

The second approach suggested by software testing is to base the test cases on the inputs (i.e., messages) to the network and on general knowledge of the network. The same issues arise for this approach as arise for software testing. In addition, the number of message types, the layering of protocols in the network, and the complexity of interactions between fields in headers and between protocols makes the tester’s job of choosing “representative” inputs next to impossible.

In contrast, much of the process of constructing a model from a live network can be automated, so that the effort is smaller even though the resulting model may be larger. And, most important, the experimental approach is more likely than the conventional approach to achieve the real goal of testing, which is to find out what can go wrong.

3. Experimental method

Classical experimental method applies directly to this problem. In experimental method, the experimenter collects data, builds models, makes predictions, and performs experiments to test the predictions against reality. These experiments generate more data, which allows improving the models [2].

The figure below summarizes the experimental test process graphically. In the figure “NUT” stands for “Network Under Test.”

[image: image1.png]The Test Process
0CeSS
Test

NUT cases

Run tests
(CXpET|mEnts

v
Test
results

Build|model

v

Model

Prove properties Model check

v v
Properties Counterexamples

Saufp!c

Predictions
N — |

Figure 1. The network test process.

Network testing begins with a network or a defined collection of networks to test. The procedure is as follows.

1. Generate initial tests using any methodology (for example, based on requirements, or using ITIS [3]).

2. Iterate steps a through c below until convinced that the model(s) represent the network(s) - i.e., until the tester has a collection of models and a high level of confidence that they represent the networks.

a. [Experiment] Run tests. While running the tests, monitor the network. The network model will include devices and links (communication channels) between devices. To collect the data necessary for the models, all links should be monitored

b. [Build Models] Once the tests have been completed, build or modify the model to reflect the test results. The test results will be in the form of a collection of traces of network messages. These traces can be used to automate definition of a state machine. The resulting state machine will not be easy to read, but automation avoids time-consuming model development and the automatically generated model will be usable in subsequent steps.

c. [Make Predictions] Use both theorem provers and model checking to develop predictions on the basis of the model. In both cases, properties developed from the requirements are good candidates for proof or counterexample generation.
The predictions have the form "The network has property A" or "This execution, which violates property B, can be reproduced in the network." Note that at this point the tester knows whether such a statement holds for the model, but not whether it holds for the network. Subsequent tests are used to determine this.

There are a number of issues that must be addressed, the hardest of which is scale. Can the tester reduce the size of the network, the number of traces, and the size of the model to tractable sizes? This will be discussed in the next section.

3. Methodology

This section discusses specific tools and techniques that we propose to use in applying the above process.

4. Tools

The modeling language and tools will be the Timed I/O Automata (TIOA) model and the supporting tools [7]. This model is useful because it provides features that address both the scaling problem and timing issues in distributed systems.

Each network link and network process is modeled independently in the TIOA model. Any kind of link – reliable, unreliable, fast, slow – can be modeled. Network processes can be devices such as hosts, routers, and bridges or they can be specific protocols or even specific functions of a protocol.

The TIOA model provides a composition operator that supports combining a collection of small automata into a single larger one. Thus the traces obtained from monitoring a set of tests can be used to create a model for each device, or even protocol, independently, reducing the scale of the modeling problem. Furthermore, by using the Timed I/O Automata model, an entire class of network models can be constructed by defining a parameterized combination of links and processes.

The theorem-proving system is the PVS specification and verification system [12], which is also utilized in the TIOA model. For model-checking, we are considering either SPIN [4] or LMC [1].

5. Testing classes of networks

The biggest problem for testing networks is finding a reasonably-sized network that is representative of the class of networks to be tested. The pitfalls to determining such a network are similar to those of determining representative input. This is why we prefer an approach that bases the choice of representative network on experiment rather than intuition.

Using “self-similarity” properties of networks helps the tester to leverage the testing of a single network to reach conclusions about other, larger networks. The following example illustrates this idea.

Client-Server Systems Example. Many client-server systems use proxies to hide aspects of a server, to log service requests, or to protect servers from attack. In fact, there may be multiple proxies between a server and a client. Is there any way to avoid testing each possible number of proxies? The key observation is the following:

While the proxy need not be implemented at all like the server, a server plus a proxy “looks like” a server to the client.

So, when testing a Web application that may run behind proxies, the tests can be limited to the following two. An induction proof then establishes that the server works with any number of proxies.

1. Test the Web application itself.

2. Compare the Web application by itself to the application running behind a proxy.

In fact, this is the common-sense procedure that any tester would follow.

The justification for this procedure is the following: If the Web application itself works, and if it looks the same when running behind a proxy as it does when running alone, then, by induction, any number of proxies (identical to the tested proxy) between it and a client will work. Of course, if different kinds of proxies will be used, the second part of the test should be repeated for each kind.

There are other simple examples of self-similarity in networks. For example, leader election algorithms motivated by token ring networks were defined in the 1980’s [8]. The basic technique used to elect a leader was to pick the process with the largest (or smallest) id. Even though token rings are uncommon at present, this same idea for leader election is used by the Spanning Tree Algorithm [5] for selecting a root bridge.

It is easy to identify a self-similar structure for certain leader election algorithms running in a network configured as a unidirectional ring [10]. In these algorithms, each node passes its own id to its next neighbor to start the process. Subsequently, it keeps track of the largest id it has seen so far, and passes on a new id only if it is a new largest id. It is easy to see that two such processes with the second (in the order of the ring) having the larger id are identical to the second process by itself..

Another example is a simple forwarding (non-learning) bridge in a network. The bridge forwards all frames that it receives on one port out all other ports. It is easy to see that a combination of two such bridges has the same behavior.

The above are examples of self-similarity properties suggested by the specification of the network algorithms. An implementation may not have the same self-similarity properties, and it might exhibit others. However, if a specification implies a certain self-similarity property, then surely any correct implementation of the specification must also have the same self-similarity property. If testing reveals that it does not, then this indicates a fault.

4. Conclusions and Future Work

Network testing raises difficult issues involving the scale and validity of the testing. The use of experimental method addresses the validity issues. The scale issues are addressed by identifying self-similar structures in the network and by tools that support decomposition of network models into manageable size pieces.

Current research and future experiments include tests of the DHCP, BGP, the Unison file synchronization application, and Web applications. Preliminary experiments on Unison used requirements analysis to generate tests. Only one non-critical error was found in the initial tests, although many others have been reported on the users mailing list. Another preliminary experiment is under way on DHCP, using a combination of requirements analysis and input analysis to generate tests. These studies will serve to support design of experiments using the experimental methodology outlined above. They and other studies will also serve as controls for the experiments.

5. Bibliography

[1] Y. Dong, C. R. Ramakrisnan and Scott A. Smolka. Model Checking and Evidence Exploration. IEEE Symposium on Engineering Computer Based Systems (ECBS), 2003.

[2] Ronald Aylmer Fisher. Statistical Methods, Experimental Design, and Scientific Inference. Oxford University Press, June 1, 1990.

[3] Nancy D. Griffeth, Ruibing Hao, David Lee, Rakesh K. Sinha: Integrated System Interoperability Testing with Applications to VOIP. FORTE 2000: 69-84.

[4] Gerard J. Holzmann. Design and Validation of Computer Protocols, Prentice Hall, New Jersey, 1991, ISBN 0-13-539925-4.

[5] IEEE Computer Society. 802.1D: IEEE Standard for Local and metropolitan area networks Media Access Control (MAC) Bridges. IEEE Std 802.1d – 2004. June 9, 2004.

[6] C. Kaner, J. Falk, and H. Nguyen. Testing Computer Software (second edition). John Wiley & Sons, 1999.

[7] Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. The Theory of Timed I/O Automata. Revised and shortened version of Technical MIT-LCS-TR-917a (from 2004), March, 2005. http://theory.lcs.mit.edu/tds/lynch-pubs.html
[8] G. LeLann. Distributed systems, towards a formal approach. In Information Processing 77, pages 155--160. North-Holland, New York, 1977.

[9] C. Lott, A. Jain, and S. Dalal. Modeling Requirements for Combinatorial Software Testing. Proceedings of the ICSE 2005 Workshop on Advances in Model-Based Software Testing, St. Louis, MO, May 2005.

[10] Nancy Lynch. Distributed Algorithms. Morgan-Kaufmann, San Francisco, CA, 1996.

[11] Glenford J. Myers, The Art of Software Testing, 2nd edition. John Wiley & Sons, Hoboken, NJ. 2004.

[12] Sam Owre, Natarajan Shankar, and John Rushby. PVS: A Prototype Verification System. CADE 11, Saratoga Springs, NY, June 1992.

[13] Russ Williams, “The Triangle Classification Problem,” http://russcon.org/triangle_classification.html, August 29, 2002.

