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1 Introduction

When a vendor tests its own network equipment, the goal is to verify that
the equipment works for a range of network topologies and configurations.
Network users may also need to verify correctness of a class of networks. For
example, ISP networks change continuously. Even small organizations add
new hosts regularly. Anyone may add or swap in new network equipment
as new technologies or higher bandwidths become available. The remaining
equipment must continue working as expected.

This observation motivates the problem of how to choose networks for
testing, when the real goal is to verify that a class of networks works. The
central goal of this work is to find a single representative of a class of networks,
whose correctness implies the correctness of the class. This paper investigates
the use of a subnetwork that is common to all of the networks in the class
and whose behavior looks like the behavior of any of the networks. When
a subnetwork has this property, the class is called ”self-similar”. A tester
can also use a weaker condition, self-similiarity with respect to a property,
to establish that the network conforms to a single requirement imposing that
property. In the latter case, it is necessary only to state the property and
prove that if a network conforms to it, any composition consisting of multiple
copies of the network also conforms to it.

Internet protocols are designed in such a way that many properties of
Internet protocols are self-similar. Proxies are a well-known example of self-
similarity.. A Web server behind a proxy looks like a Web server to a client;
similarly, a proxy and client together look like a client to the Web server.
Switching and routing algorithms are designed to hide the structure of the
networks they support, so that the behavior of a single switch or router can
look like the behavior of a larger network. DHCP failover servers are designed
to look like a single, highly-reliable server.

In this paper, we address how to reduce the size and complexity of the
network under test without reducing the test coverage. The central contri-
bution of the paper is a method for choosing the network to be tested, by
finding a common substructure of all the networks that behaves like each of
the networks. Definitions and the basic theorem are presented in sections 3
and 4. In sections 5 and 6, we describe a case study, in which we modeled the
forwarding function of learning bridges and proved self-similarity. In section
7, we describe a experiment on network testing, in which three tests were run,
each consisting of a different learning bridge configuration.

2 Related Work

The general question is how to identify a small test that will verify correctness
an entire class of networks. Protocol conformance testing solves the problem
by verifying that the implementation of a single network device conforms to
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the required protocol standards. Then, assuming that the protocol standards
guarantee that the network has the required properties, protocol conformance
testing shows that a network consisting of any number of interconnected de-
vices has the required properties. An excellent review of protocol conformance
testing appears in [?].

However, conformance testing presupposes a validated formal model of
each protocol and proofs that the models have the required properties. In prac-
tice, Internet standards have rarely been formalized and the job of developing
formal proofs has barely begun. Some standards, such as BGP, have been
shown to have serious problems [?]. Others, such as DHCP, work correctly
with high probability, but behave incorrectly on rare occasions [?]. Nonethe-
less, these protocols have desirable properties, and it is important to be able
to verify desired properties for specific implementations.

A different approach to network testing is to extend protocol conformance
testing to “network interoperability testing,” as in [?,?]. This approach treats
the network as a black box, whose external behavior is known but whose inter-
nal behavior cannot be observed. The test methodology requires developing a
formal model of the network’s external behavior to generate tests that cover
all possible sequences of visible actions. As noted above, models of networks
and protocols are rarely available and time-consuming to develop.

Descriptions of industrial network testing based on actual practice appear
in [?,?]. Buchanan[?] presents ad hoc and common-sense approaches to testing
networks. While these techniques are valuable, it is hard to analyze and
optimize them. Griffeth[?] presents a case study of interoperability testing in
an industrial lab. A study of time required in each stage of testing for four test
projects (one Voice over IP, two Data Center, and one Network Management)
at the Lucent Next Generation Networking Interoperability Lab (NGN) shows
that the overwhelming majority of time is spent on test network setup[?].
Figure 1 summarizes the results from this study along with the results of the
current experiment. The hypothesis of this paper is that testing only one
configuration will result in significant savings in time since only one network
needs to be set up.

A similar problem, that of verifying a parameterized collection of processes,
has been addressed in model-checking. Wolper and Lovinfesse[?] and Kurshan
and McMillan[?] have shown how to apply induction to verify a parameterized
collection of processes. Their results apply to collections of identical processes,
which is not strictly required in this paper. Also, they require bisimulation of
the processes; the present result requires only containment. They also require
the tester to devise an invariant. This is not necessary for this work. In the
simplest case, the tester must identify only that a requirement impose a self-
similar property. Other work on reducing the complexity of model-checking
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Fig. 1. Time Required in Stages of Network Testing. The shaded bars show the
results of the NGN study. The only test in which test lab setup did not take most
of the time was a test of network configuration tools, i.e., network setup. The
cross-hatched bars show the results of the experiment reported in this paper.

3 The I/O Automata Model

To analyze network properties, we use the I/O automata modeling frame-
work [?], which models network components as automata and their interac-
tions as shared actions of the automata. The model provides a formal basis for
saying that one network behaves like another: automaton A is said to imple-
ment automaton B if all externally visible behaviors of A are also externally
visible behaviors of B.

An important technique for proving that one automaton implements an-
other is simulation. Automaton A is said to simulate B if there is a simulation
relation (defined in Section 6) relating the states of A to those of B. A self-
similar automaton A is one that can be replicated and connected to itself via
a channel to form a new automaton that implements the original automaton
A. Another important concept is that of a self-similar property, which is a
property of an automaton that is preserved by such a composition.

We review the definition of I/O Automata briefly; for details, see [?].

Definition 3.1 An I/O automaton consists of the following components:

• sig(A), a signature, consisting of three disjoint sets of actions: the input
actions in(A), output actions out(A), and internal actions int(A). Output
and internal actions are locally controlled ; input actions are controlled by
the environment. The set of all actions in the signature is denoted acts(A).

• states(A), a nonempty, possibly infinite set of states.

• start(A), a nonempty subset of states(A), called the start states.
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• trans(A), a state-transition relation, contained in states(A)×acts(sig(A))×
states(A). We require that for each state s and input action π, there is a
transition (s, π, s′).

• tasks(A), a task partition, which is an equivalence relation on the locally
controlled actions having at most countably many equivalence classes.

An execution of I/O automaton A is a sequence s0, π1, s1, ..., sn−1, πn, sn,
where s0 is a start state and (si−1, πi, si) is a transition for each i ≥ 1. An
execution can be finite or infinite. The set of executions of A is denoted as
execs(A). We define traces(A) as the set of all sequences π1, π2, ..., πn, ... ob-
tained by removing the states and internal actions from a sequence in execs(A).
Traces capture the notion of externally visible behavior. A trace property of
an automaton A is a property that holds for all traces of A.

The composition operation allows the construction of complex I/O au-
tomata by combining primitive I/O automata. To compose automata, we
treat actions with the same signature in different automata as the same action,
and when any component performs an action π, it forces all the components
having the same action to perform it. To compose automata, they must be
compatible:

Definition 3.2 A countable collection {Si}i∈I is compatible if for all i, j ∈
I, i 6= j, all of the following hold: (1) int(Si)

⋂
acts(Sj) = φ, (2) out(Si)

⋂
out(Sj) =

φ, and (3) No action is contained in infinitely many sets acts(Si).

Definition 3.3 Given a compatible collection {Ai}i∈I of automata, the com-
position A = Πi∈IAi is formed by the following rules:

• sig(A) is defined by: out(A) =
⋃

i∈I out(Ai), int(A) =
⋃

i∈I int(Ai), and
in(A) =

⋃
i∈I in(Ai)−

⋃
i∈I out(Ai).

• states(A) = Πi∈Istates(Ai).

• start(A) = Πi∈Istart(Ai).

• trans(A) is the set of triples (s, π, s′) such that for all i ∈ I, if π ∈ acts(Ai)
then (si, π, s′i) ∈ trans(Ai); otherwise, si = s′i.

• tasks(A) =
⋃

i∈I(Ai).

We denote a finite composition of automata A1, ..., An by A1 ‖ ... ‖ An.

After composing I/O Automata, we may want to hide actions used for com-
munication between components, making them internal actions of the com-
position. Thus, ActHideΦ(A), for Φ ⊆ out(A), is defined as the automaton
obtained from A by reclassifying each action in Φ as internal.

4 Self-Similarity

The problem that motivates this paper is that of finding a representative
network to test instead of testing all members of a class. If there is a small
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network N that “looks like” all larger networks in the class, then the smallest
such network is an obvious candidate. This is because we can test N by itself
to determine properties of the entire class.

Defining Self-Similarity.

Because we are interested in networks, we consider only automata with
send output actions and receive input actions. These automata are param-
eterized by the number of ports (interfaces) they have to the network. Each
send action is associated with a port, and sends the message out using the
port. Each receive action is also associated with a port and receives a message
arriving on the port.

Message is the set of possible messages over a port. An automaton with
n ports has a signature containing at least the following actions:

send(m : Message, i : Int), where 1 ≤ i ≤ n,
receive(m : Message, i : Int), where 1 ≤ i ≤ n.

To combine automata, we use a channel automaton Channel(A, B)i,j, as
described in [?]. It joins port i of automaton A to port j of automaton B.
(When only two automata are being composed, we write just Channeli,j.)
This automaton has input actions send(m, i)A and send(m, j)B and output
actions receive(m, i)A and receive(m, j)B. We assume that messages are de-
livered reliably, in-order, and with no duplication.

Suppose that an automaton N is parameterized by the number n of ports.
Then we say that N(n) is self-similar if
traces(ActHideΦ(N(n) ‖ Channeli,j ‖ N(n))) ⊆ traces(N(2n − 2)), where
Φ = {send(m, i)a, send(m, j)b, receive(m, i)a, receive(m, j)b}.
In other words, the externally visible actions of the composition of N(n) with
itself, using a channel connecting ports i and j, looks like a single automaton
N(2n− 2), ignoring actions on the ports connecting the automata.

We also define self-similarity for properties of networks, since it may be
easier to establish self-similarity of interesting properties than for entire au-
tomata. We say that a trace property T is self-similar if the network N(n) ‖
Channeli,j ‖ N(n) has property T whenever network N(n) has property T .
Thus test results concerning a self-similar property of a network N(n) can be
generalized to apply to larger networks.

Using Self-Similarity in Testing.

By the definition of self-similarity, correct behavior of a self-similar network
N implies correct behavior of a larger network composed of multiple instances
of N . Perhaps more importantly, if there are bugs in the larger network, they
will also be found in N .

There are two approaches that allow us to take advantage of self-similarity
to reduce the size of the network under test. First, we can define a self-similar
model of the network that has the properties of interest in the test effort.
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Second, we can test directly whether the properties of interest are self-similar.
The case study of learning bridges in Section 6 follows the first approach. A set
of axioms for learning bridges and proof that a composition of two automata
obeying the axioms is presented in a longer version of this paper [?].

Self-Similar Models.

This approach requires a generalized model M of the network that is self-
similar. If the specification holds for M and if we establish by testing that N
implements M , we can use the test results as if N itself were self-similar. The
following theorem is the basis of this claim.

Theorem 4.1 If M(n) is self-similar and if traces(N(n)) ⊆ traces(M(n)) ⊆
traces(S) then ActHideΦ(traces(N(n)) ‖ Channeli,j ‖ traces(N(n))) ⊆ traces(S).

This theorem says that given a network N(n) and a self-similar model
M(n), where M(n) implements S and N(n) implements M(n), we can con-
clude that two composed instances of network N(n) implement S. By induc-
tion, we can compose any number of instances of N(n) and still conform to
S.

Proof. Follows immediately from the definitions. 2

Self-Similar Properties.

If self-similar trace properties S and T both hold for a network N , then
clearly so does the trace property S ∧ T . This fact can be used in showing
that a complex network satisfies a conjunction of properties T1∧T2∧ . . .∧Tn:
in showing this, one can prove that each individual property Ti is self-similar,
rather than considering the properties together.

Not every property we are interested in testing will turn out to be self-
similar. However, we believe that many will be; for these, testing can be
carried out using small networks.
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5 Learning Bridges

A learning bridge interconnects separate IEEE 802 LAN segments into a single
bridged LAN. It relays and filters frames “intelligently” between the separate
LAN segments [?].

A learning bridge incorporates a forwarding algorithm and a spanning
tree algorithm. The forwarding algorithm initially forwards every frame that
arrives at a port out every other port. Also, when a frame arrives at a port,
the forwarding algorithm “learns” the relationship between the source address
and the port. It records this relationship in a filtering database. Once the
forwarding algorithm learns the address-to-port relationship, it forwards any
frame sent to that address on the corresponding port.

The spanning tree algorithm converts an arbitrary topology to a tree. This
eliminates cycles from the network so that frames will not be forwarded forever.
We assume that the following important property is enforced by the spanning
tree algorithm, as required by the standard: “The spanning tree algorithm
creates a single spanning tree for any bridged LAN topology.” Thus, there is
a unique path between any two hosts and cycles are eliminated.

6 Self-Similarity of Learning Bridges

This section presents our proof that learning bridges are self-similar. The
proof is based on a generalized model of learning bridges. The self-similarity
property allows a tester to use Theorem 5.1 to justify testing only a single
learning bridge to verify an entire network 5 .

Learning bridge operation can be described briefly as “send incoming
frames out all ports until the correct port is known; then send out the correct
port only.” A network of bridges that conform exactly to this requirement is
not self-similar. Consider the following example:

Example 6.1 Learning Bridge. Bridges A and B are connected to each other,
with A preceding B in a path from S (source) to D (destination). Suppose
that the filtering database in A does not contain an entry for D, while the
filtering database of B does contain an entry for D. Then if a message initiated
is from S to D, A forwards this message to every active port but B forwards
it to only the correct port.

Compose A and B into one bridge AB. The requirement above means that
an external observer would expect the trace of AB to have only one outgoing
message with destination D. But this does not happen. Instead the message is
forwarded to all ports that are inherited from A and to a single port inherited
from B—the same one that B forwards the message to.

5 Note that we address only the forwarding of messages in this paper, not the construction
of the spanning tree.
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So we define a generalized model, which requires only that the bridge copies
each message to the “correct port”, and perhaps to other ports as well. By
“correct port” P , we mean that P is the port through which the destination
is reachable. The learning bridge implements this by using a filtering database
to record the source address of each arriving message along with the port at
which it arrived. All subsequent messages sent to that address will be copied
to the corresponding port (and possibly other ports). If no message has been
received from the destination address, the filtering database does not have an
entry for the address, and the bridge forwards the message to all ports.

The Generalized Model.

Each bridge has five actions: input action receive, output action send, and
internal actions copyIn, copyOut, and delete. It has a filtering database, an
input and output buffer for each port, and an array of queues corresponding
to each (input port, output port) pair. The array entry queue[i, j] is a queue
of messages that have arrived at port i and are destined to be sent out port j.

The receive action adds received messages to the input buffer for the ar-
rival port and updates the filtering database. The send action sends the first
message in a port’s output buffer to the channel connected to the port. The
copyIn action copies a message from an input buffer to the end of all the in-
ternal queues for the input port; copyOut copies a message from one internal
queue to an output buffer. Finally, the delete action can delete an arbitrary
message m from an internal queue, if the correct port is known at the time
of the delete and the queue doesn’t correspond to the correct port for the
message 6 . We assume that there are a finite number of active ports in any
bridge and that the spanning tree algorithm determines which ports are active.

automaton bridge(n : Int)i

signature
input

receive(m, inPort)i

output
send(m, outPort)i

internal
copyIn(m, inPort)
copyOut(m, inPort, outPort)i

delete(m, inPort, outPort)i

states
inbuf, an array of input buffers, indexed by {1, ..., n }, one for each port
outbuf, an array of output buffers (FIFO queues) indexed by {1, ..., n},

one for each port, initially all empty.
queue, an array of FIFO queues indexed by {1, ..., n} × {1, ..., n}

one for each pair of ports, initially all empty.
filterDB, a mapping of message destinations to ports of bridgei indexed

6 The delete action is one of many ways to model a bridge that is allowed to forward a
message out a port other than the correct one. It nondeterministically removes messages
from queues that don’t lead to the correct port.
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by {1, ..., n}, initially all nil.
transitions
receive(m, inPort)i

effect
add m to inbuf(inPort)
set filterDB(m.src) := inPort

send(m, outPort)i

precondition
m first element on outbuf(outPort)

effect
remove first element from outbuf(outPort)

copyIn(m, inPort)
precondition

m is the first element on inbuf [inPort]
effect

add m to queue[inPort, i] for all i 6= inPort
remove m from inbuf [inPort]

copyOut(m, inPort, outPort)i

precondition
m first element on queue[inPort,outPort]

effect
add m to outbuf[outPort]
remove m from queue[inPort, outPort]

delete(m, inPort, outPort)i

precondition
m is in the queue queue[inPort, outPort]∧
filteringdb[dest(m)] 6= nil ∧ filteringdb[dest(m)] 6= outPort

effect
remove m from queue[inPort, outPort]

Composition of Bridges:

Now we describe the composition of two learning bridges. We assume that
the spanning tree algorithm has been run to completion by all the bridges in
the network and that there are no failures. Because of this, there is only one
active path between any two bridges.

Let bridge1 and bridge2 be two learning bridges running the IOA code
given above. We use the convention that port i is a port of bridge1 and j is a
port of bridge2. Without loss of generality, we assume that port i0 of bridge1

is connected with port j0 of bridge2 through Channeli0,j0 . Because of the
spanning tree algorithm, these are the only active ports connecting bridge1

and bridge2.

Let bridgec be the result of renaming ports of bridge2 to n + 1, ..., 2n (to
avoid conflict with port numbers of bridge1), then composing bridge1 and
bridge2 with a connecting channel, and finally hiding the send and receive
actions on the channel between them:
bridgec = ActHideΦ(bridge1 ‖ Channeli0,j0 ‖ bridge2) and
Φ = {send(m, i0)1, receive(m, i0)1, send(m, j0)2, receive(m, j0)2}.

Our goal is to show that bridgec is essentially the same as a single bridge,
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which we will call bridgep, running the learning bridge IOA. bridgep must
have the same number of ports as bridge1 and bridge2 together, minus the
two connected ports. Thus if bridge1 and bridge2 each have n active ports,
bridgep has 2n− 2 active ports. Port i of bridgep with 1 ≤ i ≤ n, is connected
to the same channel as the corresponding port i of bridge1. Similarly port
j of bridgep, with n + 1 ≤ j ≤ 2n, is connected to the same channel as the
corresponding port j of bridge2. Finally, the input and output actions of
bridgep are renamed so that the actions on port i, 1≤i≤n, are receive(m, i)1

and send(m, i)1 (instead of receive(m, i)p and send(m, i)p); similarly, actions
on port j, n + 1 ≤ j ≤ 2n, are receive(m, j)2 and send(m, j)2.

Simulating a bridge with a composition of bridges:

We use an important theorem about IOA to show the equivalence of bridgec

to bridgep. The theorem says that if there is a simulation relation (defined
below) from an IOA A to an IOA B, then traces(A) ⊆ traces(B).

Definition 6.2 A simulation relation from an IOA A to an IOA B is a re-
lation R ⊆ states(A) × states(B). Define f : states(A) → P(states(B)) by
f(s) = {t|(s, t) ∈ R}. To be a simulation relation, R must satisfy:

(i) (Start condition:) If s ∈ start(A), then f(s) ∩ start(B) 6= φ (start con-
dition).

(ii) (Step condition:) If s is a reachable state of A, u ∈ f(s) is a reachable
state of B, and (s, π, s′) ∈ trans(A), then there is an execution fragment
α of B starting in state u and ending in some state u′ ∈ f(s′) such that
trace(α) = trace(π).

Below, we define a relation R from bridgec to bridgep and prove that R is
a simulation relation. This gives us the desired result:

Theorem 6.3 The learning bridge automaton bridge(n) is self-similar.

Proof. Let s be a state of bridgec and t be a state of bridgep. We use dot
notation to denote a state variable in a bridge, e.g., s.filterDB1 is the value
of the filtering database of bridge1 in state s of bridgec.

The pair (s, t) belongs to the relation R if:

(i) t.filterDB = s.filterDB1 ∪ s.filterDB2 −{〈addr, port〉|port ∈ {i0, j0}}
(ii) t.outbuf [i] = s.outbuf [i]m for i ∈ ports1

⋃
ports2−{i0, j0}, and the value

m ∈ {1, 2} depends on the value of i.

(iii) t.inbuf [i] = s.inbuf [i]m for i ∈ ports1

⋃
ports2−{i0, j0} and the value of

m ∈ {1, 2} depends on the value of i.

(iv) The internal array of message queues t.queue corresponds to the combined
arrays s.queue1 and s.queue2 as follows:
• t.queue[i, i′] = s.queue[i, i′]1 if i, i′ ∈ ports1, i, i

′ 6= i0
• t.queue[j, j′] = s.queue[j, j′]2 if j, j′ ∈ ports2, j, j

′ 6= j0
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• t.queue[i, j] is a concatenation of the following queues for i ∈ ports1, j ∈
ports2, with i 6= i0, j 6= j0:

s.queue[j0, j]2,s.outbuf [j0]2,s.queuej0,i0 ,s.inbuf [i0]1,s.queue[i, i0]1
• t.queue[j, i] is defined symmetrically for i ∈ ports1, j ∈ ports2, with

i 6= i0, j 6= j0:

These conditions mean that:

(i) The filtering database of bridgep contains the same entries as the union of
the filtering databases of the two component bridges of bridgec, excluding
the entries for the internal ports.

(ii) The output buffer for each port of bridgep contains the same messages
as the output buffer of the corresponding port of bridgec. There are no
buffers in bridgep corresponding to i0 and j0. These buffers in bridgec

may contain any messages consistent with the other conditions.

(iii) The input buffer for each port of bridgep contains the same messages as
the input buffer of the corresponding port of bridgec.

(iv) Entries in the internal array of queues are the same in bridgep as bridgec if
the entry connects an input port to an output port of the same component
bridge; otherwise, they are a concatenation involving the channel queue
and the buffers for ports i0 and j0.

To show that R is a simulation relation, we must prove the start condition
and the step condition. The former is trivial because all states of both bridges
are initially empty. The latter requires proving that states of bridgep and
bridgec correspond after each action. First we prove state correspondence for
the filtering databases:

Definition 6.4 State Invariant: In all reachable states of the composed IOA,
the filtering database of bridgec corresponds to the filtering database of bridgep

as defined by the simulation relation.

The proof is by induction of the length of an execution. The result is
clear if a message is forwarded only on ports of the bridge at which it arrived.
It is less obvious when a frame arrives at one bridge and is forwarded out
the second bridge. In this case, the filtering databases of both bridge1 and
bridgep are updated on receipt of the message with the relationship between
the arrival port and the source address. Later, the filtering database of bridge2

is updated to show the path to the source goes through bridge1. Since the
simulation relation refers only to the entry in bridge1 and ignores the entry in
bridge2, it is preserved in this case (as well as all others).

To show that input buffers, output buffers, and internal queues correspond
after each action, we consider all actions π. Table 1 summarizes all the possible
actions of bridgec, the corresponding execution fragment of bridgep and the
trace, which is the same for both bridges.
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Action of Bridgec Execution fragment of
Bridgep

Trace

1 receive(m, i)1, i 6= i0 receive(m, i)1 receive(m, i)1

2 receive(m, j)2, j 6= j0 receive(m, j)2 receive(m, j)2

3 receive(m, i0)1 λ λ

4 receive(m, j0)2 λ λ

5 send(m, i)1, i 6= i0 send(m, i)1 send(m, i)1

6 send(m, j)2, j 6= j0 send(m, j)2 send(m, j)2

7 send(m, i0)1 λ λ

8 send(m, j0)2 λ λ

9 delete(m, i, i′)1, i
′ 6= i0 delete(m, i, i′)p λ

10 delete(m, j, j′)2, j
′ 6=

j0

delete(m, j, j′)p λ

11 delete(m, i, i0)1 Sequence delete(m, i, j)p for
j ∈ ports2, j 6= j0

λ

12 delete(m, j, j0)2 Sequence delete(m, j, i)p for
i ∈ ports1, i 6= i0

λ

13 copyIn(m, i)1, i 6= i0 copyIn(m, i)p λ

14 copyIn(m, j)2, j 6= j0 copyIn(m, j)p λ

15 copyIn(m, i0)1 λ λ

16 copyIn(m, j0)2 λ λ

17 copyOut(m, i, i′)1, i
′ 6=

i0

copyOut(m, i, i′)p λ

18 copyOut(m, j, j′)2, j
′ 6=

j0

copyOut(m, j, j′)p λ

19 copyOut(m, i, i0)1 λ λ

20 copyOut(m, j, j0)2 λ λ

Table 1: Correspondence between actions of Bridgec and Bridgep

A simple case analysis establishes the result.

2

13



Djouvas

7 Experiment

We performed three tests on learning bridges with the goal of quantifying the
impact of self-similarity in reducing test time. The first test used a single
bridge, the second two connected bridges, and the third used three connected
bridges. Our hypothesis was that doing only the first test would reduce the
test time by at least a factor of 2 over testing three connected bridges, since
only one configuration need be tested rather than three.

Test setup in this case is much simpler than most network test setup, so
that time savings should be under-stated. In our tests, we used three Cisco
Catalyst 2950 switches, each with four hosts connected to it, all on a single
vlan (vlan1). We used 300 seconds (the default) for the expiration time of an
entry in the mac-addr-table, which is the internal table on Cisco switches
containing the learned MAC addresses. Thus entries that are not used for 5
minutes will be removed from the table.

The hosts were configured with network addresses in the 192.168.0.0/24
network. Four hosts were connected to each switch. The network was not
connected to a router, so that only traffic from the LAN was visible. In each
test, one of tne hosts executed a script to ping each other connected host 5
times. In addition, the pinger tried to ping various non-existent hosts 5 times
each. After attempting to ping all hosts in the list, the pinger slept for 600
seconds, allowing the mac-addr-table entries to expire, and then repeated
the pings.

For the ping, the pinger used the parameters -f -c 5 -p <pattern> .

• -f: Flood ping with 0 interval: send packets as fast as the host supplies
them.

• -c 5: Packet count is 5.

• -p <pattern >: Fill the packet with the given hexadecimal pattern

The flood option was used to stress the switch as much as possible, assuming
that errors are more likely when the switch is stressed. The pattern was varied
in each ping to pick up potential data-dependent issues on the network.

The network traces were captured with the command tcpdump -s0, to cap-
ture the entire frame. For analysis, we used tcpdump with options -exxtts0,
meaning:

• -e: Print the link-level header with each frame. This is required to evaluate
the switch behavior, since it is a link-layer device.

• -s0: Capture all octets in the frame, for use in evaluating unexpected be-
havior.

• -tt Print an unformatted timestamp with each frame, to disambiguate which
messages match.

• -xx: Print each frame, including its link level header, in hex.

14
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Correct bridge behavior would require that hosts capture the following
messages:

• Broadcast: All ARP request messages broadcast by any host must appear
in the traces for all hosts. In other words, if an ARP request message
appears in the trace for the source host, it must also appear in the trace
for each other host. For connected hosts, the number of ARP requests was
one or two, although the number could correctly be higher (on other tests,
we have seen as much as three on larger LANs). For hosts that were not
available, six messages were broadcast.

• Unicast: For each unicast message appearing in the trace for a source host,
the trace at the destination host must contain the same message (ARP reply
message, echo request message, or echo reply message).

• Received messages: Each message received must match a message that
was sent.

Subsequent analysis of the network traces generated by tcpdump found all of
the required messages.

The tests were set up and run by a single member of the project research
staff, a recent graduate of the computer science program at Lehman College.
Since the first tests run were the single switch tests, followed by the two switch
tests, and finally the three switch tests, it is possible that learning from earlier
tests reduced the time required for setting up the later tests. Because of time
constraints, we actually used only one host as the pinger instead of rotating
through the hosts; this affected the total execution time, which is predictable
since we used scripts. It would have been multiplied by the number of hosts
in each test (4 for the one switch case, 8 for the two switch case, and 12 for
the three switch case). We assume that the effect on setup time would have
been minor, on the order of a few minutes for copying the scripts to the other
hosts.

Table 2 shows the distributions of time observed for running the tests. The
short time required for test planning can be attributed to the simple nature
of the test. We observe that after setting up for the first test suite, on the
single learning bridge configuration, the time required for setting up the lab
for later test suites was greatly reduced.

15



Djouvas

One bridge Two
bridges

Three
bridges

Test Planning 1 hour - -

Test Lab Setup 12.5 hours 1.08 hours .92 hours

Test Execution 2.33 hours
(9.3 hours)

2.33 hours
(18.6
hours)

2.33 hours
(27.9
hours)

Test Documen-
tation

3 hours 2 hours 2 hours

Total 18.83
hours

5.41 hours 5.25 hours

Table 2. Times required for stages of testing for 1, 2, and 3 bridges.
Presumed test execution times for using each of the hosts as a pinger,

instead of only one, are shown in parentheses.

It took approximately 1.6 times as long to run three tests as it did to run
the first, instead of 2 times as long. One reason for this was that, because
the networks are self-similar, the test setup is also almost the same; thus the
experience gained setting up one configuration reduces the time required to set
up the next configuration. Another reason was that the configuration tasks
themselves were not difficult. Creating test execution scripts and verifying
that the network configuration was correct was the most difficult part of the
setup.

We note that in practice, rather than testing until a desired level of con-
fidence is reached, testers actually test until they run out of time. This phe-
nomenon affected this test as well. Thus it is likely that the primary contri-
bution of using self-similarity in testing will be to help testers select better
tests and to improve the level of confidence in the results of testing.

A secondary goal of this experiment was to identify useful tools that might
be built to use test models, especially self-similar models, to support more cost-
effective testing. Difficult problems observed in the testing were evaluating
test results (i.e., correct or not) and verifying correctness of the test lab setup.
A model that supports determining whether a network trace is valid would
be useful for evaluating test results. Better network management tools would
help verify correctness of the test lab setup.

8 Conclusions

In this paper, we have shown that the self-similarity of network devices and
their properties provides a powerful tool for reducing the size of a network
testing effort. All networks in a class of self-similar networks can be tested by
testing the smallest self-similar subnetwork. This reduces to one the number
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of networks to be tested while minimizing the size of the network.

A case study of the self-similarity of learning bridges illustrates one ap-
proach to using self-similarity in network testing. This approach uses a self-
similar network model that captures the behaviors that the network must
implement. A longer version of this paper [?] shows how to define required
properties of learning bridges and prove self-similarity. The latter approach
will be necessary when a model of the network protocol is not available.

Additional work is needed to identify other self-similar networks and im-
portant self-similar properties of networks. Also, it will be useful to investigate
the use of models for evaluating the results of a network test. Another line
of investigation is to determine how to evaluate the coverage of a set of tests
for a network and to develop ways to measure the level of confidence we have
that a network works, given a test suite for the network.

Acknowledgments. We are grateful to Pearl Abotsi for her excellent work
running the tests.
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