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Complex Systems

 Even rocket scientists make mistakes
Ariane 5 (1996), 

floating point conversion error

Mars PathFinder (1997), 

priority inversion deadlock

Mars Climate Orbiter 

(1999), unit confusion

Deep Space 1, 

(1999) data race

Mars Polar Lander, 

(1999) Landing logic error

Spirit Mars Rover, 

(2004) file system error

Mission Loss Mission Loss Mission Loss



Complex Systems

Airbus A330

2009: Crash off Brazil due to inaccurate airspeed indication 

 … so do airplane designers



Complex Systems

USS Yorktown: 

1997 database overflow caused its propulsion system to fail

 … and ship designers



Complex Systems

 … and circuit designers

Intel Pentium: 

1994 FDIV bug: 

execute 4195835 – 4195835 / 3145727 * 3145727 

Chip returns 256, instead of zero



Complex Systems

 … and financial “wizards”

 Remember subprime mortgages?



Verification

 Theoretically, we cannot know whether 

a given design is free from all bugs

 Because its impossible to anticipate 

everything that could possibly go wrong

 But, we can verify that the design 

satisfies properties we specify explicitly 

 E.g., “does the design satisfy property 1

and property 2 and … and property n?”



Formal Verification

 The field of Formal Verification develops 

clever techniques for computationally 

determining whether a given design 

satisfies a given set of properties



Verification Strategies

 Theorem Proving

 Disadvantage: tedious and difficult

 Simulation/testing

 Disadvantage: modern designs are too 

complicated to test exhaustively

 Model checking

 Advantage:

 Algorithmic (i.e., automated)

 Has been successful in the “real world”

 Can aid in debugging designs
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Temporal Logic

 A logical notation for specifying logical 

relationships in time

 E.g., “event p happens before event q”

 Two Types of Temporal Logics

 Linear Time Logic (LTL)

 Branching Time Logic 

 E.g., Computation Tree Logic (CTL)



Linear Temporal Logic (LTL)

 Temporal operators

 G p “henceforth p is true”

 F p “eventually p will be true”
 X p “p will be true next step”
 p U q “p is true until q is true”

 An implicit path quantifier: 
 A Á “property Á holds for all paths”

 Á is „G p‟, „F p‟, „X p‟, or „p U q‟



Typical LTL formulas

 Liveness (something „good‟ will happen)

 G F p
 p eventually becomes true, for all paths

 Safety (nothing „bad‟ will happen)
 G : ( p & q)

 p and q are never true at the same time 

 Fairness

 ( G F p )  ( G F q )
 If p becomes true, q eventually becomes true



Computation tree logic (CTL)

 2 (explicit) path quantifiers

 A = “for all paths”

 E =  “for some path”
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p p
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p p

A G p A F p E G p E F p



Typical CTL formulas

 EF(p Æ : q) 

 It is possible to get to a state where p 
holds, but q does not

 AG(p ) AF q) 

 If p occurs, q will eventually occur

 AG(AF p) 

 p occurs infinitely often, along all paths

 AG(EF p) 

 It is possible to reach state a state were p 
holds, regardless of where you begin



Model checking: Example

 Traffic Light Controller

 3 sensors (N,S,E)

 If car present, and light red, 

sensor requests a light 

change

 A lock controls access to 

the lights

E

S

N

 Can we:

 Guarantee no collisions

 Guarantee eventual service



Specifications

 Safety (no collisions)

AG  (E_Go  (N_Go | S_Go));

 Liveness

AG ( N_Go  N_Sense  AF N_Go);

AG ( S_Go  S_Sense  AF S_Go);

AG ( E_Go  E_Sense  AF E_Go);



CTL model checking algorithm

 Example:  AF p =  “inevitably p”

 Complexity

– linear in size of model (FSM)

– linear in size of specification formula

p

Note:  corresponding LTL MC algorithm is exponential in formula size

AFpAFp

AFpAFp



Counterexample

 AG  (E_Go  (N_Go | S_Go)) is false

 Ex. East and North lights on at same time...
E_Go

E_Sense

NS_Lock

N_Go

N_Req

N_Sense

S_Go

S_Req

S_Sense

E_Req

1

2

3

4

5

6

7

8

9

10

time

S releases 

NS lock, just 

as N light 

goes on. 

E thus gets 

lock (by 

mistake), and 

turns on, 

while N is 

still on



State explosion problem

 Explicit state model checkers are only 

applicable to small systems 

 ~109 states

 Unfortunately, most real-world designs 

have MUCH larger state spaces



State explosion problem

 The MC community has devised a 

number of clever approaches to 

(partially) dealing with this problem

 Abstraction

 “Symbolic” methods

 “Partial order” methods



Symbolic model checking

 Basic idea:

 Don‟t represent states explicitly. Use 
clever data structures or formulas to 
implicitly represent sets of states, and the 
transitions between them

 Model checking can then be performed 
using set operations



Image computation

 EX p =  states that can reach p in one step

EXp p



Fixed point iteration

 EF p = states that can reach p

S0 = pS1...Sw



Model checking: History

 Early 1980s: model checking invented

 1990s: first commercial applications

 Late 1990s/Early 2000s: first 

applications to Biology



Model Checking: Significance

 Symbolic approaches have been used 

to perform model checking on systems 

with more than 10120 states

 Industrial Applications

 Hardware Design

 Avionics

 Chemical plant control

 Nuclear Storage facilities
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Model Checking for Biology?

 Biological systems are significantly 

different than engineered systems

 Stochastic Dynamics

 Larger state spaces (some are infinite-state)

 Biological systems evolve in time and space

 Biologists have different needs than 

engineers

 E.g., a biologist will often want to know the 

probability of an event occuring, not simply 

whether an event can occur



Probabilistic model checking

 There are specialized temporal logics for 

reasoning about the probability a specification 

is true

 Ex.  Pr¸½ F p

 The probability that p will be true in the future is greater 
than, or equal to ½

 Specialized model checking algorithms (e.g., 

BioLab) can be used to determine whether 

the model satisfies the property

 These algorithms rely on extensive simulations 

and statistics



Example

 Cancer Modeling

 Tumor development is a complex process 

involving many genetic changes

 These genetic changes occur over time

 Are there preferred mutation sequences?

A,B,C a,b,c

a,B,C

A,b,C

A,B,c

Healthy Tumor
a,b,C

a,B,c

A,b,c



Example: Properties

 Pr¸½ :A_mut U (A_mut Æ B_mut Æ C_mut)

 “The probability that mutations B and C occur before 
mutation A is at least ½”

 A_mut  Pr¸½ ( G F A_mut Æ B_mut Æ C_mut )

 “If A is mutated, the probability that a tumor will develop is at 
least ½”

 A_mut Æ D  Pr·½ ( G F A_mut Æ B_mut Æ C_mut )

 “If A is mutated, but we use drug D, the probability that a 
tumor will develop is no more than ½”



This workshop

 You will be modeling specific signaling 

pathways in BioNetGen that are known 

to be altered in many tumor types

 You will be using model checking to 

verify properties of the BioNetGen

models



Summary

 Model checking is useful way to verify 

properties of complex systems

 Historically, model checking was 

invented to verify properties of 

engineered systems

 More recently, new model checking 

algorithms have been developed for 

studying biological systems


