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Complex Systems

 Even rocket scientists make mistakes
Ariane 5 (1996), 

floating point conversion error

Mars PathFinder (1997), 

priority inversion deadlock

Mars Climate Orbiter 

(1999), unit confusion

Deep Space 1, 

(1999) data race

Mars Polar Lander, 

(1999) Landing logic error

Spirit Mars Rover, 

(2004) file system error

Mission Loss Mission Loss Mission Loss



Complex Systems

Airbus A330

2009: Crash off Brazil due to inaccurate airspeed indication 

 … so do airplane designers



Complex Systems

USS Yorktown: 

1997 database overflow caused its propulsion system to fail

 … and ship designers



Complex Systems

 … and circuit designers

Intel Pentium: 

1994 FDIV bug: 

execute 4195835 – 4195835 / 3145727 * 3145727 

Chip returns 256, instead of zero



Complex Systems

 … and financial “wizards”

 Remember subprime mortgages?



Verification

 Theoretically, we cannot know whether 

a given design is free from all bugs

 Because its impossible to anticipate 

everything that could possibly go wrong

 But, we can verify that the design 

satisfies properties we specify explicitly 

 E.g., “does the design satisfy property 1

and property 2 and … and property n?”



Formal Verification

 The field of Formal Verification develops 

clever techniques for computationally 

determining whether a given design 

satisfies a given set of properties



Verification Strategies

 Theorem Proving

 Disadvantage: tedious and difficult

 Simulation/testing

 Disadvantage: modern designs are too 

complicated to test exhaustively

 Model checking

 Advantage:

 Algorithmic (i.e., automated)

 Has been successful in the “real world”

 Can aid in debugging designs
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Temporal Logic

 A logical notation for specifying logical 

relationships in time

 E.g., “event p happens before event q”

 Two Types of Temporal Logics

 Linear Time Logic (LTL)

 Branching Time Logic 

 E.g., Computation Tree Logic (CTL)



Linear Temporal Logic (LTL)

 Temporal operators

 G p “henceforth p is true”

 F p “eventually p will be true”
 X p “p will be true next step”
 p U q “p is true until q is true”

 An implicit path quantifier: 
 A Á “property Á holds for all paths”

 Á is „G p‟, „F p‟, „X p‟, or „p U q‟



Typical LTL formulas

 Liveness (something „good‟ will happen)

 G F p
 p eventually becomes true, for all paths

 Safety (nothing „bad‟ will happen)
 G : ( p & q)

 p and q are never true at the same time 

 Fairness

 ( G F p )  ( G F q )
 If p becomes true, q eventually becomes true



Computation tree logic (CTL)

 2 (explicit) path quantifiers

 A = “for all paths”

 E =  “for some path”
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Typical CTL formulas

 EF(p Æ : q) 

 It is possible to get to a state where p 
holds, but q does not

 AG(p ) AF q) 

 If p occurs, q will eventually occur

 AG(AF p) 

 p occurs infinitely often, along all paths

 AG(EF p) 

 It is possible to reach state a state were p 
holds, regardless of where you begin



Model checking: Example

 Traffic Light Controller

 3 sensors (N,S,E)

 If car present, and light red, 

sensor requests a light 

change

 A lock controls access to 

the lights

E

S

N

 Can we:

 Guarantee no collisions

 Guarantee eventual service



Specifications

 Safety (no collisions)

AG  (E_Go  (N_Go | S_Go));

 Liveness

AG ( N_Go  N_Sense  AF N_Go);

AG ( S_Go  S_Sense  AF S_Go);

AG ( E_Go  E_Sense  AF E_Go);



CTL model checking algorithm

 Example:  AF p =  “inevitably p”

 Complexity

– linear in size of model (FSM)

– linear in size of specification formula

p

Note:  corresponding LTL MC algorithm is exponential in formula size

AFpAFp

AFpAFp



Counterexample

 AG  (E_Go  (N_Go | S_Go)) is false

 Ex. East and North lights on at same time...
E_Go

E_Sense

NS_Lock

N_Go

N_Req

N_Sense

S_Go

S_Req

S_Sense

E_Req

1

2

3

4

5

6

7

8

9

10

time

S releases 

NS lock, just 

as N light 

goes on. 

E thus gets 

lock (by 

mistake), and 

turns on, 

while N is 

still on



State explosion problem

 Explicit state model checkers are only 

applicable to small systems 

 ~109 states

 Unfortunately, most real-world designs 

have MUCH larger state spaces



State explosion problem

 The MC community has devised a 

number of clever approaches to 

(partially) dealing with this problem

 Abstraction

 “Symbolic” methods

 “Partial order” methods



Symbolic model checking

 Basic idea:

 Don‟t represent states explicitly. Use 
clever data structures or formulas to 
implicitly represent sets of states, and the 
transitions between them

 Model checking can then be performed 
using set operations



Image computation

 EX p =  states that can reach p in one step

EXp p



Fixed point iteration

 EF p = states that can reach p

S0 = pS1...Sw



Model checking: History

 Early 1980s: model checking invented

 1990s: first commercial applications

 Late 1990s/Early 2000s: first 

applications to Biology



Model Checking: Significance

 Symbolic approaches have been used 

to perform model checking on systems 

with more than 10120 states

 Industrial Applications

 Hardware Design

 Avionics

 Chemical plant control

 Nuclear Storage facilities
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Model Checking for Biology?

 Biological systems are significantly 

different than engineered systems

 Stochastic Dynamics

 Larger state spaces (some are infinite-state)

 Biological systems evolve in time and space

 Biologists have different needs than 

engineers

 E.g., a biologist will often want to know the 

probability of an event occuring, not simply 

whether an event can occur



Probabilistic model checking

 There are specialized temporal logics for 

reasoning about the probability a specification 

is true

 Ex.  Pr¸½ F p

 The probability that p will be true in the future is greater 
than, or equal to ½

 Specialized model checking algorithms (e.g., 

BioLab) can be used to determine whether 

the model satisfies the property

 These algorithms rely on extensive simulations 

and statistics



Example

 Cancer Modeling

 Tumor development is a complex process 

involving many genetic changes

 These genetic changes occur over time

 Are there preferred mutation sequences?

A,B,C a,b,c

a,B,C

A,b,C

A,B,c

Healthy Tumor
a,b,C

a,B,c

A,b,c



Example: Properties

 Pr¸½ :A_mut U (A_mut Æ B_mut Æ C_mut)

 “The probability that mutations B and C occur before 
mutation A is at least ½”

 A_mut  Pr¸½ ( G F A_mut Æ B_mut Æ C_mut )

 “If A is mutated, the probability that a tumor will develop is at 
least ½”

 A_mut Æ D  Pr·½ ( G F A_mut Æ B_mut Æ C_mut )

 “If A is mutated, but we use drug D, the probability that a 
tumor will develop is no more than ½”



This workshop

 You will be modeling specific signaling 

pathways in BioNetGen that are known 

to be altered in many tumor types

 You will be using model checking to 

verify properties of the BioNetGen

models



Summary

 Model checking is useful way to verify 

properties of complex systems

 Historically, model checking was 

invented to verify properties of 

engineered systems

 More recently, new model checking 

algorithms have been developed for 

studying biological systems


