
Model checking

Christopher James Langmead

Department of Computer Science &

Lane Center for Computational Biology

Carnegie Mellon University

January 14, 2010

Outline

 Complex Systems

 Model checking

 History, Concepts, Significance

 Model checking Biology?

 Example: Cancer

Complex Systems

 Even rocket scientists make mistakes
Ariane 5 (1996),

floating point conversion error

Mars PathFinder (1997),

priority inversion deadlock

Mars Climate Orbiter

(1999), unit confusion

Deep Space 1,

(1999) data race

Mars Polar Lander,

(1999) Landing logic error

Spirit Mars Rover,

(2004) file system error

Mission Loss Mission Loss Mission Loss

Complex Systems

Airbus A330

2009: Crash off Brazil due to inaccurate airspeed indication

 … so do airplane designers

Complex Systems

USS Yorktown:

1997 database overflow caused its propulsion system to fail

 … and ship designers

Complex Systems

 … and circuit designers

Intel Pentium:

1994 FDIV bug:

execute 4195835 – 4195835 / 3145727 * 3145727

Chip returns 256, instead of zero

Complex Systems

 … and financial “wizards”

 Remember subprime mortgages?

Verification

 Theoretically, we cannot know whether

a given design is free from all bugs

 Because its impossible to anticipate

everything that could possibly go wrong

 But, we can verify that the design

satisfies properties we specify explicitly

 E.g., “does the design satisfy property 1

and property 2 and … and property n?”

Formal Verification

 The field of Formal Verification develops

clever techniques for computationally

determining whether a given design

satisfies a given set of properties

Verification Strategies

 Theorem Proving

 Disadvantage: tedious and difficult

 Simulation/testing

 Disadvantage: modern designs are too

complicated to test exhaustively

 Model checking

 Advantage:

 Algorithmic (i.e., automated)

 Has been successful in the “real world”

 Can aid in debugging designs

The model checking problem

Model

Specification

Model

Checker

Yes

No, and a

counter-example

The model checking problem

Model

Specification

Model

Checker

Yes

No, and a

counter-example

Specifications

are given in

temporal logic

Temporal Logic

 A logical notation for specifying logical

relationships in time

 E.g., “event p happens before event q”

 Two Types of Temporal Logics

 Linear Time Logic (LTL)

 Branching Time Logic

 E.g., Computation Tree Logic (CTL)

Linear Temporal Logic (LTL)

 Temporal operators

 G p “henceforth p is true”

 F p “eventually p will be true”
 X p “p will be true next step”
 p U q “p is true until q is true”

 An implicit path quantifier:
 A Á “property Á holds for all paths”

 Á is „G p‟, „F p‟, „X p‟, or „p U q‟

Typical LTL formulas

 Liveness (something „good‟ will happen)

 G F p
 p eventually becomes true, for all paths

 Safety (nothing „bad‟ will happen)
 G : (p & q)

 p and q are never true at the same time

 Fairness

 (G F p)  (G F q)
 If p becomes true, q eventually becomes true

Computation tree logic (CTL)

 2 (explicit) path quantifiers

 A = “for all paths”

 E = “for some path”

p

p p

p p p p

p

p p

p

p

p p

A G p A F p E G p E F p

Typical CTL formulas

 EF(p Æ : q)

 It is possible to get to a state where p
holds, but q does not

 AG(p) AF q)

 If p occurs, q will eventually occur

 AG(AF p)

 p occurs infinitely often, along all paths

 AG(EF p)

 It is possible to reach state a state were p
holds, regardless of where you begin

Model checking: Example

 Traffic Light Controller

 3 sensors (N,S,E)

 If car present, and light red,

sensor requests a light

change

 A lock controls access to

the lights

E

S

N

 Can we:

 Guarantee no collisions

 Guarantee eventual service

Specifications

 Safety (no collisions)

AG  (E_Go  (N_Go | S_Go));

 Liveness

AG ( N_Go  N_Sense  AF N_Go);

AG ( S_Go  S_Sense  AF S_Go);

AG ( E_Go  E_Sense  AF E_Go);

CTL model checking algorithm

 Example: AF p = “inevitably p”

 Complexity

– linear in size of model (FSM)

– linear in size of specification formula

p

Note: corresponding LTL MC algorithm is exponential in formula size

AFpAFp

AFpAFp

Counterexample

 AG  (E_Go  (N_Go | S_Go)) is false

 Ex. East and North lights on at same time...
E_Go

E_Sense

NS_Lock

N_Go

N_Req

N_Sense

S_Go

S_Req

S_Sense

E_Req

1

2

3

4

5

6

7

8

9

10

time

S releases

NS lock, just

as N light

goes on.

E thus gets

lock (by

mistake), and

turns on,

while N is

still on

State explosion problem

 Explicit state model checkers are only

applicable to small systems

 ~109 states

 Unfortunately, most real-world designs

have MUCH larger state spaces

State explosion problem

 The MC community has devised a

number of clever approaches to

(partially) dealing with this problem

 Abstraction

 “Symbolic” methods

 “Partial order” methods

Symbolic model checking

 Basic idea:

 Don‟t represent states explicitly. Use
clever data structures or formulas to
implicitly represent sets of states, and the
transitions between them

 Model checking can then be performed
using set operations

Image computation

 EX p = states that can reach p in one step

EXp p

Fixed point iteration

 EF p = states that can reach p

S0 = pS1...Sw

Model checking: History

 Early 1980s: model checking invented

 1990s: first commercial applications

 Late 1990s/Early 2000s: first

applications to Biology

Model Checking: Significance

 Symbolic approaches have been used

to perform model checking on systems

with more than 10120 states

 Industrial Applications

 Hardware Design

 Avionics

 Chemical plant control

 Nuclear Storage facilities

Outline

 Complex Systems

 Model checking

 History, Significance, Concepts

 Model checking Biology?

 Example: Cancer

Model Checking for Biology?

 Biological systems are significantly

different than engineered systems

 Stochastic Dynamics

 Larger state spaces (some are infinite-state)

 Biological systems evolve in time and space

 Biologists have different needs than

engineers

 E.g., a biologist will often want to know the

probability of an event occuring, not simply

whether an event can occur

Probabilistic model checking

 There are specialized temporal logics for

reasoning about the probability a specification

is true

 Ex. Pr¸½ F p

 The probability that p will be true in the future is greater
than, or equal to ½

 Specialized model checking algorithms (e.g.,

BioLab) can be used to determine whether

the model satisfies the property

 These algorithms rely on extensive simulations

and statistics

Example

 Cancer Modeling

 Tumor development is a complex process

involving many genetic changes

 These genetic changes occur over time

 Are there preferred mutation sequences?

A,B,C a,b,c

a,B,C

A,b,C

A,B,c

Healthy Tumor
a,b,C

a,B,c

A,b,c

Example: Properties

 Pr¸½ :A_mut U (A_mut Æ B_mut Æ C_mut)

 “The probability that mutations B and C occur before
mutation A is at least ½”

 A_mut  Pr¸½ (G F A_mut Æ B_mut Æ C_mut)

 “If A is mutated, the probability that a tumor will develop is at
least ½”

 A_mut Æ D  Pr·½ (G F A_mut Æ B_mut Æ C_mut)

 “If A is mutated, but we use drug D, the probability that a
tumor will develop is no more than ½”

This workshop

 You will be modeling specific signaling

pathways in BioNetGen that are known

to be altered in many tumor types

 You will be using model checking to

verify properties of the BioNetGen

models

Summary

 Model checking is useful way to verify

properties of complex systems

 Historically, model checking was

invented to verify properties of

engineered systems

 More recently, new model checking

algorithms have been developed for

studying biological systems

