Correction to \textit{FOIL Axiomatized}
\textit{Studia Logica}, 84:1–22, 2006

Melvin Fitting
Dept. Mathematics and Computer Science
Lehman College (CUNY), 250 Bedford Park Boulevard West
Bronx, NY 10468-1589
e-mail: melvin.fitting@lehman.cuny.edu
web page: comet.lehman.cuny.edu/fitting

December 24, 2006

There is an error in the completeness proof for the \{\lambda, =\} part of \textit{FOIL}-K. The error occurs in Section 4, in the text following the proof of Corollary 4.7, and concerns the definition of the interpretation I on relation symbols. Before this point in the paper, for each object variable v an equivalence class v has been defined, and for each intension variable f a function \overline{f} has been defined. Then the following definition is given for a relation symbol P:
$\langle v_1, v_2, \ldots, f_1, f_2, \ldots \rangle \in I(P)(\Gamma)$ just in case there are w_1, w_2, \ldots in $d(\Gamma)$ with $w_i \in \overline{v_i}$ such that $P(w_1, w_2, \ldots, f_1, f_2, \ldots) \in \Gamma$. It was pointed out by Torben Brauner that we could have f_1 and g_1 being the same function, but also have $P(w_1, w_2, \ldots, f_1, f_2, \ldots) \in \Gamma$ without having $P(w_1, w_2, \ldots, g_1, f_2, \ldots) \in \Gamma$.

Our solution is to modify the definition of the model, rather artificially, so that if f and g are the same function, then f and g are syntactically the same intension variable. This is done as follows. First, arbitrarily choose some object variable w, and its corresponding equivalence class \overline{w}. For each intension variable f we define a disambiguation world \hat{f} as follows. Technically \hat{f} must be some entity—it will not matter what we choose, pick any entity for this. We simply need that for distinct f and g we have $\hat{f} \neq \hat{g}$. For each intension variable g other than f, extend \overline{g} so that \hat{f} is in its domain, and at this world \overline{g} has the value \overline{w}. For f itself, the world \hat{f} is not in the domain of \overline{f}.

Modify the definition of the model $\mathcal{M} = \langle \mathcal{G}, \mathcal{R}, \mathcal{D}_O, \mathcal{D}_I, \mathcal{I} \rangle$ as follows. \mathcal{G} is enlarged to include all disambiguation worlds, \hat{f}, as well as the members given to it in the paper. Call the members of \mathcal{G} that are not disambiguation worlds, that is, members assigned to \mathcal{G} in the paper, standard worlds. \mathcal{R} and \mathcal{D}_O are not changed. \mathcal{D}_I is still to be all \overline{f} for intension variables f, but the partial function \overline{f} will now have disambiguation worlds other than \hat{f} in its domain. \mathcal{I} is formally as before.

In the modified model, if f and g are different intension variables, \overline{f} and \overline{g} will be different functions, because \hat{f} will be in the domain of \overline{g} but not in the domain of \overline{f}. Now the definition of \mathcal{I} on relation symbols is no longer problematic. Finally the Truth Lemma, Proposition 4.8, and its proof, must be modified so that the results are only claimed for standard worlds Γ.