Triangulation complexity of fibred 3-manifolds

Jessica Purcell, joint with M. Lackenby

CUNY 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Part I: Triangulations

Definition. A *triangulation* of a surface is a gluing of triangles such that:

- edges glue to edges,
- vertices to vertices,
- interiors of triangles are disjoint.

Theorem Every surface can be triangulated.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

3-manifold triangulations

Theorem (Moise 1952) Every 3-manifold can be triangulated.

(Example: $S \times I$)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

How is it used?

Computer:

3-manifold software:

- Regina (Burton, Budney, Petersson)
- SnapPy (Culler, Dunfield, Goerner, Weeks)

Manifolds represented by triangulations. More "complicated" triangulations lead to slow algorithms, long processing time.

Measuring "complexity"

Simplest way: How many tetrahedra?

Measuring "complexity"

Simplest way: How many tetrahedra?

Definition. $\Delta(M) = \min$ number of tetrahedra in a triangulation of *M*. (Example: $S \times I$)

Problem:

Given *M*, find $\Delta(M)$.

Known results:

Problem:

Given *M*, find $\Delta(M)$.

Known results:

- Enumerations of manifolds built with up to *k* tetrahedra:
 - Matveev–Savvateev 1974: up to k = 5
 - Martelli–Petronio 2001: up to 9
 - Matveev–Tarkaev 2005: up to 11.
 - Regina: Includes all 3-manifolds up to 13 tetrahedra.

(ロ) (同) (三) (三) (三) (○) (○)

Problem:

Given *M*, find $\Delta(M)$.

Known results:

- Enumerations of manifolds built with up to k tetrahedra:

 - Matveev–Savvateev 1974: up to k = 5
 Martelli–Petronio 2001: up to 9
 Matveev–Tarkaev 2005: up to 11.
 Regina: Includes all 3-manifolds up to 13 tetrahedra.
- Infinite families:
 - Anisov 2005: some punctured torus bundles
 - Jaco–Rubinstein–Tillmann 2009, 2011: infinite families of lens spaces
 - Jaco–Rubinstein–Spreer–Tillmann 2017, 2018: some covers, all punctured torus bundles, ...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Finding $\Delta(M)$

Finding exact value of △(M): HARD Finding bounds: Maybe not as hard? Upper bound: Typically easy. Lower bound: Hard

Previous 2-sided bounds for families: Matveev-Petronio-Vesnin... Today: 2-sided bounds for fibred 3-manifolds.

Fibred 3-manifold

Definition. Let *S* be a closed surface, $\phi : S \rightarrow S$ orientation preserving homeomorphism.

$$M_{\phi} = (S \times I) / (x, 0) \sim (\phi(x), 1)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Say M_{ϕ} fibres over the circle S^1 with fibre S.

 ϕ is the *monodromy*.

Main theorem

Theorem (Lackenby – P)

Let M_{ϕ} be a closed 3-manifold that fibres over the circle with pseudo-Anosov monodromy ϕ . Then the following are within bounded ratios of each other, where the bound depends only on the genus of the fibre:

(日) (日) (日) (日) (日) (日) (日)

- $\blacktriangleright \Delta(M)$
- Translation length of ϕ in the mapping class group.
- ► (Additional) Tr(S), Sr(S)

To do:

- Define terms
- Explain why this is the "right" theorem comparisons with geometry
- Ideas of proof

Part II: Surfaces and their homeomorphisms

Definition. MCG (*S*) *Mapping class group* of *S Orientation preserving homeomorphisms of S up to isotopy.*

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

(Example: hyperelliptic involution)

Generators of MCG

Theorem (Dehn 1910-ish, Lickorish 1963)

MCG(S) is finitely generated, generated by Dehn twists about a finite number of curves.

Types of elements of MCG

1. Periodic

& fixed

E.g. hyperelliptic involution.

2. Reducible: Fixes a curve γ . E.g. power of a single Dehn twist.

3. *Pseudo-Anosov*: Everything else.

Theorem (Thurston)

 M_{ϕ} admits a complete hyperbolic metric if and only if ϕ is pseudo-Anosov.

Part III: Complexes and translation lengths

Definition. Let (χ, ϕ) be a metric space, ϕ an isometry. The *translation length* $\ell_X(\phi)$ is

$$\ell_X(\phi) = \inf\{\underline{d(\phi(x), x)} : x \in X\}$$

$$\varphi \in M(G(s) \quad \text{written} \quad \varphi: T_1 T_2 \cdots T_{Q},$$

$$d(\varphi, \gamma) = \text{word empth} \quad \varphi \gamma$$

$$\varphi \in M(G \text{ acts on } M(G(s)) \quad \text{by isometry:}$$

$$d(x, \gamma) = d(\varphi \times , \varphi \gamma)$$

$$l_{M(G)}(\varphi) = \inf \{d(\varphi(x), \chi) : x \in M(G)\} \quad T_1 = Id$$

$$the d(\varphi, T_1) = \emptyset$$

Example 2: Triangulation complex

- X = Tr(S) complex of 1-vertex triangulations of S.
 - Vertices in Tr (S) = 1-vertex triangulations of S
 - Edges: ∃ edge between two triangulations ⇔ ∃ 2-2 Pachner move = diagonal exchange

(日) (日) (日) (日) (日) (日) (日)

Metric: Set each edge in Tr(S) to have length 1. *d* is distance under path metric. (Connected geodesic metric space)

 $\phi \in MCG(S)$ acts by isometry.

Therefore $\ell_{\mathsf{Tr}(S)}(\phi)$ defined.

Example 3: Spine complex

Quasi-isometries

Lemma Tr(S), Sp(S), MCG(S) are all quasi-isometric.

(Proof, for experts: Svarc–Milnor lemma)

Quasi-isometric: $\exists f : (X, d_X) \to (Y, d_Y)$ and constants $A \ge 1, B \ge 0$, $C \ge 0$ such that:

1. $\forall x, y \in X$, to bounded ratios of one another.

$$\frac{1}{A} \cdot \underline{d_X(x,y)} - B \leq \underline{d_Y(f(x),f(y))} \leq A \cdot \underline{d_X(x,y)} + B$$

2. $\forall y \in Y, \exists x \in X \text{ such that } d_Y(y, f(x)) \leq C.$

Example 4: Pants complex

X = P(S) complex of *pants decompositions* of *S*. *Pants decomposition*: Collection of 3g - 3 disjoint simple closed curves on *S*.

• Vertices in P(S) = pants decompositions of S

Edges: ∃ edge between two pants ⇔ ∃ pants differ by one curve

(Connected geodesic metric space)

 $\phi \in MCG(S)$ acts by isometry. $\int_{P(S)} (\varphi)$

etge

◆□→ ◆□→ ◆三→ ◆三→ 三三 ・ クタマ・

MCG is NOT quasi-isometric to P(S)

Proof.

Let $x, y \in P(S)$. Let ϕ Dehn twist about curve in x.

 $d_{P(S)}(x,\phi^n(y)) = d_{P(S)}(\phi^n(x),\phi^n(y)) = d_{P(S)}(x,y)$: Independent of *n*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $d_{MCG}(x, \phi^n(y))$ growing with *n*.

Word length

Main theorem revisited

Theorem (Lackenby-P)

For ϕ pseudo-Anosov, and $M_{\phi} = (S \times I)/\phi$, the following are within bounded ratios:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Const: depend only on genus of S.

Compare to older theorem

Theorem (Brock 2003)

For ϕ pseudo-Anosov, $M_{\phi} = (S \times I)/\phi$, the following are within bounded ratios of each other:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- ► $Vol(M_{\phi})$ hyperbolic volume
- $\ell_P(\phi)$ translation length in pants complex

Consts depend on stee.

Why ours is the "right" theorem $(4 - e^{-1})$

(日) (日) (日) (日) (日) (日) (日)

Suppose ϕ is a word in a very high power of a Dehn twist about some curve γ :

$$\phi = \tau_1 \tau_2 \dots \left(\tau_k^N \right) \dots \tau_\ell$$

Geometrically, M_{ϕ} contains a deep tube about $\gamma \times \{t\}$

Deep tubes and volume:

Deep tubes and triangulations: Layered solid tori (Jaco-Rubinstein) LST : # tetrahedra grows as take gets "deeper" Unbounded.

Why ours is not yet the "most right" theorem

- Pseudo-Anosov shouldn't be required.
- Closed manifolds shouldn't be required.
- Brock extended volumes to Heegaard splittings. We should too.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Part IV: Proof of upper bound

Theorem (Upper bound)

There exist constants C, D, depending only on g(S) such that

 $\Delta(M_{\phi}) \leq C\ell_{Tr}(\phi) + D.$

Proof. Give *S* a 1-vertex triangulation $T \in \text{Tr}(S)$: 4g - 2 triangles. Start with triangulation $S \times I$:

Let γ be path in Tr(S) from T to $\phi(T)$. Each step: layer tetrahedron.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

realise by lavening:

Proof of upper bound, continued

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Part V: Proof ideas for lower bound

 \exists well-understood ways of moving from almost normal to normal.

Goal: Bound moves to sweep spine from bottom to top:

$$\ell_{\mathsf{Sp}}(\phi) \leq A\Delta(M_{\phi}) + B$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Part V: Proof ideas for lower bound

Idea: Suppose M_{ϕ} is triangulated with $\Delta(M_{\phi})$ tetrahedra.

 \exists copy of *S* in *normal form*. Cut along it to get $S \times I$.

 \exists copy of *S* in *almost normal form*.

 \exists well-understood ways of moving from almost normal to normal.

Goal: Bound moves to sweep spine from bottom to top:

$$\ell_{\mathsf{Sp}}(\phi) \leq A\Delta(M_{\phi}) + B$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

(This isn't going to work.)

Moves between almost normal, normal

Fix: More drastic simplifications

Finishing up

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Idea:

- 1. Start with M_{ϕ} . Cut along least weight normal surface *S* to obtain $S \times I$. Pick spine $s_0 \in S \times \{0\}$.
- 2. Find surfaces interpolating between $S \times \{0\}$ and $S \times \{1\}$, differing by *generalised isotopy* moves.
- 3. Bound number of steps in Sp(S) required to transfer s_0 through interpolating surfaces to $S \times \{1\}$. Bound of form

steps
$$\leq A_0 \Delta(M) + B_0$$
.

4. Bound steps to transfer spine s_1 in $S \times \{1\}$ to $\phi(s_0)$, of form

steps
$$\leq A_1 \Delta(M) + B_1$$

5. Consequence:

$$\ell_{\mathsf{Sp}}(\phi) \leq A\Delta(M) + B.$$

Summary

$$\frac{1}{A}\ell_{\mathsf{Sp}}(\phi) - B \leq \Delta(M_{\phi}) \leq \ell_{\mathsf{Tr}}(\phi) + 3(4g-2)$$

Thus

 $\Delta(M_{\phi})$ and $\ell_{MCG}(\phi)$ are within bounded ratios of each other.