Triangulation complexity of fibred 3-manifolds

Jessica Purcell, joint with M. Lackenby
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Part I: Triangulations

Definition. A triangulation of a surface is a gluing of triangles such
that: [ —

> edges glue to edges,

> vertices to vertices,

» interiors of triangles are disjoint.

Theorem
Every surface can be triangulated.

=
49»2
A9 e



3-manifold triangulations

Theorem (Moise 1952)
Every 3-manifold can be triangulated.

(Example: S x /)
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How is it used?

Computer:
3-manifold software:

» Regina (Burton, Budney, Petersson)
» SnapPy (Culler, Dunfield, Goerner, Weeks)
——

Manifolds represented by triangulations.

More “complicated” triangulations lead to slow algorithms,
long processing time.




Measuring “complexity”

Simplest way: How many tetrahedra?



Measuring “complexity”

Simplest way: How many tetrahedra?
Definition. A(M) = min number of tetrahedra in a triangulation of M.

(Example: S x /)
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Problem:
Given M, find A(M).

Known results:



Problem:
Given M, find A(M).

Known results:
» Enumerations of manifolds built with up to k tetrahedra:
> Matveev—Savvateev 1974: upto k =5
> Martelli-Petronio 2001: up to 9
»> Matveev—Tarkaev 2005: up to 11.
> Regina: Includes all 3-manifolds up to 13 tetrahedra.



Problem:
Given M, find A(M).

Known results:
» Enumerations of manifolds built with up to k tetrahedra:
> Matveev—Savvateev 1974: upto k =5
> Martelli-Petronio 2001: up to 9
»> Matveev—Tarkaev 2005: up to 11.
> Regina: Includes all 3-manifolds up to 13 tetrahedra.

» Infinite families:
> Anisov 2005: some punctured torus bundles
» Jaco—Rubinstein—Tillmann 2009, 2011: infinite families of lens
spaces
» Jaco—Rubinstein—Spreer—Tillmann 2017, 2018: some covers, all
punctured torus bundles, ...



Finding A(M)
Finding exact value of A(M H ARD
Finding bounds: Mo vhe net as havd
Upper bound:  Typically easy.
Lower bound: Hav 4

Previous 2—sided bounds for families: Matveev—Petronio=Vesnin...

Today: 2—sided bounds for fibred 3-manifolds. Lo bl waamifeldc
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Fibred 3-manifold

Definition. Let S be a closed surface, ¢ : S — S orientation
preserving homeomorphism.

(M (8 1)/ (x.0) ~ (6(x).1)
Say My fibres over the circle S' with fibre S.

¢ is the monodromy.
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Main theorem

Theorem (Lackenby — P)
Let M, be a closed 3-manifold that fibres over the circle with
pseudo-Anosov monodromy ¢. Then the following are within
bounded ratios of each other, where the bound depends only on
the genus of the fibre:

> A(M)

» Translation length of ¢ in the mapping class group.

> (Additional) +,(s) S, (S)
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To do:
» Define terms

» Explain why this is the “right” theorem —
comparisons with geometry

» |deas of proof



Part Il: Surfaces and their homeomorphisms

Definition. MCG (S) Mapping class group of S
Orientation preserving homeomorphisms of S up to isotopy.

(Example: hyperelliptic involution)




Generators of MCG

Theorem (Dehn 1910-ish, Lickorish 1963)

MCG (S) is finitely generated, generated by Dehn twists about a
finite number of curves.

Dehn twist about S|mple closed curve ~:
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Types of elements of MCG

"=l
1. Periodic ¢ =
E.g. hyperelliptic involution.

i.{gr Sownre

2. Reducible: Fixes a curve ~.
E.g. power of a single Dehn twist. E fee &

3. Pseudo-Anosov: Everything else.
—_—
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Theorem (Thurston)

M, admits a complete hyperbolic metric if and only if ¢ is
pseudo-Anosov.




Part Ill: Complexes and translation lengths

Definition. Let (5)6 be a metric space, ¢ an isometry. The
translation length €x(¢) is —

Ux () = inf{d(6(x), x) : x € X}

(Example: MCG)
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Example 2: Triangulation complex N

X = Tr(S) complex of 7-vertex triangulations of S. @
» Vertices in Tr (S) = 1-vertex triangulations of S

—_— /j edp

> Edges: 3 edge between two triangulations
< 3 2-2 Pachner move = diagonal exchange
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Set each edge in Tr (S) to have length 1.
d is distance under path metric.
(Connected geodesic metric space)

¢ € MCG (S) acts by isometry. @ (wrimqy) = M-fv}iwg-

Therefore (4, ( S)(¢) defined.
e



Example 3: Spine complex

X = Sp(S) complex of spines on S.
Spine: Embedded graph I' C S, with S — I a disc, and no

vertices of valence 0, 1, 2. % @JN’
. W
> in Sp(S) = spines of S :
» Edges: 3 edge between two spines
< 3 edge contraction/expansion
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ach edge has length 1, d is path metric.

(Connected geodesic metric space)
¢ € MCG (S) acts by isometry. @[ spwwe) = v seine

Therefore ﬁsp(s)(qb) defined.



Quasi-isometries

Lemma
Tr(S), Sp(S), MCG(S) are all quasi-isometric.

(Proof, for experts: Svarc—Milnor lemma)
'___.____-—-;—-—-—_——_____———_2'

Quasi-isometric: 3f : (X, dx) — (Y, dy) and constants A > 1, B > 0,
C > 0 such that:

[N AT
1. VX,yGX, bownbed rahos
ok ove owbtha
1
2 (X y) =B < dy(f(x). f(y)) < A-dx(x,y) + B

2. Vy € Y,3x € X such that dy(y, f(x)) < C.




Example 4: Pants complex

X = P(S) complex of pants decompositions of S.
Pants decomposition: Collection of 3g — 3
disjoint simple closed curves on S.

(e

> Vertices in @@: pants decompositions of S
» Edges: 3 edge between two pants
< 3 pants differ by one curve

Metric: Each edge has length 1, d is path metric.
(Connected geodesic metric space)

¢ € MCG (S) acts by isometry. p(pamts) = r\whg;&;_
Lo ()




MCG is NOT quasi-isometric to P(S)

Proof.
Let x, y € P(S). Let ¢ Dehn twist about curve in x.
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Main theorem revisited

Theorem (Lackenby—P)

For ¢ pseudo-Anosov, and M, = (S x 1)/, the following are
within bounded ratios: -

> A(M,) —New § et
> ‘meG (@) L
> () 4 By S
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Compare to older theorem

Theorem (Brock 2003)

For ¢ pseudo-Anosov, M, = (S x 1)/ ¢, the following are within
bounded ratios of each other:

» Vol(M,) hyperbolic volume
> (p(¢) translation length in pants complex

Cﬁ“ﬁj \ b e~ Sree.



Why ours is the “right” theorem (& exporks)

Suppose ¢ is a word in a very high power of a Dehn twist about some
curve ~y:

(Z) =T1T2 .. . Te
Geometrically, M4 contains a deep tube about v x {t}
—

Deep tubes ahd volume:

wol (<) £ vol (e+s¢)
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Deep tubes and triangulations: Layered solid tori (Jaco—Rubinstein)
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Why ours is not yet the “most right” theorem

» Pseudo-Anosov shouldn’t be required.
» Closed manifolds shouldn’t be required.
kbbb
» Brock extended volumes to Heegaard splittings. We should too.

—————————



Part IV: Proof of upper bound

Theorem (Upper bound)
There exist constants C, D, depending only on g(S) such that

A(My) < Clp(6) + D.

Proof. Give S a 1-vertex triangulation T € Tr(S): 4c=} — 2 triangles.

Start with triangulation S x I
e
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Let v be path in Tr (Sz from T to ¢(T). Each step: layer tetrahedron.
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Proof of upper bound, continued

After (1 (¢) steps: Wea)
—_—
Have triangulation of S x [ with ’
> i 9
S x {0} triangulated by T, !F_:\j D
> S x {1} triangulated by ¢(T). —

— T

Glue to triangulate

A(M) < t1:(9) +3(4g — 2).

[ ef.uiw\w-) exse.



Part V: Proof ideas for lower bound &

Idea: Suppose M, is triangulated with A(M,,) tetrahedra.

— hyrve Frvom:
3 copy of S in normal form. Cut along ittoget S x [. mhm!fg Iepbadon 10
3 tSin al L form. e, w.ff N 3 queds
copy of S in almost normal form. 'most normal form. o sk

“Tn 6. ‘T‘*N oLCYofon
3 well- understood ways of moving from almost normal to normal.

Goal: Bound moves to sweep spine from bottom to top:

lgp (¢) < AA(My) + B



Part V: Proof ideas for lower bound

Idea: Suppose M, is triangulated with A(M,,) tetrahedra.
3 copy of Sin normal form. Cut along itto get S x /.

3 copy of S in almost normal form.

£/ 4

3 well-understood ways of moving from almost normal to normal.

Goal: Bound moves to sweep spine from bottom to top:

lgp (¢) < AA(My) + B

(This isn’t going to work.)




Moves between almost normal, normal
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» Compression isotopy:

7

= e




Problem: Parallelity bundles No bt
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Fix: More drastic simplifications

» Generalised face compression: meke v o Dr
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» Annular simplification:
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Idea:

1.

2.

3.

Finishing up Q ®

e

Start with M,,. Cut along least weight normal surface S to obtain
Pick spine sp € S x {0}.

Find surfaces interpolating between S x {0} and S x {1},
differing by generalised isotopy moves.

Bound number of steps in Sp (S) required to transfer sy through
interpolating surfaces to S x {1}. Bound of form

steps < A)A(M) + By.

. Bound steps to transfer spine sy in S x {1} toof form

steps < AjA(M) + B 1}

lgp (0) < AA(M) + B.
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. Consequence:




Summary

Thus

A(M,) and yca(¢) are within bounded ratios of each other.



