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Part I: Triangulations
Definition. A triangulation of a surface is a gluing of triangles such
that:
I edges glue to edges,
I vertices to vertices,
I interiors of triangles are disjoint.

Theorem
Every surface can be triangulated.



3-manifold triangulations

Theorem (Moise 1952)
Every 3-manifold can be triangulated.

(Example: S × I)



How is it used?

Computer:
3-manifold software:
I Regina (Burton, Budney, Petersson)
I SnapPy (Culler, Dunfield, Goerner, Weeks)

Manifolds represented by triangulations.
More “complicated” triangulations lead to slow algorithms,
long processing time.



Measuring “complexity”

Simplest way: How many tetrahedra?

Definition. ∆(M) = min number of tetrahedra in a triangulation of M.

(Example: S × I)
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Problem:
Given M, find ∆(M).

Known results:

I Enumerations of manifolds built with up to k tetrahedra:
I Matveev–Savvateev 1974: up to k = 5
I Martelli–Petronio 2001: up to 9
I Matveev–Tarkaev 2005: up to 11.
I Regina: Includes all 3-manifolds up to 13 tetrahedra.

I Infinite families:
I Anisov 2005: some punctured torus bundles
I Jaco–Rubinstein–Tillmann 2009, 2011: infinite families of lens

spaces
I Jaco–Rubinstein–Spreer–Tillmann 2017, 2018: some covers, all

punctured torus bundles, ...
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Finding ∆(M)

Finding exact value of ∆(M):

Finding bounds:

Upper bound:

Lower bound:

Previous 2–sided bounds for families: Matveev–Petronio–Vesnin...

Today: 2–sided bounds for fibred 3-manifolds.



Fibred 3-manifold

Definition. Let S be a closed surface, φ : S → S orientation
preserving homeomorphism.

Mφ = (S × I) / (x ,0) ∼ (φ(x),1)

Say Mφ fibres over the circle S1 with fibre S.

φ is the monodromy.



Main theorem

Theorem (Lackenby – P)
Let Mφ be a closed 3-manifold that fibres over the circle with
pseudo-Anosov monodromy φ. Then the following are within
bounded ratios of each other, where the bound depends only on
the genus of the fibre:
I ∆(M)

I Translation length of φ in the mapping class group.
I (Additional)

To do:
I Define terms
I Explain why this is the “right” theorem —

comparisons with geometry
I Ideas of proof



Part II: Surfaces and their homeomorphisms

Definition. MCG (S) Mapping class group of S
Orientation preserving homeomorphisms of S up to isotopy.

(Example: hyperelliptic involution)



Generators of MCG

Theorem (Dehn 1910-ish, Lickorish 1963)
MCG (S) is finitely generated, generated by Dehn twists about a
finite number of curves.

Dehn twist about simple closed curve γ:

Humphries generators 1977:



Types of elements of MCG

1. Periodic
E.g. hyperelliptic involution.

2. Reducible: Fixes a curve γ.
E.g. power of a single Dehn twist.

3. Pseudo-Anosov: Everything else.

Theorem (Thurston)
Mφ admits a complete hyperbolic metric if and only if φ is
pseudo-Anosov.



Part III: Complexes and translation lengths

Definition. Let (X ,d) be a metric space, φ an isometry. The
translation length `X (φ) is

`X (φ) = inf{d(φ(x), x) : x ∈ X}

(Example: MCG )



Example 2: Triangulation complex

X = Tr (S) complex of 1-vertex triangulations of S.
I Vertices in Tr (S) = 1-vertex triangulations of S
I Edges: ∃ edge between two triangulations
⇔ ∃ 2-2 Pachner move = diagonal exchange

Metric: Set each edge in Tr (S) to have length 1.
d is distance under path metric.
(Connected geodesic metric space)

φ ∈ MCG (S) acts by isometry.

Therefore `Tr (S)
(φ) defined.



Example 3: Spine complex
X = Sp (S) complex of spines on S.

Spine: Embedded graph Γ ⊂ S, with S − Γ a disc, and no
vertices of valence 0, 1, 2.

I Vertices in Sp (S) = spines of S
I Edges: ∃ edge between two spines
⇔ ∃ edge contraction/expansion

Metric: Each edge has length 1, d is path metric.
(Connected geodesic metric space)

φ ∈ MCG (S) acts by isometry.

Therefore `Sp (S)
(φ) defined.



Quasi-isometries

Lemma
Tr (S), Sp (S), MCG (S) are all quasi-isometric.

(Proof, for experts: Svarc–Milnor lemma)

Quasi-isometric: ∃f : (X ,dX )→ (Y ,dY ) and constants A ≥ 1, B ≥ 0,
C ≥ 0 such that:

1. ∀x , y ∈ X ,

1
A
· dX (x , y)− B ≤ dY (f (x), f (y)) ≤ A · dX (x , y) + B

2. ∀y ∈ Y ,∃x ∈ X such that dY (y , f (x)) ≤ C.



Example 4: Pants complex
X = P(S) complex of pants decompositions of S.

Pants decomposition: Collection of 3g − 3
disjoint simple closed curves on S.

I Vertices in P(S) = pants decompositions of S
I Edges: ∃ edge between two pants
⇔ ∃ pants differ by one curve

Metric: Each edge has length 1, d is path metric.
(Connected geodesic metric space)

φ ∈ MCG (S) acts by isometry.

Note:



MCG is NOT quasi-isometric to P(S)
Proof.

Let x , y ∈ P(S). Let φ Dehn twist about curve in x .

dP(S)(x , φn(y)) = dP(S)(φ
n(x), φn(y)) = dP(S)(x , y) : Independent of n.

dMCG (x , φn(y)) growing with n.



Main theorem revisited

Theorem (Lackenby–P)
For φ pseudo-Anosov, and Mφ = (S × I)/φ, the following are
within bounded ratios:
I ∆(Mφ)

I `MCG (φ)

I `Tr (φ)

I `Sp (φ)



Compare to older theorem

Theorem (Brock 2003)
For φ pseudo-Anosov, Mφ = (S × I)/φ, the following are within
bounded ratios of each other:
I Vol (Mφ) hyperbolic volume
I `P(φ) translation length in pants complex



Why ours is the “right” theorem
Suppose φ is a word in a very high power of a Dehn twist about some
curve γ:

φ = τ1τ2 . . . τ
N
k . . . τ`

Geometrically, Mφ contains a deep tube about γ × {t}

Deep tubes and volume:

Deep tubes and triangulations: Layered solid tori (Jaco–Rubinstein)



Why ours is not yet the “most right” theorem

I Pseudo-Anosov shouldn’t be required.
I Closed manifolds shouldn’t be required.
I Brock extended volumes to Heegaard splittings. We should too.



Part IV: Proof of upper bound
Theorem (Upper bound)
There exist constants C, D, depending only on g(S) such that

∆(Mφ) ≤ C`Tr (φ) + D.

Proof. Give S a 1-vertex triangulation T ∈ Tr (S): 4g − 2 triangles.
Start with triangulation S × I:

Let γ be path in Tr (S) from T to φ(T ). Each step: layer tetrahedron.



Proof of upper bound, continued

After `Tr (φ) steps:

Have triangulation of S × I with
I S × {0} triangulated by T ,
I S × {1} triangulated by φ(T ).

Glue to triangulate Mφ.

∆(M) ≤ `Tr (φ) + 3(4g − 2).



Part V: Proof ideas for lower bound

Idea: Suppose Mφ is triangulated with ∆(Mφ) tetrahedra.

∃ copy of S in normal form. Cut along it to get S × I.

∃ copy of S in almost normal form.

∃ well-understood ways of moving from almost normal to normal.

Goal: Bound moves to sweep spine from bottom to top:

`Sp (φ) ≤ A∆(Mφ) + B

(This isn’t going to work.)



Part V: Proof ideas for lower bound
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∃ copy of S in almost normal form.

∃ well-understood ways of moving from almost normal to normal.

Goal: Bound moves to sweep spine from bottom to top:

`Sp (φ) ≤ A∆(Mφ) + B

(This isn’t going to work.)



Moves between almost normal, normal

I Face compression:

I Compression isotopy:



Problem: Parallelity bundles



Fix: More drastic simplifications

I Generalised face compression:

I Annular simplification:



Finishing up

Idea:
1. Start with Mφ. Cut along least weight normal surface S to obtain

S × I. Pick spine s0 ∈ S × {0}.
2. Find surfaces interpolating between S × {0} and S × {1},

differing by generalised isotopy moves.
3. Bound number of steps in Sp (S) required to transfer s0 through

interpolating surfaces to S × {1}. Bound of form

steps ≤ A0∆(M) + B0.

4. Bound steps to transfer spine s1 in S × {1} to φ(s0), of form

steps ≤ A1∆(M) + B1.

5. Consequence:
`Sp (φ) ≤ A∆(M) + B.



Summary

1
A
`Sp (φ)− B ≤ ∆(Mφ) ≤ `Tr (φ) + 3(4g − 2)

Thus

∆(Mφ) and `MCG(φ) are within bounded ratios of each other.


