Curves in the four sphere in the curve graph of closed surfaces

Kuwari Mahanta

Abstract

Let S_{g} be a closed surface of genus $g \geq 2$. In 1978, William J. Harvey introduced a finite dimensional simplical complex corresponding to S_{g}, called the complex of curves of S_{g}, as a tool to study the Teichmüller spaces of Riemann surfaces. Since then it has also been used to study the hyperbolic structures of 3-manifolds and the mapping class group of S_{g}. The 1-skeleton of the complex of curves is known as the curve graph and is denoted by $\mathcal{C}\left(S_{g}\right)$. Although the coarse geometry of $\mathcal{C}\left(S_{g}\right)$ has been wellexplored, its local geometry remains relatively unexplored owing mostly to the fact that $\mathcal{C}\left(S_{g}\right)$ is a locally infinite graph. In particular, little is known about curves at a distance ≥ 4 on $\mathcal{C}\left(S_{g}\right)$. In this talk, we will look at a family of pair of curves on S_{g} which are at a distance 4 apart on $\mathcal{C}\left(S_{g}\right)$. As an application, we will deduce an upper bound on the minimal intersection number of distance 4 curves on S_{g}. Finally, we give an example of a pair of curves on $\mathcal{C}\left(S_{2}\right)$ which are at a distance 5 apart

