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Abstract. We study a notion of an equivariant, Lipschitz, permutation-
invariant centroid for triples of points in mapping class groups MCG(S),
which satisfies a certain polynomial growth bound. A consequence (via
work of Druţu-Sapir or Chatterji-Ruane) is the Rapid Decay Property
for MCG(S).

1. Introduction

A finitely generated group has the Rapid Decay property1 if the space of
rapidly decreasing functions on G (with respect to every word metric) is
inside the reduced C∗–algebra of G (see the end of section 2 for a more
detailed definition). Rapid Decay was first introduced for the free group by
Haagerup [10]. Jolissaint then formulated this property in its modern form
and established it for several classes of groups, including groups of polyno-
mial growth and discrete cocompact subgroups of isometries of hyperbolic
space [13]. Jolissaint also showed that many groups, for instance SL3(Z),
fail to have the Rapid Decay property [13]. Rapid Decay was established for
Gromov-hyperbolic groups by de la Harpe [8].

Throughout this paper S = Sg,p will denote a compact orientable sur-
face with genus g and p punctures. The mapping class group of S, denoted
MCG(S), is the group of isotopy classes of orientation preserving homeo-
morphisms of S. We will prove:

Theorem 1.1. MCG(S) has the Rapid Decay property for every compact
orientable surface S.

The only previously known cases of this theorem were in low complexity
when the mapping class group is hyperbolic (these are tori with at most one
puncture, or spheres with at most 4 punctures) and for the braid group on
four strands, which was recently established by Barré and Pichot [1]. The
results in this paper also hold for the braid group on any number of strands.
(The case of braid groups follows from the above theorem, since braid groups
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are subgroups of mapping class groups of surfaces [12, Theorem 2.7.I] and
RD is inherited by subgroups [13, Proposition 2.1.1].)

The Rapid Decay property has several interesting applications. For in-
stance, in order to prove the Novikov Conjecture for hyperbolic groups,
Connes-Moscovici [7, Theorem 6.8] showed that if a finitely generated group
has the Rapid Decay property and has group cohomology of polynomial
growth (property PC), then it satisfies Kasparov’s Strong Novikov Conjec-
ture [14]. Accordingly, since any automatic group has property PC [18],
Kasparov’s Strong Novikov Conjecture follows from the above Theorem 1.1
and Mosher’s result that mapping class groups are automatic [19]. The
strong Novikov conjecture for MCG(S) has been previously established by
both Hamenstädt [11] and Kida [15].

We prove the Rapid Decay property by appealing to a reduction by Druţu-
Sapir (alternatively Chatterji-Ruane) to a geometric condition. Namely,
we introduce a notion of centroids for unordered triples in the mapping
class group which satisfies a certain polynomial growth property. Despite
the presence of large quasi-isometrically embedded flat subspaces in the
mapping class group, these centroids behave much like centers of triangles
in hyperbolic space. Our notion of centroid is provided by the following
result which to each unordered triple in the mapping class group gives a
Lipschitz assignment of a point, which has the property that it is a centroid
in every curve complex projection. We obtain the following:

Theorem 1.2. For each S = Sg,p with ξ(S) = 3g− 3 + p ≥ 1 there exists a
map κ : MCG(S)3 →MCG(S) with the following properties:

(1) κ(x, y, z) is invariant under permutation of the arguments.
(2) κ is equivariant.
(3) κ is Lipschitz.
(4) For any x, y ∈MCG(S) and r > 0 we have the following cardinality

bound:
#
{
κ(x, y, z) : d(x, z) ≤ r

}
≤ brξ(S)

where b depends only on S.

These properties, and especially the count provided by part (4), are essen-
tially Druţu and Sapir’s condition of (**)-relative hyperbolicity with respect
to the trivial subgroup [9], and the main theorem of [9] states that this
condition implies the Rapid Decay property. Thus to obtain Theorem 1.1
from Theorem 1.2 we appeal to [9], without dealing directly with the Rapid
Decay property itself.

Outline of the proof

Let us first recall the situation for a hyperbolic group, G. In this setting,
for a triple of points x, y, z ∈ G, one defines a centroid for the triangle
with vertices x, y, z to be a point κ with the property that κ is in the δ–
neighborhood of any geodesics [x, y], [y, z], [x, z], where δ is the hyperbolicity
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constant for G considered with some fixed word metric. Thus, if one fixes x
and y and allows z to vary in the ball of radius r around x, the corresponding
centroid must lie in a δ–neighborhood of the length r initial segment of [x, y].
It follows that the number of such centers is linear in r.

When 3g + p− 3 > 1, then MCG(Sg,p) is not hyperbolic. Nonetheless, it
has a closely associated space, the complex of curves, C(S), which is hyper-
bolic [16]. Moreover, given any subsurface W ⊆ S, there is a geometrically
defined projection map, πW , from the mapping class group of S to the curve
complex of W .

For any x, y, z ∈ MCG(S), in Theorem 3.2, we construct a centroid
κ(x, y, z) with the property that for each W ⊂ S, in the hyperbolic space
C(W ) the point πW (κ(x, y, z)) is a centroid of the triangle with vertices
πW (x), πW (y), and πW (z).

Due to the lack of hyperbolicity in MCG(S), if one were to fix ahead of
time a geodesic [x, y], it need not be the case that the center κ(x, y, z) is
close to [x, y]. For this reason, we do not fix a geodesic between x and y, but
rather we use the notion of a Σ–hull, as introduced in [3]. The Σ–hull of a
finite set is a way of taking the convex hull of these points, in particular, the
convex hull of a pair of points is roughly the union of all geodesics between
those points.

In analogy to the fact that for any triangle in a Gromov-hyperbolic space
any centroid is uniformly close to each of the three geodesics, in Section 4
we show that inMCG(S), any centroid κ(x, y, z) is contained in each Σ–hull
between a pair of vertices. This reduces the problem of counting centroids
to counting subsets of the Σ–hull, which we also do in this section.

In Section 2, we will review the relevant properties of surfaces, curve com-
plexes, and mapping class groups. In Section 3, we will use properties of
curve complexes and Σ–hulls, as developed in [3], to construct the Lips-
chitz, permutation-invariant centroid map. In Section 4 we will prove the
polynomial bound (3), thus completing the proof of Theorem 1.2.
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interest in the Rapid Decay property. We would like to thank Ken Shack-
leton for comments on an earlier draft. Behrstock would also like to thank
the Mathematics Departments at Columbia University and Lehman College
for their support, as well as his support by an Alfred P. Sloan Fellowship.
The authors appreciate the careful readings by the referees.

2. Background

We recall first some notation and results that were developed in [16], [17]
and [3].

Surfaces and subsurfaces. As above, S = Sg,p is an oriented connected
surface with genus g and p punctures (or boundary components) and we
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measure the complexity of this surface by ξ(Sg,p) = 3g− 3 + p. An essential
subsurface W ⊆ S is one whose inclusion is π1–injective, and which is not
peripheral, i.e., not homotopic to the boundary or punctures of S. We also
consider disconnected essential subsurfaces, in which each component is es-
sential and no two are isotopic. For such a subsurface X we define another
notion of complexity ξ′(X) as follows: ξ′(X) = ξ(X) if X is connected and
ξ(X) ≥ 0, ξ′(Y ) = 1 if Y is an annulus, and ξ′ is additive over components
of a disconnected surface. (In [4], ξ′(S) was denoted r(S)). It is not hard to
check that ξ′ is monotonic, i.e., ξ′(X) ≤ ξ′(Y ) if X ⊆ Y is an essential sub-
surface. (From now on we implicitly understand subsurfaces to be essential,
and defined up to isotopy.)

If W is a subsurface and γ a curve in S we say that W and γ overlap, or
W t γ, if γ cannot be isotoped outside of W . We say that two surfaces W
and V overlap, or W t V , if neither can be isotoped into the other or into
its complement. Equivalently, W t V iff W t ∂V and V t ∂W .

See [3, Section 2] for a careful discussion of these and related notions.

Curves and markings. The curve complex, C(S), is a complex whose
vertices are essential simple closed curves up to homotopy, and whose k-
simplices correspond to (k + 1)-tuples of disjoint curves. Endow the 1-
skeleton C1(S) with a path metric giving each edge length 1. With this
metric C1(S) is a δ–hyperbolic metric space [16]. In our discussion we will
often conflate the quasi-isometric spaces C1(S) and C(S)

The definition of C(W ) is slightly different for ξ(W ) ≤ 1: If W is a torus
with at most one puncture then edges correspond to pairs of curves inter-
secting once, and if W is a sphere with 4 punctures then edges correspond to
pairs of vertices intersecting twice. In all these cases C(W ) is isomorphic to
the Farey graph. If W is an annulus embedded in a larger surface S then W
admits a natural compactification as an annulus with boundary and C(W )
is the set of homotopy classes of essential arcs in W rel endpoints, with
edges corresponding to arcs with disjoint interior. In this case C(W ) admits
a quasi-isometry to Z which takes Dehn twists to translation by 1. See [17]
for details.

The marking graph M(S) is a locally finite, connected graph whose ver-
tices are complete markings on S and whose edges are elementary moves. A
complete marking is a system of closed curves consisting of a base, which is
a maximal simplex in C(S), together with a choice of transversal curve for
each element of the base, satisfying certain minimal intersection properties,
see [17, Section 2.5]. For a detailed discussion, and proofs of the properties
we will list below, see [17] or [3].

We make M(S) into a path metric space by again assigning length 1
to edges. We will denote distance in M(S) as dM(S)(µ, ν), or sometimes
just d(µ, ν). We will need to use the fact that MCG(S) isometrically acts
properly discontinuously and cocompactly on M(S), thus any orbit map
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g 7→ g(µ0) induces a quasi-isometry from MCG(S) to M(S), see [3, Propo-
sition 2.5].

For an annulus W ⊂ S, we identifyM(W ) with Z, and map this to C(W )
via the twist-equivariant quasi-isometry mentioned above.

Projections. Given a curve in S that intersects essentially a subsurface
W , we can apply a surgery to the intersection to obtain a curve in W . This
gives a partially-defined map from C(S) to C(W ) which we call a subsurface
projection, and in fact this construction extends to a system of maps of both
curve and marking complexes that fit into coarsely commutative diagrams:

M(S)
πS //

πM(W )

��

C(S)

πW

��
M(W )

πW // C(W )

(2.1)

Here W is an essential subsurface of S, and we follow the convention of
denoting a map πW if its target is C(W ) and πM(W ) if its target is M(W ).
The vertical πW is only partially defined, namely just for those curves in S
that intersect W essentially. The horizontal maps take each marking to an
(arbitrary) vertex of its base (except in the case an an annulus). By “coarsely
commutative” we mean that the diagram commutes up to errors bounded
by a constant depending only on the topological type of S. We will also
use the fact that πM(W ) is coarse-Lipschitz (i.e., Lipschitz up to additive
error), with constants depending on the topological type of S. Similarly,
πW is coarse Lipschitz in a restricted sense: if a, b ∈ C(S) both intersect W
and dS(a, b) ≤ 1 then dW (πW (a), πW (b)) ≤ 3. (Again, see [17] and [3] for
details.)

Quasidistance formula. In [17, Theorem 6.12] an approximation formula
for distances in M(S) is obtained. To state this, define the threshold func-
tion {{x}}A to be x if x ≥ A and 0 otherwise. We define x ≈ y to mean
x ≤ ay+ b and y ≤ ax+ b, where in the sequel a and b will typically be con-
stants depending only on the topological type of S or on previously chosen
constants.

For µ, µ′ ∈M(S) and W ⊆ S, we define the abbreviation

dW (µ, µ′) = dC1(W )(πW (µ), πW (µ′)).

We then have:

Theorem 2.1. (Quasidistance formula). There exists a constant A0 ≥ 0
depending only on the topology of S such that for each A ≥ A0, and for any
µ, µ′ ∈M(S) we have

dM(S)(µ, µ
′) ≈

∑
Y⊆S

{{
dY (µ, µ′)

}}
A

and the constants of approximation depend only on A and on the topological
type of S.
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As a corollary of this, we note:

Corollary 2.2. For any r there exists t such that for any µ, ν ∈ M(S), if
dW (µ, ν) ≤ r for all W ⊆ S, then dM(S)(µ, ν) ≤ t.

Product regions. If W = W1 ∪ · · · ∪Wk is a disconnected surface with
components Wi we define M(W ) to be

M(W ) =M(W1)× · · · ×M(Wk)

metrized with the `1 sum of the metrics on the factors. As a matter of
convention we allow M(W ) to refer to a disconnected surface, but only
consider C(W ) when W is connected. Such products occur when considering
certain regions in M(S):

If ∆ is a curve system in S, letQ(∆) denote the set of markings containing
∆ in their base. This set admits a natural product structure, described in [4]
and [3]: Let σ(∆) denote the set of components of S \∆ that are not 3-holed
spheres, together with the annuli whose cores are components of ∆. The
following lemma is a consequence of the quasidistance formula, Theorem 2.1:

Lemma 2.3. Given a curve system ∆, there is a quasi-isometry

Q(∆)→
∏

W∈σ(∆)

M(W )

with constants depending only on the topological type of S, which is given by
the product of projection maps,

∏
W∈σ(∆) πM(W ).

As a special case, if U ⊂ S is a (possibly disconnected) surface, let U c be
the surface consisting of all components of σ(∂U) which are not components
of U . Note that ξ′(U) + ξ′(U c) = ξ′(S) = ξ(S). Lemma 2.3 gives a quasi-
isometry

Q(∂U)→M(U)×M(U c).

Projection bounds. The projections πW satisfy a number of useful in-
equalities. One, from [2, Theorem 4.3], is:

Lemma 2.4. There exists a universal constant m0 such that for any marking
µ ∈M(S) and subsurfaces V tW ,

min (dW (µ, ∂V ), dV (µ, ∂W )) < m0.

The geodesic projection lemma [17] states:

Lemma 2.5. Let Y be a connected essential subsurface of S satisfying
ξ(Y ) 6= 3 and let g be a geodesic segment in C(S) for which Y t v for
every vertex v of g. Then

diamY (g) ≤ B,
where B is a constant depending only on ξ(S).

The following generalization of the geodesic projection lemma is proven
in [3, Lemma 5.5]:
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Lemma 2.6. Let V,W ⊆ S be essential subsurfaces such that W t ∂V . Let
g be a geodesic in C(W ). If

dW (g, ∂V ) > m1

then

diamV (g) ≤ m2.

Where the constants m1,m2 depend only on S.

Partial orders. The inequalities of Lemmas 2.4 and 2.5 can be interpreted
as describing a family of partial orders for connected subsurfaces that are
“between” pairs of markings in M(S). Given x, y ∈ M(S), and a constant
c > 0, define for a natural number k

Fk(x, y) = {U ( S : dU (x, y) > kc}.

Note that this is (for appropriate threshold) the set of proper (connected)
subsurfaces participating in the quasidistance formula for d(x, y); in partic-
ular it is finite. Define also a family of relations ≺k on proper connected
subsurfaces of S, by saying that V ≺k W if and only if V tW , and

dV (x, ∂W ) > kc.

Note that ≺k depends on x, not y, so we assume throughout an ordered pair
(x, y). In [3, Lemma 4.5] we show that

Lemma 2.7. There exists c0 such that, if c > c0 in the above definitions,
then for k > 2 the relation ≺k−1 is a partial order on Fk(x, y) for any
x, y ∈ M(S). Moreover if V,W ∈ Fk(x, y) and V t W then V and W are
≺k−1–ordered.

Moreover, it will be useful to see that the relation ≺k−1 can be charac-
terized in a few ways:

Lemma 2.8. Let V,W ∈ Fk(x, y), W t V , and take c to be any sufficently
large real number. The following are equivalent:

(1) W ≺k−1 V
(2) dW (x, ∂V ) > (k − 1)c,
(3) dW (y, ∂V ) ≤ c,
(4) dV (x, ∂W ) ≤ c,
(5) dV (y, ∂W ) > (k − 1)c.

A related fact is that if V t ∂W , dV (x, ∂W ) > (k + 1)c and W ∈ F2(x, y),
then V ∈ Fk(x, y).

These partial orders are closely related to the “time-order” that appears in
[17]. In [3] these facts are established using just the projection inequalities,
as an extended exercise in the triangle inequality.
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Consistency Theorem. Consider the combined projection map

Π :M(S)→
∏
W⊆S

C(W ),

Π(µ) = (πW (µ))W , where W varies over essential subsurfaces of S and
πW denotes the subsurface projection map M(S) → C(W ). We say that
an element x = (xW ) ∈

∏
W C(W ) is D–close to the image of Π if there

exists µ ∈ M(S) such that dW (xW , µ) < D for all W ⊆ S. The following
Consistency Theorem, from [3, Theorem 4.3], gives a coarse characterization
of the image of Π.

Theorem 2.9. (Consistency Theorem). Given c1, c2 > 0 there exists D such
that any point (xW )W ∈

∏
W C(W ) satisfying the following two conditions

is D–close to the image of Π.
C1: For any U ⊂ V ⊆ S, if dV (∂U, xV ) ≥ c1 then

dU (xU , xV ) < c2.

C2: For any U, V ⊂ S with U t V ,

min (dU (xU , ∂V ), dV (xV , ∂U)) < c2.

Conversely given D there exist c1, c2 so that if (xW ) is D–close to the
image of Π then it satisfies conditions C1-2.

Note that the converse direction of the theorem includes Lemma 2.4 as
condition C2 in the case D = 0.

Σ–hulls. If x, y ∈ M(S) and W is a connected subsurface, let [x, y]W be a
geodesic in C(S) connecting πW (x) to πW (y) (this may not be unique but
we can make an arbitrary choice — all of them are δ–close to each other by
hyperbolicity). For a finite set A ⊂M(S), define hullW (A) to be the union
of [a, b]W over a, b ∈ A. For any fixed ε > 0, we define a Σ–hull of A to be
a set of the following form:

Σε(A) = {µ ∈M(S) : ∀W ⊆ S, dW (µ,hullW (A)) ≤ ε}.
If A is a pair {x, y} we also write Σε(A) = Σε(x, y). In [3, Lemma 5.4] we
study these sets, and in particular prove the following:

Lemma 2.10. Given ε and n there exists b such that

diam(Σε(A)) ≤ b(diam(A) + 1)

for any A ⊂M(S) of cardinality n.

Tight geodesics, footprints and hierarchies. A geodesic in C(S) is a
sequence of vertices {vi} such that d(vi, vj) = |j−i|. In [17] this is generalized
a bit to sequences of simplices, i.e., disjoint curve systems {wi}, such that
d(vi, vj) = |j − i| for any vi ∈ wi, vj ∈ wj , and i 6= j. For a (generalized)
geodesic g = {wi} in C(V ), and any subsurface U ⊂ V , we define the
footprint φg(U) to be the set of simplices wi disjoint from U . By the triangle
inequality diamV (φg(U)) ≤ 2. A condition called tightness is formulated in
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[17] which has the following property: for a tight geodesic, all nonempty
footprints are contiguous intervals of one, two, or three simplices (leaving
out the possibility of two simplices at distance 2, with their midpoint not
included). This is the basic definition that leads to the notion of a hierarchy
of tight geodesics between any two x, y ∈ M(S). A hierarchy, H, consists
of a particular collection of tight geodesics k, each in C(W ) for a subsurface
W ⊆ S known as the support of k. We will only need a few basic facts
about hierarchies, to be used in the proof of Lemma 4.5; these facts are all
from [17].

Lemma 2.11. If x, y ∈ M(S) and H = H(x, y) is a hierarchy of tight
geodesics, then

(1) H contains a tight geodesic [x, y]S with support S and endpoints
πS(x) and πS(y).

(2) If h is a tight geodesic in H and U is its support, then the endpoints
of h are within uniform distance m3 = m3(S) in C(U) from πU (x)
and πU (y).

(3) If h is a tight geodesic in H and U ( S is its support, then there
exists k in H with support W , and a simplex w in φk(U), such that
U is either a component of W \ w, or an annulus whose core is a
component of w.

(4) A subsurface W can be the support of at most one geodesic in H,
which we denote hx,y,W .

(5) For a uniform m4 = m4(S), all connected subsurfaces W satisfying
dW (x, y) > m4 are domains of geodesics in H.

Rapid Decay. Although in the text we do not work directly with the rapid
decay property, for the benefit of the reader who (like the authors) is not an
analyst, we briefly discuss the formulation of the rapid decay property and
related notions. For further details see [20] or [6].

Given a finitely generated groupG, we consider its action by left-translation
on l2(G), the square-summable C-valued functions on G. This action ex-
tends by linearity to an action of the group algebra CG, and indeed CG is
just the subset of l2(G) consisting of functions with finite support, and the
action is nothing more than convolution, i.e., f ∗ g(z) =

∑
x∈G f(x)g(x−1z).

This gives us an embedding of CG into the bounded operators on l2(G),
indeed for f ∈ CG and h ∈ l2(G) we have ||f ∗ h||2 ≤ ||f ||1||h||2 by Young’s
inequality. The reduced C∗-algebra of G, denoted C∗r (G), is the closure of
CG in the operator norm.

On the other hand, CG embeds in the normed spaces Hs(G) = {h :
||h||2,s <∞}, where

||h||2,s = (
∑
x∈G

((1 + |x|)sh(x))2)1/2

for s > 0, and | · | denotes word length in G. The intersection H∞(G) =
∩sHs(G) is the space of rapidly decreasing functions on G. (Note that Hs
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and H∞ are invariant, up to bounded change of norm, under change of
generators).

Recall that, in the abelian setting (e.g., G = Zn), functions of rapid
decrease in G Fourier-transform to smooth functions on the Pontryagin dual
Ĝ (e.g., Ẑn = Tn). In the nonabelian setting, there is no Pontryagin dual
so H∞ acts as a substitute for the algebra of smooth functions (see Connes-
Moscovici [7]).

We say that G has the rapid decay property if the embedding of CG into
C∗r (G) extends continuously to an embedding of H∞(G).

This condition boils down (see [5, 9]) to a polynomial convolution norm
bound of the following form: there exists a polynomial P (s) such that, if f
is supported in a ball of radius s in G, then

||f ∗ g||2 ≤ P (s)||f ||2||g||2. (2.2)

Here one can start to see at least the relevance of the centroid condition
and its bound. Indeed, in the sum f ∗ g(z) =

∑
x f(x)g(x−1z), x can be

restricted to the ball of radius s. Now we can rearrange this as a sum over
the centroids t = κ(1, x, z), and the number of such t is polynomial in s by
Theorem 1.2. This observation plays a role in the proofs of (2.2) in both
Druţu-Sapir [9] and Chatterji-Ruane [5].

3. Centroids

In a δ–hyperbolic metric space X, define a ρ–centroid of a triple of points
A = {a1, a2, a3} to be a point x which is within ρ of each of the geodesics
[ai, aj ] (if geodesics are not unique make an arbitrary choice). Hyperbolicity
implies that ρ–centroids always exist for a uniform ρ (depending on δ), and
indeed this condition is equivalent to hyperbolicity. The next lemma states
a few more facts that we need; the proof, which is an exercise, is left out.

Lemma 3.1. Let X be a δ–hyperbolic geodesic metric space. There exist
δ0, L > 0 and a function D, depending only on δ, such that

(1) Every triple has a ρ–centroid if ρ ≥ δ0.
(2) The diameter of the set of ρ–centroids of any triple is at most D(ρ).
(3) The map taking a triple to the set of its ρ–centroids is L–coarse-

Lipschitz in the Hausdorff metric.

In this section we will utilize this idea to give a “centroid” map forM(S)
satisfying the first three properties of Theorem 1.2. Using the quasi-isometry
between MCG(S) and M(S), the same construction can be carried out in
MCG(S); we are abusing notation slightly by using the same notation, κ,
for both centroid maps.

Theorem 3.2. There exists ε, ρ > 0 and a map κ : M(S)3 → M(S) with
the following properties:

(1) κ(a, b, c) is invariant under permutation of the arguments.
(2) κ(ga, gb, gc) = gκ(a, b, c) for any g ∈MCG(S).
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(3) κ is Lipschitz.
(4) κ(a, b, c) ∈ Σε(a, b, c).
(5) For each W ⊆ S, πW (κ(a, b, c)) is a ρ–centroid of the triangle, in
C(W ), with vertices πW (a), πW (b), and πW (c).

Proof. Let δ be a hyperbolicity constant for C(W ) for allW ⊆ S, let δ0 be the
constant given in Lemma 3.1, and fix ε > δ0. For each MCG–orbit of triple
(a, b, c) choose a representative A = {a1, a2, a3} ⊂ M(S). For any W ⊆ S,
the triangle ∪i,j [πW (ai), πW (aj)] (which is coarsely equal to hullW (A)) has
an ε–centroid. Choose such an ε–centroid and call it xW . We will show that
(xW ) ∈

∏
W C(W ) satisfies conditions C1-2 of the Consistency Theorem, for

suitable c1, c2.
Consider V,W ⊂ S satisfying ∂V t W . Suppose that dW (xW , ∂V ) >

D(max(m0, ε)), where D(·) is the function given by Lemma 3.1. Then by
part (2) of Lemma 3.1, πW (∂V ) is not an m0–centroid for πW (A), and so
for at least one leg g of hullW (A), dW (∂V, g) > m0. Suppose without loss of
generality that g = [πW (a1), πW (a2)].

By Lemma 2.6, this gives us an upper bound diamV (g) ≤ m2. In other
words πV (a1) and πV (a2) are close together and hence the centroid xV is
close to both.

Since xW is within ε of g in C(W ), and dW (∂V, g) > ε, we may connect
xW to g by a path of length at most ε consisting of curves that all intersect
V , and so the Lipschitz property of πV gives an upper bound on dV (xW , g).
From this and the previous paragraph, we conclude that there is a bound of
the form

dV (xV , xW ) < m3

for suitable uniform m3.
When V ⊂W , this establishes C1.
When V 6⊂ W , i.e., V t W , since we have assumed dW (xW , ∂V ) is

large, the direction of the Consistency Theorem given by Lemma 2.4 yields
a bound on dV (xW , ∂W ). Since we already have a bound on dV (xV , xW ) by
the above, this in turn bounds dV (xV , ∂W ), and thus establishes C2.

Having established C1 and C2, we can apply the Consistency Theorem
to conclude that there exists µ ∈M(S) with dW (µ, xW ) uniformly bounded
for all W . Let this µ be κ(A). (Note that, by the quasidistance formula, µ
is determined up to bounded error.) For any triple A′ = (a, b, c) satisfying
gA = A′ define κ(A′) = gκ(A).

By construction, κ satisfies conditions (2) and (5) of the theorem.
Condition (1) is evident since the construction depended on the unordered

set A. Condition (3), the Lipschitz property, follows immediately from the
quasidistance formula and the coarse-Lipschitz property of hyperbolic cen-
troids (part (3) of Lemma 3.1); note that in this case we obtain a Lipschitz
map and not just a coarse-Lipschitz one, since there is a lower bound on the
distance in M(S) between pairs of distinct points. Condition (4) follows
from (5) and the definition of Σε. �
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4. Polynomial bounds

It remains to prove that the map κ of Theorem 3.2 satisfies the polynomial
bound of part (4) of Theorem 1.2. That is, letting

K(x, y, r) =
{
κ(x, y, z) : z ∈ Nr(x)

}
(where Nr(Y ) denotes a neighborhood of Y ⊂M(S) of radius r) we need to
find a polynomial in r, independent of x and y, which bounds #K(x, y, r).
Throughout this section, r will denote a fixed positive real number and the
points x, z will satisfy z ∈ Nr(x).

4.1. Reduction to Σ–hulls

We first reduce the problem to that of counting the number of elements
in a suitable Σ–hull.

If µ = κ(x, y, z), then by definition of κ and of hyperbolic centroids, for
each W ⊆ S the set πW (µ) is in a uniformly bounded neighborhood of
[x, y]W . It follows that

K(x, y, r) ⊂ Σε′(x, y)

for suitable ε′ (depending on ε and the hyperbolicity constant). More-
over, µ ∈ Σε′(x, z) by the same argument, so d(x, µ) ≤ diam(Σε′(x, z)) ≤
b(d(x, z) + 1) (by Lemma 2.10) and thus µ ∈ Nb(r+1)(x). Hence (changing
variable names) it suffices to give a polynomial bound in r, depending on ε
but not on (x, y), on the cardinality of

A(x, y, r) = Σε(x, y) ∩Nr(x).

The following lemma indicates that A(x, y, r) is contained in a Σ–hull
that gives a good estimate on its size:

Lemma 4.1. Given ε there exists ε′ such that, for each x, y ∈ M(S) and
each r > 1, there exists q ∈ Σε′(x, y) for which

Σε(x, y) ∩Nr(x) ⊆ Σε′(x, q)

and satisfying d(x, q) < ar, with b depending only on ε and ξ(S).

Proof. For eachW ⊆ S, by the definition of Σ–hulls, we have that πW (A(x, y, r))
is contained in the ε–neighborhood of a C(W )–geodesic [x, y]W between a
point of πW (x) and a point of πW (y). Let mW denote the vertex of [x, y]W
which is within ε of πW (A(x, y, r)) and is farthest from πW (x).

Finding a marking using consistency. We now claim that the tuple,
(mW )W⊆S , satisfies the consistency conditions of Theorem 2.9 and thus
gives rise to a marking, which we will call q.

For convenience we note that we can simultaneously establish both C1
and C2 by showing the following: there exists a uniform constant such that
for any U, V ⊆ S such that ∂U t V , either dV (mV , ∂U) or dU (mU , ∂V ∪mV )
is bounded by this constant. Here by ∂V ∪mV we mean the union as curve
systems, or equivalently the join as simplices in C(S).
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Thus, let U and V be such that ∂U t V and

dV (mV , ∂U) > 2(ε+ 2). (4.1)

Let µ ∈ A(x, y, r) be such that πV (µ) is within ε of mV , and let ν ∈
A(x, y, r) be such that πU (ν) is within ε of mU . Since dV (∂U,mV ) > 2ε+ 2,
there is a C(V )–path from πV (µ) to mV consisting of curves that intersect
U , so by the Lipschitz property of πU we have a bound

dU (mV , µ) < b1

for some uniform b1. In fact, since mV and ∂V are disjoint we may instead
write

dU (mV ∪ ∂V, µ) < b1. (4.2)
Since mV lies on [x, y]V , the bound (4.1) also implies, by the triangle in-

equality, that πV (∂U) cannot be within ε+2 of both [x,mV ]V and [mV , y]V .
This gives us two cases which we treat separately.

Case a: Suppose πV (∂U) is more than ε+ 2 from [x,mV ]V .
Let σ ∈ A(x, y, r), and let t ∈ [x, y]V be within ε of πV (σ). By definition

of mV , t must be in [x,mV ]. Hence, again by the Lipschitz property of πU ,
we have

dU (σ, t) ≤ b1.
The bounded geodesic projection lemma implies that

dU (x, t) ≤ B,
so we have a bound on dU (x, σ). Applying this to ν, which was chosen to
satisfy dU (ν,mU ) < ε, we get

dU (x,mU ) ≤ b2
for suitable b2. By construction of mU , the above bound implies dU (x, µ) ≤
b2 as well. Hence, by the triangle inequality, for suitable b3 we have:

dU (mU , µ) ≤ b3.
Hence by (4.2) we conclude there exists a uniform constant, b4, satisfying:

dU (mU ,mV ∪ ∂V ) ≤ b4
which is what we wanted to show.

Case b: Suppose πV (∂U) is more than ε+ 2 from [mV , y]V .
Then, by the geodesic projection lemma,

dU (mV , y) ≤ B,
and applying (4.2) again we have

dU (µ, y) ≤ b5.
Let t ∈ [x, y]U be within ε of πU (µ) — then we have

dU (t, y) ≤ b5 + ε.
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By definition, mU is in [t, y]U , so by the triangle inequality

dU (mU ,mV ∪ ∂V ) ≤ b6,

and again we are done.
Having established C1-2 for (mW ), the Consistency Theorem gives us

q ∈M(S) such that
dW (q,mW ) < b7 (4.3)

for a uniform b7. By definition of mW , we have that πW (A(x, y, r)) is within
ε of [x,mW ]W for each W , and hence by hyperbolicity of C(W ) this set is
within a suitable ε′ of [x, q]W . In other words,

A(x, y, r) ⊂ Σε′(x, q).

Bounding d(x, q). It remains to check that dM(S)(x, q) < br, for a uniform
b.

Fix c > max{A0,m0 + b7 + ε+ 3}, where A0,m0, and b7 are the constants
of Theorem 2.1, Lemma 2.4, and Equation (4.3). Recall from Section 2 the
set of subsurfaces F3(x, q), with its partial ordering ≺2, where U ∈ F3(x, q)
iff dU (x, q) > 3c. Using 3c as a threshold in the quasidistance formula, we
have

d(x, q) ≈
∑

W∈F3(x,q)

dW (x, q),

which we will use to get an upper bound on d(x, q). Let U be the set of
maximal elements of F3(x, q) with respect to the partial order ≺2. Since
overlapping subsurfaces are ≺2–ordered (Lemma 2.7), the elements Ui of U
are either disjoint or nested, which means there are at most 2ξ(S) of them
(the bound of 2ξ(S) is an easy exercise, but all that matters is that there is
some universal constant).

Let ui ∈ A(x, y, r) be a marking such that dUi(ui,mUi) < ε (this exists by
definition of mUi). Moreover, by definition of q we know that dUi(q,mUi) is
uniformly bounded by b7, hence we have

dUi(q, ui) < b7 + ε. (4.4)

We claim that for each W ∈ F3(x, q), there exists at least one of the ui
which satisfies

dW (q, ui) < b (4.5)

for some uniform constant b. For W an element of U we have just established
this. For any other W , we must have W ≺2 Ui for some Ui ∈ U , so W t Ui
and so we have (from Lemma 2.8) the inequalities

dW (q, ∂Ui) < c (4.6)

and
dUi(x, ∂W ) < c. (4.7)
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Now from (4.4) and the fact that dUi(x, q) > 3c, the triangle inequality
yields dUi(x, ui) > 3c − 3 − b7 − ε > 2c, where the 3 is being subtracted
because diamUi(ui) ≤ 3. Together with (4.7) we then have

dUi(∂W, ui) > c.

Hence by Lemma 2.4,
dW (∂Ui, ui) < c2.

Now with (4.6), we get an inequality of the form

dW (q, ui) < b

for a uniform b. This establishes (4.5), which proves the claim.
Now this means that

dW (x, q) ≤ dW (x, ui) + b.

In the quasidistance formula (Theorem 2.1), we may choose any sufficiently
large threshold at a cost of changing the approximation constants. Hence we
may choose a threshold greater than 2b, and then for every term dW (x, q)
larger than the threshold we have

1
2
dW (x, q) ≤ dW (x, ui).

It then follows that every term in the quasidistance formula for d(x, q) ap-
pears, with a multiplicative error, in the quasidistance formula for one of
the d(x, ui). This means

d(x, q) ≤
∑
i

a′d(x, ui) + b′ ≤ 2ξ(S)(a′r + b′)

where a′, b′ come from Theorem 2.1. A bound of the form d(x, q) < ar
follows since r > 1. �

4.2. Polynomial bound on Σ–hulls

Now that our set K(x, y, r) is known to be contained in a Σ–hull of com-
parable diameter, it suffices to obtain an appropriate polynomial bound on
the Σ–hull of two points.

Theorem 4.2. Given ε > 0, there is a constant c = c(ε, S), such that, for
any x, y ∈M(S),

#Σε(x, y) ≤ cd(x, y)ξ(S).

Note by Lemma 2.10 that d(x, y) is interchangeable, up to bounded factor,
with diam(Σε(x, y)), and we will freely make use of that.

Proof. The idea of the proof is to (coarsely) cover Σε(x, y) by sets for which
the desired inequality holds by induction, and the sum of whose diameters
is bounded by the diameter of Σε(x, y).

Given x and y, we will construct a finite collection Γ = Γx,y of finite
subsets of M(S), and a map γ : Σε(x, y) → Γ. The proof will follow from
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three lemmas about this construction. The first one states that the bound
of the theorem holds for the sets in Γ:

Lemma 4.3. (Inductive Bound Lemma). For each G ∈ Γx,y,

#G ≤ b1 diam(G)ξ(S).

where b1 depends only on S.

The second lemma implies that the collection Γ coarsely covers Σε(x, y):

Lemma 4.4. (Covering Lemma). For each µ ∈ Σε(x, y),

µ ∈ Nb2(γ(µ)).

where b2 depends only on S.

Finally, we will bound the sum of the diameters of the sets in Γ:

Lemma 4.5. (Diameter sum bound). For a constant b3 depending only
on S, ∑

G∈Γx,y

diam(G) ≤ b3 diam(Σε(x, y)) (4.8)

The proof of Theorem 4.2 is then an inductive argument. First we note
that the statement of the theorem can be made not just for S but for any
connected subsurface W of S, and that in order to correctly account for
annuli we should write the inequality as

#Σε,W (x, y) ≤ c(diam(Σε,W (x, y)))ξ
′(W ) (4.9)

where x, y ∈ M(W ) and Σε,W denotes the Σ-hull within M(W ). Recall
that ξ′(W ) = ξ(W ) for connected non-annular W , as in Section 2. For
an annulus W , ξ′(W ) = 1, M(W ) is Z, and Σε,W (x, y) is just the interval
between x and y. So this establishes the base case of (4.9).

We will establish the three lemmas for complexity ξ(S), where Lemma 4.3
in particular will rely on assuming (4.9) for all smaller complexities. Once
that is done, for uniform constants ci we have

#Σε(x, y) ≤ c1

∑
G∈Γ

#G

≤ c2

∑
G∈Γ

diam(G)ξ(S)

≤ c2

(∑
G∈Γ

diam(G)

)ξ(S)

≤ c3diam(Σε(x, y))ξ(S).

where the first line follows from Lemma 4.4, together with a bound on the
cardinality of b2–balls in M(S); the second line follows from Lemma 4.3;
the third from arithmetic; and the last from Lemma 4.5.

This gives the proof of Theorem 4.2, modulo the construction of Γ and
proofs of the three lemmas.
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Construction of the cover. Let U be a (possibly disconnected) nonempty
essential subsurface, with its components denoted U1, . . . , Uk. Recall from
Section 2 that M(U) =

∏
iM(Ui), and define

Σε,U (x, y) =
∏
i

Σε,Ui(πM(Ui)(x), πM(Ui)(y)).

Now recalling from Lemma 2.3 that Q(∂U) is identified quasi-isometrically
with M(U)×M(U c), define G(U, x, y) ⊂ Q(∂U) to be the set:

G(U, x, y) = Σε,U (x, y)× {πM(Uc)(y)}.

We also need a degenerate form of this: if p is a simplex in C(S), Lemma
2.3 tells us that Q(p) is quasi-isometrically identified with

∏
W∈σ(p)M(W ),

where σ(p) is the decomposition associated to p. Let yp denote the point
corresponding to the tuple (πM(W )(y))W∈σ(p), and let y′p be an additional
point at distance 1 from yp. We define

G(p, y) = {yp, y′p}.

The second point is included for the technical purpose of making diam(G(p, y))
equal to 1 instead of 0. Note that G(p, y) is not the same as G(U, x, y) even
when U is a union of annuli with cores comprising p.

Now we will construct our particular collection Γ of sets of this type,
together with the map γ : Σε(x, y) → Γ. Let µ ∈ Σε(x, y), and let F =
F3(µ, y) be as in §2, taking c = ε + B + m4

2 + c0 where B, c0, and m4

are the constants from Lemmas 2.5, 2.7, and 2.11. Lemma 2.7 says that the
relation ≺2 is a partial order on F . Assuming F 6= ∅, among all ≺2–minimal
subsurfaces, consider the set U of those that are maximal with respect to
inclusion. Then U is a union of disjoint essential subsurfaces.

Fix a constant a > 2ε. Suppose that dC1(S)(µ, ∂U) ≤ a. Then we let
γ(µ) = G(U, x, y).

Suppose that dC1(S)(µ, ∂U) > a. Let q(µ) be the nearest point to µ on
the tight geodesic [x, y]S = hx,y,S (see §2 and Lemma 2.11.) In particular
dS(µ, q) ≤ ε since µ ∈ Σε(x, y). Let p(µ) be a simplex along the segment
[q, πS(y)] ⊂ [x, y]S which is at distance a/2 from q. Let γ(µ) = G(p, y).

If F = ∅, define q and p as above, unless d(q, y) < a/2 in which case let p
be the last simplex of hx,y,S (i.e., a subset of y). Again let γ(µ) = G(p, y).

We let Γ be the set of all γ(µ) thus obtained.

Proof of the Inductive Bound Lemma. We now prove Lemma 4.3,
relating cardinality to diameter for G ∈ Γ. In this proof we will assume by
induction that Theorem 4.2, or rather its subsurface version (4.9), holds for
all connected proper subsurfaces of S.

If G = G(p, y) then #G = 2 and diam(G) = 1, so we are done. Now
consider G = G(U, x, y). In each component Ui of U we have

#Σε,Ui(x, y) ≤ Cdiam(Σε,Ui(x, y))ξ
′(Ui)
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by (4.9). Now since G(U, x, y) is a product of such sets over the components
of U and ξ′ is additive, the bound follows with exponent ξ′(U). Since ξ′(U) ≤
ξ′(S) = ξ(S), Lemma 4.3 follows.

Proof of the Covering Lemma. We next prove Lemma 4.4, which says
that each µ ∈ Σε(x, y) is uniformly close to γ(µ).

We estimate d(µ,G(U, x, y)) via the following lemma:

Lemma 4.6. Let µ ∈ Σε(x, y) and U a (possibly disconnected) subsurface.

d(µ,G(U, x, y)) ≈
∑
W⊆Uc

{{dW (µ, y)}}L +
∑
Wt∂U

{{dW (µ, ∂U)}}L

for a uniform choice of constants.

Proof. For any µ ∈ M(S), define τ(µ) ∈ G(U, x, y) as follows. In view of
Lemma 2.3, to describe τ ∈ Q(∂U) we must simply give its restrictions
πM(V )(τ) to each component V of U and of U c.

Hence, for each component Ui of U , let πM(Ui)(τ) ≡ πM(Ui)(µ). For each
component V of U c, let πM(V )(τ) ≡ πM(V )(y).

If µ ∈ Σε(x, y) then πW (µ) is within ε of [x, y]W for each W , and hence
for W ⊂ Ui the same is true (perhaps with a change of ε) for πW (τ), since
πM(Ui) and πW (coarsely) commute.

It follows that πM(Ui)(τ) ∈ Σε′,Ui
(x, y). Thus, since ε′ − ε is uniformly

bounded, the quasidistance formula yields that τ(µ) is a uniformly bounded
distance from G(U, x, y); for the coarse measurements we make below it is
no loss of generality to assume τ(µ) ∈ G(U, x, y).

Now the quasidistance formula gives

d(µ, τ(µ)) ≈
∑
W

{{dW (µ, τ)}}L

but we notice that, for all W ⊂ Ui, the corresponding terms are uniformly
bounded. Thus by choosing L sufficiently large those terms disappear (at
the expense of changing the constants implicit in the “≈”).

If W ⊆ U c then dW (µ, τ) is estimated by dW (µ, y) up to bounded error,
so again possibly choosing L larger we can replace one by the other at a
bounded cost in the constants. Finally, if W t ∂U then, since τ contains
∂U , we can replace those terms by dW (µ, ∂U). (See [3] for other examples
of this type of argument).

This gives an upper bound for d(µ,G(U, x, y)) of exactly the type in the
lemma. To get the lower bound we observe that for any point in G(U, x, y)
the terms of the given type must appear in its quasidistance formula. �

Consider the case that γ(µ) = G(U, x, y). To bound d(µ, γ(µ)) we must
control both types of terms that appear in Lemma 4.6.

In the case W t ∂U , notice that if dW (µ, ∂U) is sufficiently large, then
by Lemma 2.8 it follows that W ∈ F = F3(µ, y) and W precedes U in the
≺2–order, which contradicts the minimality of U . For the second, we see
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that if dW (µ, y) is sufficiently large then again W would belong to F , and
since it is disjoint from U , there would be a ≺2–minimal element disjoint
from U , which again contradicts the choice of U .

This uniformly bounds all the terms in Lemma 4.6, and hence gives a uni-
form bound on d(µ, γ(µ)). (Again, this is done by increasing the threshold
past the uniform bound so that all the terms disappear; all that is left is the
additive error in “≈”.)

Now consider the case that γ(µ) = G(p, y) with p a simplex in [x, y]S .
Recall this means that F is either empty, or its ≺2–minimal elements are at
C(S)–distance at least a from µ.

In fact a bit more is true. If W ∈ F3(µ, y) then dW (x, y) > 3c−ε, because
µ ∈ Σε(x, y) and hence πW (µ) is ε–close to [x, y]W . Since 3c− ε > 2c > B,
the geodesic projection lemma (2.5) implies some of the simplices of [x, y]S
are disjoint from W — in other words the footprint, denoted φ[x,y]S (W ) as
in §2, is nonempty.

Let W,V ∈ F , W t V , and suppose that φ[x,y]S (W ) is disjoint from
and to the right of φ[x,y]S (V ) (i.e., φ[x,y]S (W ) lies on [x, y]S closer to y then
φ[x,y]S (V )). We claim this implies V ≺2 W . Indeed, letting t ∈ φ[x,y]S (V ),
the segment [x, t]S consists of curves intersecting W , and by Lemma 2.5
dW (x, t) ≤ B. Since t and ∂V are disjoint, dW (x, ∂V ) ≤ B < 2c, soW 6≺2 V .
Since by Lemma 2.7 they are ≺2–ordered, V ≺2 W . Equivalently, we can
say that if W ≺2 V , then φ[x,y](V ) either intersects or is to the right of
φ[x,y](W ). (These are essentially variations on arguments in [17].)

Now, if U is ≺2–minimal in F , then ∂U is at least a from µ; hence
its footprint is at least a− ε either to the left or to the right of q(µ) (recall
dS(µ, q) ≤ ε). If it were on the left, since a > 2ε, using the Lipschitz property
of πU as earlier, we would find that dU (µ, q) ≤ 3ε. Lemma 2.5 would give us
dU (q, p) < B, but this bounds dU (µ, p) and contradicts U ∈ F . We conclude
the footprint is to the right of q.

By the previous paragraph on ordering, we conclude since U is ≺2–
minimal that all elements of F have footprints at least distance a − ε to
the right of q, and in fact to the right of p since dS(p, q) ≤ a/2.

To get a bound on d(µ,G(p, y)) we must again bound the terms from the
quasidistance formula, i.e., dW (µ,G(p, y)) for W ⊆ S.

Let W ⊂ S be a proper connected subsurface. If W is disjoint from p,
then ∂W is within C(S)–distance a/2 + 1 from q, and hence no more than a
from µ. It follows that W is not in F , and hence dW (µ, y) is bounded. By
construction, the projection of G(p, y) to W is the projection of y, so this
gives us the desired bound.

If W intersects p, we must bound dW (µ, p). We claim that if dW (µ, p) is
sufficiently large, then φ[x,y]S (W ) is nonempty. For if it were empty, Lemma
2.5 would bound diamW ([x, y]S), and since πW (µ) is within ε of [x, y]W ,
this would bound dW (µ, p) as well. Hence we may assume φ[x,y]S (W ) is
nonempty, and so lies either to the right or the left of p.
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If it is on the left, then by the previous discussion W cannot be in F , and
so dW (µ, y) is bounded. Moreover since the footprint is outside of [p, y]S ,
Lemma 2.5 gives a bound on dW (µ, p) as well.

If it is on the right, then its distance from q is at least a/2, and so we have
a bound on dW (µ, q), by the Lipschitz property of πW , and on dW (q, p), by
Lemma 2.5. Hence we obtain a bound on dW (µ, p).

The only case left is that W = S. However, we have already noted that
dS(µ, q) ≤ ε and hence dS(µ, p) ≤ ε+ a/2.

This completes the proof of Lemma 4.4.

Diameter sum bound. Our final step is to prove Lemma 4.5, bounding
the diameter sum over Γ.

First, consider the members of Γ of the form G(U, x, y). Each of these
has diameter comparable with dM(U)(πM(U)(x), πM(U)(y)), which by the
quasidistance formula is estimated by∑

V⊆U
{{dV (x, y)}}A

for any sufficiently large A. Let us choose A > 2c. So the sum over all
possible G(U, x, y) should be comparable to the sum of {{dV (x, y)}}A over
all proper subsurfaces V in S, provided we show that each V occurs in a
bounded number of U ’s.

Fix V ( S. Consider µ ∈ Σε(x, y) such that γ(µ) = G(U, x, y) with
V ⊂ U , and let U1 be a component of U . In particular, dC1(S)(∂U1, ∂V ) ≤ 1.

We will control the number of possible such U1’s using a hierarchy H =
H(x, y). Since U1 ∈ F we have dU1(µ, y) > 3c, and hence dU1(x, y) >
3c − ε > 2c which by Lemma 2.11 implies U1 is a domain in H. Let W be
any other domain of a tight geodesic k = hx,y,W in H such that U1 ⊂ W .
We claim:

Lemma 4.7. The footprint φk(U1) is a uniformly bounded distance in C1(W )
from one of the endpoints of k.

Proof. Since the endpoints of k are within m3 of πW (x) and πW (y) respec-
tively, and φk(U1) is within 1 of ∂U1, it suffices to bound dW (∂U1, x) or
dW (∂U1, y).

Suppose first that dW (µ, y) ≤ 3c. We claim in this case that dW (∂U1, y)
is at most 3c+ 2. For if not, then Lemma 2.5 can be applied to the geodesic
segment from πW (y) to πW (µ), yielding dU1(µ, y) ≤ B < 3c, a contradiction
with the definition of U1. Thus we are done in this case.

Suppose now that dW (µ, y) > 3c, so that W is in F3(µ, y). It cannot
be ≺2–minimal, because if it were then U1 would not have been chosen (U1

is inclusion-maximal among ≺2–minimal elements). Hence there is some
W ′ ≺2 W . If W ′ t U1, then they are ≺2–ordered; but since U1 is ≺2–
minimal, we get U1 ≺2 W

′, and thus U1 ≺2 W which contradicts U1 ⊂ W .
Hence W ′ and U1 have disjoint boundaries, so dW (∂U1, ∂W

′) ≤ 3 by the
coarse Lipschitz property of πW . Now, since W ′ ≺2 W , we have by Lemma
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2.8 that dW (x, ∂W ′) is bounded, and so we get a bound on dW (x, ∂U1). This
completes the proof. �

We now bound the number of possible U1’s, by induction. Using part (3)
of Lemma 2.11, every U1 is contained in a chain U1 = W0 ⊂ W1 ⊂ · · · ⊂
Ws = S such that each Wi supports a geodesic in H, each Wi for i < s is
a component domain (complementary component or annulus) of a simplex
in hx,y,Wi+1 , and this simplex (being in the footprint) is a bounded distance
from one of the endpoints of hx,y,Wi+1 for i + 1 < s. For i = s − 1, the
footprint is on hx,y,Ws = [x, y]S , and here it is constrained to a bounded
interval by the inequality dS(∂V, ∂U1) ≤ 1 (remember that we have fixed
V ).

Hence, starting with Ws = S and working backwards, for each Wi there
is a uniformly bounded number of choices for Wi−1. We conclude that there
is a uniformly bounded number of choices for U1 = W0.

So now we have a uniform bound on the number of different G(U, x, y)’s
in Γ for which U contains a fixed subsurface V . We conclude that∑

G(U,x,y)∈Γ

diam(G(U, x, y)) ≤ N
∑
V(S
{{dV (x, y)}}A

for uniform N .
What remains in the left-hand-side of inequality (4.8) is the sum over the

G(p, y) ∈ Γ where p ∈ [x, y]S . Since for these, by definition, the diameters
are all 1, this sum satisfies∑

G(p,y)∈Γ

diam(G(p, y)) ≤ dS(x, y) + 1

Putting these together we have∑
G∈Γ

diam(G) ≤ N ′
∑
V⊆S
{{dV (x, y)}}A ≤ N

′′ d(x, y).

which establishes Lemma 4.5, and so completes the proof of Theorem 4.2.
�

4.3. Proofs of the Main Theorems

To wrap up the proof of Theorem 1.2: Using the quasi-isometric orbit
map MCG(S)→M(S) we can convert the centroid map κ of Theorem 3.2
to a centroid map, which we also call κ, defined for MCG(S). The first
three properties of Theorem 3.2 clearly imply the first three properties of
Theorem 1.2.

We showed that K(x, y, r) is contained in Σε′(x, y) and in Nb1r(x), for
uniform ε′ and b1. Lemma 4.1 then implies that there exists q ∈ Σε(x, y)
such that d(x, q) ≤ b2r, and K(x, y, r) is contained in Σε′(x, q). Finally,
Theorem 4.2 gives us a bound for #Σε′(x, q) which is polynomial (of degree
ξ(S)) in d(x, q). This gives the desired bound for #K(x, y, r).
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Because the centroid forMCG(S) is obtained from the centroid forM(S)
via a quasi-isometry and the volume of all r-balls in MCG(S) is uniformly
bounded for any fixed r, the polynomial bound on #K(x, y, r) yields the
fourth property of Theorem 1.2.

As mentioned in the introduction, Theorem 1.1 now follows by applying
a result of Druţu-Sapir [9, Theorem 3.1 and Remark 3.5]. They showed
that the Rapid Decay property holds for groups which are (∗∗)–relatively
hyperbolic with respect to the trivial group. This property is said to hold
when the following are satisfied: there exists a function T : G×G→ G and
a polynomial Q(r) satisfying:

(1) T (g, h) = T (h, g)
(2) T (h−1, h−1g) = h−1T (h, g)
(3) If g ∈ G and r ∈ N, then #{T (g, h) : |h| = r} < Q(r).

For the mapping class group, we define

T (g, h) = κ(1, g, h) : MCG(S)×MCG(S)→MCG(S)

where κ is the centroid map as given by Theorem 1.2. The first condition
above follows from the property that κ is invariant under permutation of
its arguments (Theorem 1.2 part (1)). The second condition holds since
κ(1, h−1, h−1g) = h−1κ(h, 1, g) = h−1κ(1, h, g), where the first equality is
from the equivariance of κ (Theorem 1.2 part (2)). The third condition
follows from our cardinality bound on centroids (Theorem 1.2 part (4)).

Alternatively, Chatterji-Ruane in [5, Proposition 1.7] give a similar cri-
terion that implies Rapid Decay. Their condition involves an equivariant
family of subsets S(x, y) ⊂ G, where x, y ∈ G, satisfying a number of con-
ditions, in particular

S(x, y) ∩ S(y, z) ∩ S(x, z) 6= ∅
and

#S(x, y) ≤ P (d(x, y))
for a polynomial P . It is not hard to see that our Σ-hulls give such a
family, i.e., S(x, y) ≡ Σε(x, y), and that the existence of centroids gives the
non-empty triple intersection property.
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