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Geometry and rigidity of mapping class groups
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We study the large scale geometry of mapping class groups MCG.S/ , using hy-
perbolicity properties of curve complexes. We show that any self quasi-isometry
of MCG.S/ (outside a few sporadic cases) is a bounded distance away from a left-
multiplication, and as a consequence obtain quasi-isometric rigidity for MCG.S/ ,
namely that groups quasi-isometric to MCG.S/ are equivalent to it up to extraction
of finite-index subgroups and quotients with finite kernel. (The latter theorem was
proved by Hamenstädt using different methods).

As part of our approach we obtain several other structural results: a description of the
tree-graded structure on the asymptotic cone of MCG.S/; a characterization of the
image of the curve complex projections map from MCG.S/ to

Q
Y�S C.Y /; and a

construction of †–hulls in MCG.S/ , an analogue of convex hulls.

20F34, 20F36, 20F65, 20F69; 57M50, 30F60

1 Introduction

In this paper we investigate the coarse geometry of the mapping class group MCG.S/
of an oriented finite-type surface S , with our main goal being a proof of quasi-isometric
rigidity for the group. Along the way we develop a number of tools which we hope
will be of independent interest.

The following classification theorem for quasi-isometries applies for all but a standard
collection of exceptional cases (definitions are in Section 2, and complete statements
of these theorems handling the exceptions are in Section 10.)

Theorem 1.1 (Classification of quasi-isometries) If S has complexity at least 2 and
is not a two-holed torus, quasi-isometries of MCG.S/ are uniformly close to isometries
induced by left-multiplication.
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Note that an immediate consequence of this theorem is that, barring a few exceptional
cases, MCG.S/ is isomorphic to its own quasi-isometry group, ie the group of quasi
isometries modulo those that are finite distance from the identity (see Corollary 10.1).
In the case of two-holed torus, as we will explain in detail in Section 10, the result holds
after taking into account a finite-index issue arising from the fact that the mapping class
group of this surface modulo the hyperelliptic involution is a finite index subgroup of
the mapping class group of the five-holed sphere.

Theorem 1.1 also implies the following rigidity property (see Section 10 for an alternate
statement of this result which also covers the complexity 2 cases):

Theorem 1.2 (Quasi-isometric rigidity) If S has complexity greater than 2 and � is
a finitely generated group quasi-isometric to MCG.S/ then there is a homomorphism
from � to MCG.S/, with finite kernel and finite-index image.

Theorem 1.2 was proved by Hamenstädt in [27]. The two proofs have a similar flavor
in broad outline, although the underlying machinery supporting the outline is different.
Mosher and Whyte [45] previously established the theorem for once-punctured surfaces
of genus at least 2, using quite different methods.

The study of coarse properties of groups can be said to have started with Milnor [43;
42] and Švarc [55]. This advanced considerably with Stallings’ theorem on ends of
groups [53], the Mostow rigidity theorem [48] and Gromov’s theorem on groups of
polynomial growth [23]. Gromov [25] proposed an ambitious program for the study
and classification of groups by their coarse geometric properties, which continues to
guide current research. One branch of this program is the classification of groups up to
quasi-isometry, ie determining up to isomorphism (or commensurability) the groups
in a quasi-isometry class. In the last twenty years much progress has been made on
different cases of this program:

� Groups quasi-isometric to lattices in semisimple Lie groups (see Gromov [24; 25],
Sullivan [54], Tukia [56], Casson and Jungreis [11], Gabai [22], Hinkkanen [30],
Gromov and Pansu [26], Cannon and Cooper [10], Schwartz [52], Farb and
Schwartz [21], Kleiner and Leeb [36], Eskin and Farb [15], Eskin [14] and
Pansu [49]).

� Groups quasi-isometric to Euclidean buildings (see Kleiner and Leeb [36]).
� Groups quasi-isometric to Fuchsian buildings (see Bourdon and Pajot [9] and

Xie [59]).
� Graphs of n–dimensional Poincaré duality groups, for some fixed n (see Farb

and Mosher [19; 20], Whyte [58], Mosher, Sageev and Whyte [47; 46] and
Papasoglu [50]).
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� Certain solvable semidirect products Rk ËRl (see Eskin, Fisher and Whyte [16],
Dymarz [13] and Peng [51]).

Research in mapping class groups has long been motivated by a drive to find analogies
with lattices. The list of such results is intriguing but incomplete: see for example
McCarthy [41] and Ivanov [31] (a Tits-alternative), Ivanov [33] and Farb and Masur [18]
(nonarithmeticity and superrigidity), Harvey [29] (analogy to Bruhat–Tits buildings),
Harer [28] (homology stability), Farb, Lubotzky and Minsky [17] (rank 1 behavior) and
Andersen [1] (failure of property (T)). The expectation has been that quasi-isometric
rigidity should hold for these groups, but the standard tools have not previously found
purchase.

Structural results

Our analysis builds on the geometry of curve complexes of surfaces developed by Masur
and Minsky [39; 40], Behrstock [2] and Behrstock and Minsky [8], but introduces a
number of new ideas and techniques, which have some further applications (for example
the rapid-decay property for MCG.S/; see Behrstock and Minsky [7]). Among these
are a theorem characterizing the curve-complex projection image of MCG.S/; a coarse
convex hull construction in MCG.S/; and a theory of “jets,” which analyzes infini-
tesimal directions in the asymptotic cone of MCG.S/ in order to control separation
properties. We summarize these below (precise statements appear later in the paper):

Consistency Theorem To the isotopy class of each essential subsurface W � S is
associated a ı–hyperbolic complex C.W /, its curve complex (or twist complex if W

is an annulus). There is a coarse-Lipschitz projection �W WMCG.S/! C.W /, and
combining these over all W we obtain the curve complex projections map

…WMCG.S/!
Y
W

C.W /:

The Quasidistance Formula of [40] (see Theorem 2.8 below) shows that this map is, in
a limited sense, like a quasi-isometric embedding to the `1 metric on the product.

Behrstock established consistency inequalities (see Section 4) that are satisfied by the
image of …, and in this paper we prove that these give a coarse characterization of the
image:

Theorem 4.3 The consistency inequalities give a necessary and sufficient condition
for a point in

Q
W C.W / to be near the image of ….
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This theorem makes it possible to state and analyze many constructions in MCG.S/
simply in terms of what they look like in the projection image, where the hyperbolicity
of the C.W /’s can be exploited.

†–Hulls An important construction that follows from the Consistency Theorem is a
coarse substitute for a convex hull in MCG.S/. In a ı–hyperbolic space, the union of
all geodesics joining a set of points is quasi-convex; let us call this simply the “hull”
of the set. For a finite subset A �MCG.S/ (and suitable � > 0) we describe a set
†�.A/ �MCG.S/, which is exactly the set of points that project in each factor ofQ

W C.W / to within � of the hull of the image of A. This notion of hull satisfies a
number of useful properties.

Proposition 5.2 and Lemma 5.4 Fixing the cardinality of A, †�.A/ depends in
a coarse-Lipschitz way on A with respect to the Hausdorff metric. Its diameter is
controlled by diam.A/, and it admits a coarse retraction MCG.S/!†�.A/, which
itself has Lipschitz dependence on A.

These hulls, and their rescaling limits in the asymptotic cone, give us a way to build
and control singular chains in the cone, which we use à la Kleiner and Leeb [36] to
describe top-dimensional flats using local homology arguments.

A different application of †–hulls will appear in Behrstock and Minsky [7] where
MCG.S/ is shown to have the rapid decay property of Haagerup/Jolissaint.

Jets and separation Behrstock and Minsky [8] showed that any pair of distinct points
in the asymptotic cone of MCG.S/ could be separated by an ultralimit of subsets
associated to mapping class groups of subsurfaces. This enabled an inductive argument
to compute the compact topological dimension of the cone. Here we refine our under-
standing of the components of the complement of such a set, introducing the notion of
a jet. A jet is a sequence of geodesic segments in curve complexes of subsurfaces of S

(modulo an ultrafilter), such that asymptotic behavior of projections to these segments
determines the division of the complement into connected components. In the outline
below we motivate this notion via an analogy to ı–hyperbolic spaces.

As an application of these ideas we also pause in Section 7.4 to give a characterization
of the tree-graded structure (à la Druţu and Sapir [12]) of the cone of MCG.S/. This
characterization has been used in the recent proof that any finitely generated group
with Property (T) has at most finitely many pairwise nonconjugate homomorphisms
into a mapping class group by Behrstock, Druţu and Sapir [5; 6].
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Outline of the proof

In this section we discuss the broad structure of the paper and the proof of Theorem 1.1.
Definitions and other preliminaries will be given in Section 2. Section 3 discusses
product regions in MCG.S/, Section 4 proves the Consistency Theorem for the curve
complex projection map, and Section 5 discusses †–hulls. In Section 6 we discuss
local homology of the asymptotic cone and in Section 7 we discuss jets and separation
properties in the cone. In Sections 8 and 9 we prove local finiteness and discuss the
orthant complex of the cone. In Section 10 we will complete the proof of Theorem 1.1
and obtain Theorem 1.2 as a consequence by a fairly standard argument.

Coarse preservation of Dehn twist flats To control a quasi-isometry f W G!G of
any group, we wish to identify structures in G which are robust enough to be preserved
by f , and intricate enough that they can only be preserved in the obvious ways. In the
case of MCG.S/, these structures are (maximal) Dehn twist flats, which are cosets of
maximal-rank free abelian subgroups generated by Dehn twists. Later we will actually
work with equivalent subsets of the marking complex M.S/, which is our geometric
model of choice for MCG.S/.

Theorem 10.3 states that a quasi-isometry f WMCG.S/!MCG.S/ coarsely preserves
the set of Dehn twist flats. That is, the image of any such flat is within finite Hausdorff
distance of another such flat, with the bound depending only on the quality of the
quasi-isometry.

Once Theorem 10.3 is established, we can apply known results to prove Theorem 1.1.
The coarse permutation of flats induces an automorphism of the curve complex of S

which by a theorem of Ivanov [34], Korkmaz [37] and Luo [38] is induced by some
mapping class � 2MCG.S/ (when S D S1;2 this is not quite right but we ignore this
for now). This gives us the desired element of MCG.S/ and it is then not hard to
show that left-multiplication by � is uniformly close to the quasi-isometry f .

Preservation of asymptotic Dehn twist flats Theorem 10.3 will be proven, follow-
ing Kleiner and Leeb [36], by reduction to the asymptotic cone of MCG.S/. The
asymptotic cone, which we denote M! , is a limit obtained by unbounded rescaling of
the word metric on MCG.S/. Extracting this limit requires the choice of an ultrafilter,
although our results hold for any choice – see Section 2.3 for details.

A quasi-isometry of MCG.S/ converges after rescaling to a bilipschitz homeomor-
phism of M! , and Dehn twist flats limit to bilipschitz-embedded copies of Euclidean
space. Thus our goal in this context is to show that these asymptotic Dehn twist flats
are permuted by the limiting map:

Geometry & Topology, Volume 16 (2012)
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Theorem 10.2 Except when S is a one-holed torus or four-holed sphere, any homeo-
morphism f WM!.S/!M!.S/ permutes the Dehn twist flats in M!.S/.

The proof of Theorem 10.2 will take up most of the paper.

The reduction of Theorem 10.3 to Theorem 10.2 will be discussed in detail in Section
10.2. Let us now sketch the proof of Theorem 10.2.

Structure of MCG.S/ via hyperbolicity We begin in Sections 3–5 by refining the
tools developed in Masur–Minsky [39; 40] and Behrstock [3] to study the coarse
structure of MCG.S/ using properties of curve complexes.

In Section 3, we analyze the structure of subsets of MCG.S/ that come, in a simple
way, from restrictions on some of the coordinates of the subsurface projection maps. In
particular what we call a product region is a set Q.�/ corresponding to all markings
of S that contain a fixed partial marking �. Coarsely this is the same as a coset in
MCG.S/ of a stabilizer of the partial marking. The factors in the product structure
are indexed by the different components of the subsurface of S on which the partial
marking � is undefined. In this language a Dehn twist flat is defined as a set Q.�/
where � is a pants decomposition whose curves are unmarked by any choice of
transversal. Choosing transversals gives one real-valued parameter for each curve
in �, making a Dehn twist flat quasi-isometric to R�.S/ , where �.S/ is the number of
components of a pants decomposition of S .

A cube is a special subset of a product region which is in fact quasi-isometric to a
Euclidean cube in a way compatible with the product structure. We show that product
regions and cubes are quasi-isometrically embedded subsets of MCG.S/, generalizing
a result of [40]. In Lemmas 3.3 and 3.7 we analyze the sets, called junctures, along
which two of these regions are close – junctures are generalizations of the coarse
intersections of quasiconvex sets in a hyperbolic space.

In Section 4, we prove the Consistency Theorem 4.3, which characterizes the image
of the curve complexes projection map. This theorem can be applied in many cases
to supplant the use of the hierarchy paths from Masur–Minsky [40]. Although useful,
these paths are technical to define and to work with. Hence, for the most part we have
avoided using them and Theorem 4.3 is one of the main tools that allows us to do this.

In Section 5, we use Theorem 4.3 to define and study †–hulls.

Local homology via hulls In Section 6 we use †–hulls in order to study the local
homology properties of the asymptotic cone. The coarse properties established in
Proposition 5.2 and Lemma 5.4 imply, in the cone, that ultralimits of †–hulls are
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contractible and have controlled geometry (Lemma 6.1 and Lemma 6.2). This allows
us to use them to build singular chains which are †–compatible, meaning that each
simplex is contained in the †–hull of its 0–skeleton. With this, and the results
of Behrstock–Minsky [8], we prove local homological dimension bounds, a result
originally established by Hamenstädt [27]. We also obtain Corollary 6.9, an analogue of
a result of Kleiner and Leeb [36], which controls embedded top-dimensional manifolds1

in the cone. †–compatible chains will also be crucial in Section 7 and Section 8.

Separation via jets In Section 7, we refine the results of [3; 8] to analyze separation
properties of the asymptotic cone.

One can consider the ı–hyperbolic case in order to describe the basic intuition behind
these separation arguments. If X is ı–hyperbolic and fgng is a sequence of geodesic
segments of lengths going to infinity, we obtain an ultralimit g! in the asymptotic
cone X! , which may be a geodesic segment or a point (assume the latter, for simplicity).
Nearest-point projection �nW X ! gn yields a relation on X! n g! : say that two
ultralimits x! and y! are equivalent if for representative sequences xn and yn , the
sequence of distances d.�n.xn/; �n.yn// is !–almost everywhere bounded.

It is a nice exercise to check directly from ı–hyperbolicity that this gives a well-defined
equivalence relation, whose equivalence classes are open, and hence these classes are
separated from each other by g! . In particular if xn and yn are always projected to
opposite ends of gn and neither x! nor y! lies in g! then they are separated by it.
When g! is a point we call the sequence fgng a microscopic jet.

Theorem 7.2 gives an analogous statement for MCG.S/, where ı–hyperbolicity of
individual curve complexes is exploited in a similar way, and separating sets are not
points but product regions.

We will also have need to think about the setting where, appealing again to our ı–
hyperbolic analogy, one of our points x! or y! may lie in g! . For this we introduce
a finer analysis of what we call macroscopic jets with either gradual or sudden growth,
and prove a suitable separation result in Theorem 7.7. In this case we show that certain
of the components are acyclic, and this is where †–hulls come into the proof.

Section 7.4 is a digression in which we use these ideas to characterize the pieces of the
tree-graded structure of the asymptotic cone of MCG.S/, in the sense of Druţu and
Sapir [12]. Although this is not needed for the rest of the proof, it is a structural fact
which follows directly from our techniques and is likely of independent interest.

1We consider manifolds in the topological category.
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Finiteness for manifolds in the asymptotic cone In Section 8 we apply the foregoing
results to prove a local finiteness theorem for manifolds in the asymptotic cone.

Theorem 8.5 shows that the †–hull of a finite set in a top-dimensional manifold
in the cone is always contained in a finite number of cubes. Most of the work is
done in Theorem 8.1, which uses the separation theorems to control which subsurface
projections of the finite set can grow without bound. This allows us to control the
structure of paths connecting points in the set which behave in an efficient way with
respect to their curve complex projections, eg, hierarchy paths.

Finally, Theorem 8.7 states that any top-dimensional manifold is, locally at any point,
contained in a finite number of cubes. This uses the results of Section 6 – in particular
Theorem 8.5 and a triangulation argument allow us to approximate any sphere in the
manifold as the boundary of a chain supported in finitely many cubes, and Corollary 6.9
implies the ball in the manifold bounded by the sphere is therefore contained (except
for a small error near the boundary) in these cubes as well.

Orthant complex In Section 9 we use the finiteness theorem to study the local struc-
ture of manifolds in the asymptotic cone, reducing it to a combinatorial question about
the complex of orthants, which is the complex of germs of cubes with a corner at a given
point x. The starting point, using Theorem 8.7, is the fact that the germ of any top-
dimensional manifold at x is equal to a finite collection of orthants. This allows us to
characterize the structure of the complex of orthants using purely topological properties,
and in particular (Corollary 9.8) to characterize the germs of Dehn-twist flats in the
cone. In particular, the topological characterization implies that any homeomorphism of
the cone must permute the germs of Dehn-twist flats. A simple local-to-global argument
gives the proof of Theorem 10.2. This topological distinctness of asymptotic Dehn
twists flats is what allows us to focus attention on them rather than all asymptotic flats.

This work was partially supported by NSF grants DMS-0812513, DMS-0701515,
DMS-0504019 and DMS-0706799.

2 Preliminaries

In Section 2.1 we review the foundations of curve complexes and marking complexes.
In Section 2.2 we review projection maps between curve complexes of subsurfaces,
and how they are used to obtain a quasidistance formula for the marking complex.
The main references are Masur and Minsky [40] and Behrstock and Minsky [8]. In
Section 2.3 we review asymptotic cones.
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2.1 Curves and markings

2.1.1 Basic definitions A finite type surface X is an oriented surface homeomorphic
to a closed surface minus a finite set of points. The missing points are in one-to-one
correspondence with the ends of X , and these are referred to as the punctures of X .
If X is connected we denote X D Sg;n where g is the genus and n the number of
punctures, and we quantify the complexity of Sg;n by �.Sg;n/Dmaxf3g� 3C n; 0g.
All surfaces in this paper will be of finite type.

Throughout the paper we will consider a single connected “ambient” surface S such
that �.S/� 2 – so S is not a sphere with � 4 punctures nor a torus with � 1 puncture.
We will also consider subsurfaces of S for which � � 1, as well as subannuli of S .

The (extended) mapping class group of S is the group

MCG.S/D Homeo.S/=Homeo0.S/

where Homeo.S/ is the group of homeomorphisms of S , and Homeo0.S/ is the
normal subgroup of homeomorphisms isotopic to the identity. We will often implicitly
consider isotopy classes, ie Homeo0.S/–orbits, of various objects such as subsurfaces
and simple closed curves. When this relation is explicit we will denote it by �i .

2.1.2 Curves An essential curve on a finite type surface X is an embedded circle 
such that if X is not an annulus then no component of X �  is a disc or a once-
punctured disc, and if X is an annulus then  is a core of X . An essential curve
system on X is a nonempty collection C of finitely many pairwise disjoint essential
curves.

If X is connected then a curve system C on X is called a pants decomposition if each
component of X �C is a three-punctured sphere, a pair of pants. A nonempty pants
decomposition exists on X if and only if �.X /� 1, in which case its number of curves
is �.X /.

Given any finite type surface X , all pairwise nonisotopic, maximal, essential curve
systems on X have the same cardinality, a number denoted r.X / and called the rank
of X , equal to the sum of the �–values of the components of X plus the number
of annulus components. When X is an essential subsurface of S (see below), this
number r.X / equals the locally compact dimension of certain subsets of the asymptotic
cone of MCG.S/ associated to X ; see Lemma 3.5.

Given two essential curve systems C;C 0 , we may always isotope one of them so that
they are in efficient position, which means that C;C 0 are transverse and no component
of S � .C [C 0/ has closure which is a bigon, a nonpunctured disc whose boundary
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consists of an arc of C and an arc of C 0 . We say that C and C 0 overlap if, after
putting them in efficient position, the intersection is nonempty. The concept of overlap
will be generalized below.

2.1.3 The lattice of essential subsurfaces An essential subsurface of S is a subsur-
face Y � S with the following properties.

� Y is a union of (not necessarily all) complementary components of an essential
curve system C . Denote C \ xY by @Y , the boundary curves of Y .

� No two components of Y are isotopic – equivalently, no two annulus components
are isotopic.

� Each nonannulus component of Y has � � 1, equivalently, no component is a
3–punctured sphere.

Essential subsurfaces of S are identified when they are isotopic in S . Note that two
isotopic essential subsurfaces need not be ambient isotopic, for instance the complement
of a single essential curve c is isotopic to but not ambient isotopic to the complement
of an annulus neighborhood of c .

Given an essential subsurface X of S , let �.X / denote the set of isotopy classes in S

of simple closed curves that are essential in X . Note that a boundary curve of X has
isotopy class in �.X / if and only if it is isotopic to the core of an annulus component
of X . Because we have excluded 3–holed spheres, �.X / is empty if and only if X is
empty. Note that r.X / equals the maximum cardinality of a curve system in S whose
elements are in �.X /.

On the set of essential subsurfaces define a relation X �ı Y , read “X is an essential
subsurface of Y ”, to mean �.X /� �.Y /.

Lemma 2.1 The relation �ı is a partial order on the set of isotopy classes of essential
subsurfaces of S (including ∅). In particular, X is isotopic to Y if and only if
�.X / D �.Y /. Moreover there exist binary operations \ı , and [ı , called essential
union and essential intersection, which have the following properties:

(1) X [ı Y is the unique �ı –minimal essential subsurface Z such that X �ı Z and
Y �ı Z .

(2) X \ı Y is the unique �ı –maximal essential subsurface Z such that Z �ı X and
Z �ı Y .

In other words we have a lattice whose partial order is �ı and whose meet and join
operations are \ı and [ı , respectively.
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Proof To define these operations it is helpful to fix a complete hyperbolic metric on S .
Every essential curve has a unique geodesic representative. Every connected essential
subsurface X which is not an annulus is represented by the appropriate component of
the complement of the union of the geodesic representatives of @X . Every essential
subannulus is represented by the geodesic representative of its core. We call this
the geodesic representative of a connected essential subsurface. Note that disjoint
components of an essential subsurface have disjoint geodesic representatives, even
when annuli are involved.

Now we can see that �.X / determines X as follows. If C � �.S/, then for any
finite subset of C we can take a regular neighborhood of the union of geodesic
representatives, fill in disk or punctured-disk components of the complement, and
obtain an essential subsurface. Any exhaustion of C by finite sets gives an increasing
sequence of such subsurfaces, which must therefore eventually stabilize up to isotopy.
This uniquely determines an essential subsurface which we call Fill.C /. One easily
shows X �i Fill.�.X // provided �.X /¤ ∅, that is, if X is not a pair of pants. It
follows immediately that �ı is a partial order.

Let us now show that [ı is defined. Given X and Y , let Z D Fill.C / where C D

�.X /[�.Y /. Any curve in C either overlaps some other curve in C , in which case it
is essential in a nonannulus component of Z , or it does not, in which case it is the core
of an annulus component of Z and again essential. Therefore �.X /[�.Y /� �.Z/,
so that X �ı Z and Y �ı Z . Z is minimal with respect to this property because if Z0

is a competitor then every finite subset of C is realized geodesically in the geodesic
representative of Z0 , and hence Z �ı Z0 . Uniqueness follows from the fact that �ı is
a partial order. We therefore set X [ı Y DZ .

In fact we note that [ı is defined for arbitrary collections fXig, merely by letting
C D

S
�.Xi/. Now we can obtain X \ı Y satisfying (3) by taking the essential union

of fZ WZ �ı X and Z �ı Y g.

Here are a few remarks on the proof.

Notice that X �ı Y if and only if the geodesic representative of each component of X is
pointwise contained in the geodesic representative of some component of Y . This is in
turn equivalent to saying that each component of X is isotopic to an essential subsurface
of a component of Y (where we allow an annulus to be an essential subsurface of
itself).

It is helpful to notice that �.X \ı Y /D �.X /\�.Y /. This is because any element 
in �.X /\ �.Y / is the core of an essential annulus A in both, hence A �ı X \ı Y
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by (2), so  2 �.X \ı Y /. The other direction follows from the fact that X \ı Y is
essentially contained in both X and Y .

We also define the essential complement X c to be the maximal essential subsurface Z

whose geodesic representative is disjoint from that of X . More concretely X c is the
union of complementary components of X that are not 3–holed spheres, together with
an annulus for each component of @X that is not isotopic into an annulus of X . (This
definition agrees with that in Behrstock–Minsky [8]). Note that essential complement
does not behave like a true lattice theoretic complement operator, in that .X c/c need
not be isotopic to X , and X [ı X c is usually not S ; for example, if X is a regular
neighborhood of a pants decomposition on S then X c D∅.

On the other hand, the essential complement does satisfy the following easily verified
formula, which in the asymptotic cone will allow us to make sense of codimension:

Proposition 2.2 For each essential subsurface X � S we have

r.X /C r.X c/D r.S/D �.S/:

2.1.4 Curve complex We associate a simplicial complex C.Y / with each connected
surface Y with �.Y / � 1, as well as for each essential subannulus of our ambient
surface S . For �.Y /� 1, the vertex set C0.Y / of C.Y / is �.Y /, the isotopy classes
of essential curves, and for �.Y / > 1, k –simplices correspond to sets of kC1 vertices
with disjoint representatives. Hence dim C.Y /D �.Y /� 1. When �.Y /D 1, we place
an edge between any two vertices whose geometric intersection number is the smallest
possible on Y (1 when Y DS1;1 and 2 when Y DS0;4 ). See Harvey [29], Ivanov [32]
and Masur–Minsky [39].

If Y is a connected essential subsurface of S and �.Y /� 1 then the inclusion Y ,! S

naturally induces an embedding C0.Y / ,!C0.S/, whose image we identify with C0.Y /.
If furthermore �.Y /� 2 then the embedding C0.Y / ,! C0.S/ extends to a simplicial
embedding C.Y / ,! C.S/, whose image we identify with C.Y /.

As in [40], we define C.Y / for an essential annulus Y � S by considering the annular
cover of S to which Y lifts homeomorphically, and which has a natural compactification
to a compact annulus AY (inherited from the usual compactification of the universal
cover H2 ). Define an essential arc in AY to be an embedded arc with endpoints on
different components of @AY . We define C.Y / to be the graph whose vertices C0.Y /

are isotopy classes rel endpoints of essential arcs in AY , with an edge for each pair of
distinct vertices represented by essential arcs with disjoint interiors.

Note that if Y;Y 0 are isotopic essential annuli then C.Y /; C.Y 0/ are the same complex.
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Given an essential curve  in S we let C. / denote C.Y / for any essential annulus
Y � S with core curve isotopic to  .

The mapping class of the Dehn twist about  acts naturally on C. / as follows: choose
the twist � to be supported on an annulus neighborhood Y of  , lift � through the
covering map int.AY /! S to a homeomorphism z� W AY ! AY that is supported
on the preimage of Y , and let this lift act on the essential arcs in AY . The following
properties of this action are easy; for details see [40].

Lemma 2.3 For any essential curve  in S and any vertex v 2 C0. / the orbit map
n 7! �n

 .v/ is a quasi-isometry between Z and C. /. The action of the infinite cyclic
group h� i on C. / has a fundamental domain of diameter 2.

We will need to use the main result of [39]:

Theorem 2.4 For each surface Y with �.Y / � 1, the curve complex C.Y / is an
infinite diameter ı–hyperbolic metric space, with respect to the simplicial metric.

2.1.5 Markings and partial markings We define markings and the marking com-
plex for any connected surface Y with � � 1, as well as for any essential subsurface
of S , including those which are disconnected and/or have some annulus component.
We also define partial markings. (In [40], partial markings are called markings, and
markings are called complete markings).

Suppose that Y is connected and �.Y /� 1. A partial marking �D .base.�/; t/ on Y

consists of a simplex base.�/ in C.Y / together with a choice of element t.b/ 2 C0.b/,
which we call a transversal, for some (possibly none) of the vertices b 2 base.�/; by
convention we allow the empty set ∅ as a partial marking of Y . If t.b/ is defined
then we say that b is marked (by �), otherwise b is unmarked (by �). A marking
(sometimes full marking) is a maximal partial marking, one for which base.�/ is a
pants decomposition and every b 2 base.�/ is marked. Given two partial markings
� D .base.�/; t/ and �0 D .base.�0/; t 0/, we write � � �0 to mean that base.�/ �
base.�0/ and, for each b 2 base.�/, b is marked by � only if it is marked by �0 in
which case t.b/D t 0.b/; we also write ��i �

0 to mean �� �0 and �0 � �.

Consider now a connected essential subsurface Y of S . If �.Y / � 1 then we have
defined above markings and partial markings of Y . If Y is an annulus then a marking
of Y is just a vertex of C.Y /, and a partial marking of Y is either a marking of Y

or ∅.

Finally, given an arbitrary essential subsurface Y of S , a marking of Y simply means
a choice of marking on each component of Y .
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2.1.6 The marking complex We define the marking complex of any connected
surface Y with � � 1, and of any essential subsurface of S .

First, given an essential subannulus Y of S , define the marking complex of Y to be
M.Y /D C.Y /.

Suppose now that Y is connected and �.Y /� 1. The vertices of M.Y / are just the
markings of Y . To define the edges we first need this notion: if b and c are overlapping
essential curves, we denote �b.c/ 2 C.b/ to be the set of lifts of c to essential arcs
in the annular cover associated to b . The diameter of this set is bounded in C.b/,
with a bound depending only on the topology of Y . The map �b is an example of a
subsurface projection map, defined below in a more general setting.

Edges in M.Y / correspond to elementary moves among markings on Y , which come
in two flavors: twist moves and flip moves. To define them, consider a marking �
on Y and a curve b 2 base.�/. A marking �0 is said to be obtained from � by a twist
move about b if base.�/D base.�0/, �;�0 have the same transversals to each curve in
base.�/ n fbg D base.�0/ n fbg, and the transversals t.b/ in � and t 0.b/ in �0 satisfy
dC.b/.t; t

0/� 2. A marking �0 D .base.�0/; t 0/ is said to be obtained from � by a flip
move along b if there exists b0 2 base.�0/ such that base.�/ n fbg D base.�0/ n fb0g,
Fill.b; b0/ is a one-holed torus or 4–holed sphere W such that dC.W /.b; b

0/ D 1,
dC.b/.�b.b

0/; t.b//� 2, and dC.b0/.t
0.b0/; �b0.b//� 2.

Finally, for any essential subsurface Y of S with components Y1; : : : ;Yn , define
M.Y / to be the 1–skeleton of the cartesian product M.Y1/� : : :�M.Yn/ with the
usual CW-product structure. To put it another way, the vertices of M.Y / are the
markings of Y , and there is an edge between two markings �;�0 of Y if and only
if �;�0 are isotopic outside of a certain component Yi , and the restrictions of �;�0

to Yi are connected by an edge of M.Yi/.

The marking complex is locally infinite because of the structure of transversals, but it
is still quasi-isometric to a locally finite complex, as follows. Recall from [40] that a
clean marking is a marking �D .base.�/; t/ with the following properties: for each
b 2 base.�/, t.b/ is �b.c/ where c D c.b/ is an essential curve in the component F

of Y n .base.�/ n fbg/ containing b ; and the curves b and c have minimal nonzero
intersection number in F . The complex of clean markings is a connected, MCG.Y /–
invariant subcomplex of M.Y / whose vertices are the clean markings.

In fact the clean marking complex is what is usually referred to as the marking complex;
see eg, [3; 8]. Because the full complex is more convenient for our purposes, we record
this quasi-isometry:
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Proposition 2.5 The marking complex M.Y / is quasi-isometric to MCG.Y / and to
the subcomplex of clean markings. More precisely, for each �0 2M.Y / the orbit map
� 7! �.�0/ is a quasi-isometry from MCG.Y / to M.Y /.

In particular M.Y / is connected, which may not have been obvious from the definition.

Sketch of proof As noted in [40], the clean marking complex is locally finite, the
action of MCG.Y / is properly discontinuous and cocompact, and so by the Milnor–
Švarc lemma [43; 55] the orbit map is a quasi-isometry between MCG.Y / and the
complex of clean markings. The inclusion of the complex of clean markings into
M.Y / is an MCG.Y /–equivariant quasi-isometry, because for each marking there is
a clean marking within a uniformly bounded distance C by Lemma 2.3, and for each
edge of M.Y / connecting two markings �0; �1 , if �0

0
; �0

1
are two clean markings

within distance C of �0; �1 respectively then the distance between �0
0
; �0

1
in the

clean marking complex is uniformly bounded – this is checkable explicitly from the
definition in [40] of the edges allowed between clean markings.

Remark on notation In any context where C.Y / is under consideration the essential
subsurface Y is assumed to be connected, whereas when M.Y / is being considered
then Y can be disconnected.

2.1.7 Overlap We define a symmetric binary relation of overlap for objects on S ,
denoted t, as follows.

We have already defined overlap of two essential curve systems, in Section 2.1.2.

Overlap of an essential curve  � S and an essential subsurface Y � S , denoted
 t Y and Y t  , means that  cannot be isotoped into the complement of Y .
Equivalently, after isotoping  to intersect @Y efficiently, the intersection  \ Y is
either a non–boundary-parallel essential curve in Y (the core of an annulus component
is not allowed) or a nonempty pairwise disjoint union of essential arcs in xY , each a
properly embedded arc ˛ � xY that is not homotopic rel endpoints into @Y .

Given an essential curve system C and an essential subsurface Y , define C t Y to
mean that there exists a component  of C such that  t Y .

Overlap of two essential subsurfaces X;Y � S , denoted X t Y , means that @Y t X

and @X t Y . Equivalently, after X;Y are isotoped so that @X , @Y intersect efficiently,
some component of xY \ @X is an essential curve or arc in Y and some component of
@Y \ xX is an essential curve or arc in X . It is also equivalent to say that neither of
Y or X is isotopic into the other and no matter how Y;X are chosen in their isotopy
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classes their intersection is nonempty. Notice for example that if @X t @Y then X t Y ,
but the converse can fail.

Overlap of an essential subsurface Y and a partial marking �, denoted � t Y and
Y t �, means that either base.�/ t Y or there exists b 2 base.�/ such that b is
marked by � and some component of Y is an annulus neighborhood b .

2.1.8 Open subsurface and support Given a partial marking �D .base.�/; t/
on S , its open subsurface, denoted open.�/D openS .�/, is defined to be the essential
union of all subsurfaces Z such that Z 6t �. Equivalently, open.�/ is the largest
essential subsurface which does not overlap �. One can also describe it explicitly as
the union of the components F of S � base.�/ such that �.F / � 1, and the annuli
(if any) homotopic to the unmarked b 2 base.�/. Note that each boundary curve of
open.�/ is isotopic to a curve of base.�/. We usually drop the subscript S in the
notation openS .�/, unless we want to emphasize the surface in which the operation
takes place, as in the proof of Lemma 3.3.

The support of a partial marking � of S , denoted supp.�/D suppS .�/, is defined to
be open.�/c , the essential complement of open.�/. The support of � does not always
behave as might at first be expected: for example, if no transversals are defined in �
then supp.�/D∅, even if �¤∅.

We note several properties of open.�/ and supp.�/. Let � D �u [�m where �u

consists of the unmarked curves of base.�/ and �m consists of the marked curves and
their transversals.

� Each component of @ supp.�/ is isotopic to a component of base.�/.

� �m restricts to a (full) marking of each component of supp.�/.

� supp.�/ is characterized up to isotopy as the maximal essential subsurface of S

with respect to the previous two properties.

� The curves �u are precisely the cores of the annulus components of open.�/.

2.1.9 Dehn twist flats Given a pants decomposition � on S , the set of markings
whose base is � is denoted Q.�/ �M.S/, and is called the Dehn twist flat corre-
sponding to �. The terminology “flat” comes from the fact, proved in [8, Lemma 2.1],
that Q.�/ is a quasi-isometrically embedded copy of R�.S/ ; see also Proposition 3.1(1)
below, which generalizes this to allow � to be any partial marking.

We state here without proof two other ways to view Dehn twist flats, in two other
models of the quasi-isometric geometry of MCG.S/: the word metric on MCG.S/;
and the thick part of Teichmüller space.
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Under the quasi-isometry M.S/$MCG.S/ of Proposition 2.5, a Dehn twist flat Q.�/
corresponds uniformly to a left coset of a maximal-rank free abelian subgroup generated
by Dehn twists. To be precise, consider the finite set of MCG.S/ orbits of pants
decompositions, and choose one representative �1; : : : ; �K from each orbit. There is a
constant A� 0 such that for each pants decomposition �Dˆ ��k , the image of Q.�/
in MCG.S/ has Hausdorff distance �A from the left coset ˆT .�k/ where T .�k/

is the rank �.S/ free abelian group generated by Dehn twists about the components
of �k .

Another quasi-isometric model of MCG.S/ is the thick part of the Teichmüller
space T .S/. By Margulis’ Lemma there is a constant �0 > 0 independent of S

such that in any hyperbolic structure on S , the set of simple closed geodesics of length
� �0 is pairwise disjoint, and every other simple closed geodesic has length � 2�0 .
The thick part Tthick.S/ is defined to be the set of hyperbolic structures whose shortest
closed curve has length � �0 . The action of MCG.S/ on Tthick.S/ is properly discon-
tinuous and cocompact and so, by the Švarc–Milnor lemma, there is a quasi-isometry
M.S/$Tthick.S/, with respect to any equivariant proper geodesic metric on Tthick.S/.
Applying Fenchel–Nielsen coordinates one sees that Tthick.S/ is a manifold-with-
corners, locally modelled on the closed orthant fx 2 R2�.S/j xi � 0 for all i g. Each
curve family C of cardinality j corresponds to a codimension-j facet F.C / consisting
of hyperbolic structures on which the curves of C are precisely the curves of length �0 .
Note that for a pants decomposition �, the Fenchel–Nielsen length coordinates in
the facet F.�/ are all fixed to be �0 , and so the remaining coordinates are just the
twists around the curves of �, making F.�/ homeomorphic to R�.S/ . Putting this
all together, there is a constant A� 0 such that for each pants decomposition �, the
image of Q.�/ in Tthick.S/ has Hausdorff distance �A from F.�/.

2.2 Projections

2.2.1 Subsurface projections Following [40; 3; 8], given a surface S and an
essential subsurface Y we shall define several projection maps which take curves
and markings in S to curves and markings in Y . When the target is the marking
complex M.Y / we use �M.Y / for the projection, and when the target is the curve
complex C.Y / we use �C.Y / or more briefly �Y . Because these definitions require
choices, for example choosing a vertex among a set of vertices, formally speaking we
define the image of each map to be the set of all choices. However in all cases the
map is coarsely well-defined (see Lemma 2.10), which means that the set of choices
has uniformly bounded diameter. In practice we may sometimes abuse terminology
and treat these maps as if the image of a point is a point. We may also abuse distance
notation between the images of two points, confusing minimum distance, Hausdorff
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distance, and distance between any two representative elements of the images (see
below under “Notation for various distances”), because those quantities all differ by
a uniformly bounded amount. Furthermore, these subsurface projection maps are
coarsely Lipschitz (Lemma 2.11) and they behave well with respect to composition
(Lemma 2.12).

Projecting curves to (sets of) curves Suppose that Y �ı S is connected and not an
annulus. If  2 C.S/, we define �C.Y /. / to be the set of vertices of C.Y / obtained
from essential arcs or curves of intersection of  with Y , by the process of surgery
along @Y . To be more precise, put  in efficient position with respect to @Y , choose
a component ˛ of  \ Y , and consider a component of the boundary of a regular
neighborhood of ˛ [ @Y ; the set of all essential curves in Y obtained in this way
is �C.Y /. /.

If Y is an annulus, we let �C.Y /. / be the set of vertices of C.Y / obtained as lifts
of  to the annular cover associated to Y . This operation was denoted �b in the earlier
discussion of marking complexes, where b is the core of Y .

Note in both cases that �C.Y /. / is nonempty if and only if  t Y . See Lemma 2.10
for coarse well-definedness of �C.Y / .

Notation: we often write �Y for any projection map whose target is C.Y /. When the
target needs to be emphasized we write �C.Y / .

The bounded geodesic projection theorem from [40] will be important for us:

Theorem 2.6 Let Y be a connected essential subsurface of S and let g be a geodesic
segment in C.S/ such that v t Y for every vertex v of g . Then

diamC.Y /.g/� B;

where B is a constant depending only on �.S/.

Projecting (partial) markings to curves We define a projection �C.Y /.�/ � C.Y /
for a partial marking � in S as follows: When base.�/ t Y we let �C.Y /.�/ be the
union of �C.Y /.b/ over all b 2 base.�/. When Y is an annulus neighborhood of a
marked b 2 base.�/ then we define �C.Y /.�/D t.b/. In all other cases �C.Y /.�/D∅.

Projecting (partial) markings to (partial) markings If � is a partial marking in S

and Y an essential subsurface, we will define a partial marking �M.Y /.�/ in Y . If �
is a marking of S then �M.Y /.�/ will be a marking of Y , so that we will obtain a
coarse Lipschitz map �M.Y /WM.S/!M.Y / (see Lemma 2.11).
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Write �D .base.�/; t/. If Y 6t� then �M.Y /.�/D∅. From now on we may assume
Y t�. If Y is disconnected we can view partial markings as tuples of partial markings
in the components and define �M.Y / componentwise. So we may also assume that Y

is connected.

When Y is an annulus let �M.Y /.�/ denote any choice of element of �C.Y /.�/,
recalling that M.Y /D C.Y /.
If �.Y / � 1, let b be any choice of element in �C.Y /.�/, let A be an annulus with
core b , and let Yb be the union of A with its essential complement in Y . Now
inductively define

�M.Y /.�/D b[�M.Yb/.�/

where the second term of the union is interpreted as a union over the components of Yb .
Note that, at the bottom of the induction, the annulus case provides transversals for all
the base curves of �M.Y /.�/ that overlap �.

There are choices at each stage of this construction, but when � is a marking the final
output is coarsely well-defined, as proved in [3]. See Lemma 2.10 for a statement.

For a partial marking �, recall that open.�/ is the unique maximal essential subsur-
face Y such that � 6t Y , or equivalently such that �M.Y /.�/ is empty. The following
lemma characterizes the (relative) open subsurface of the projection of a partial marking,
as the maximal subsurface that doesn’t overlap the marking:

Lemma 2.7 If Y is an essential subsurface of S and � a partial marking in S , then

openY .�M.Y /.�//D
[
ı
˚
Z �ı Y WZ 6t �

	
:

Proof Let �0 D �M.Y /.�/. Every base curve in the inductive construction of �0 is
either a base curve of � itself, or an element of a subsurface projection of � into some
subsurface of Y . The induction terminates when the complementary subsurfaces of the
base have no more overlap with �, and when the base curves are either marked by �0

or are base curves of � that have no transversals. It follows that openY .�
0/ does not

overlap �.

Conversely, let Z �ı Y be a subsurface that does not overlap �. If Z is an annulus
around b 2 base.�/ then b is unmarked by �. Otherwise Z is disjoint from all vertices
of �C.Y /.�/. Hence in the first step of the construction of �0 , the subsurface Z does
not overlap the chosen base curve. Continuing by induction, Z does not overlap �0 .
Hence Z �ı openY .�

0/.

We have shown that openY .�
0/ is among the set of subsurfaces of Y that don’t

overlap �, and that every subsurface of Y that doesn’t overlap � is essentially contained
in openY .�

0/. Hence the two sides are equal.
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Notation for various distances In a metric space M , when p; q are subsets of M

we use dM .p; q/ to denote minimum distance, meaning the infimum of the distance
between an element of p and an element of q . We also use dH ;M .p; q/ to denote Haus-
dorff distance, the infimum of all �� 0 such that p is contained in the �–neighborhood
of q and q is contained in the �–neighborhood of p . When the context is clear we
abbreviate dH ;M .p; q/ to dH .p; q/.

Given an essential subsurface Y � S , and any objects a and b in the domain of �C.Y /
or of �M.Y / we denote

dC.Y /.a; b/D dC.Y /.�C.Y /.a/; �C.Y /.b//;

dM.Y /.a; b/D dM.Y /.�M.Y /.a/; �M.Y /.b//;

as long as the right hand side makes sense, for example when a; b are full markings in
the latter case. When the context is clear we often abbreviate dC.Y / to dY .

2.2.2 Quasidistance formula Knowing that MCG.S/ is quasi-isometric to the
marking complex M.S/, we can study the asymptotic geometry of MCG.S/ by
having a useful quasidistance formula on M.S/, which is provided by the following.

Given two numbers d � 0, A� 0, denote the truncated distance

ffdggA D

�
d if d �A;

0 otherwise:

Given r; s� 0, K� 1, C � 0 we write r
K;C

� s to mean that 1
K

s�C � r �KsCC . We
also write r � s to mean that r

K;C

� s for some constants of approximation K;C which
are usually specified by the context, and we similarly write r . s to mean r �KsCC .

The following result is proved in [40].

Theorem 2.8 There exists a constant A0 � 0 depending only on the topology of S

such that for each A�A0 , and for any �;�0 2M.S/ we have the estimate

dM.S/.�; �
0/�

X
Y�S

˚̊
dC.Y /.�; �

0/
		

A

and the constants of approximation depend on A and on the topology of S .

The constant A in this theorem is usually called the threshold constant.

Remark In summations and other expressions with index Y as in the above theorem,
the convention will be that the index set consists of one representative Y in each isotopy
class of connected essential subsurfaces, perhaps with some further restriction on the
isotopy class; see for example Proposition 3.1(2) below.
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There are two ways that Theorem 2.8 is applied. First, we can raise the threshold with
impunity, which can make some terms drop out in a way that the remaining terms
are more easily described. Second, if each term in the sum is replaced by another
term differing by at most a uniform constant C � 0 then, after raising the threshold
above 2C , we may make the replacement at the cost of a multiplicative factor of at
most 2. As an example we have the following:

Corollary 2.9 For any r there is a t such that for any �; �2M.S/, if dC.W /.�; �/�r

for all W � S , then dM.S/.�; �/� t .

The proof is simply to raise the threshold above r , so that the right hand side of the
quasidistance formula becomes 0. In fact a more careful look at the machinery of [40]
yields t DO.r �.S//.

2.2.3 Basic properties We conclude this section with a brief summary of some of
the basic properties of projections:

Lemma 2.10 Subsurface projections are coarsely well defined:

� The diameter of �C.Y /.x/, where x is a curve or marking in S , is uniformly
bounded.

� Similarly, the diameter of all possible choices in the construction of �M.Y /.�/,
for � 2M.S/, is uniformly bounded.

Lemma 2.11 Subsurface projections are coarsely Lipschitz in the following sense:

� If x;y 2 C.S/ with d.x;y/ D 1 and both x t Y and y t Y , then
diam.�C.Y /.x/[�C.Y /.y// is uniformly bounded.

� Similarly dM.Y /.�; �/ is uniformly bounded for any �; � in M.S/ with
d.�; �/D 1.

In Lemmas 2.10 and 2.11, “uniformly bounded” means bounded by a constant depending
only on �.S/. In fact, for the C.Y / bounds of these lemmas, there is a bound of 3

when Y is an annulus and of 2 when �.Y / > 1 – see [40] for details.

Lemma 2.12 Subsurface projections for nested subsurfaces are coarsely composable
in the following sense. Let X;Y � S be essential subsurfaces such that X �ı Y .
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� For any  2 C0.S/, the curve  overlaps X if and only if  overlaps Y and
�Y . / contains at least one element ˛ which overlaps X . In this case, �X is
coarsely equivalent to �X ı�Y , meaning that

diamC.X /.�X . /[�X .�Y . ///

is uniformly bounded.

� Similarly, if � 2M.S/ then

dM.X /.�M.X /.�/; �M.X /.�M.Y /.�///

is uniformly bounded.

We remark that for all three of these lemmas, the statements for curve complex projec-
tions are elementary from the definitions, and the statements for marking projections
follow easily from the quasidistance formula.

2.3 Asymptotic cones

The asymptotic cone of a metric space is a way to encode the geometry of that space as
seen from arbitrarily large distances. We will discuss this construction and the notation
we will be using (see van den Dries and Wilkie [57] and Gromov [23] for further
details).

To start, we recall that a (nonprincipal) ultrafilter is a finitely additive probability
measure ! defined on the power set of the natural numbers, which takes values only
0 or 1, and for which every finite set has zero measure. Existence of such ultrafilters
follows easily from Zorn’s lemma. If two sequences coincide on a set of indices whose
!–measure is equal to 1 then they are said to be !–equivalent, or to coincide !–a.e.
or !–a.s. We will have a tendency, especially later in the paper, to abbreviate the
terminology by speaking of !–equivalent objects as being “equal” or “the same”.

The ultraproduct of a sequence of sets Xn is the quotient …nXn=� of the cartesian
product identifying two sequences .xn/, .yn/ if they are !–equivalent. We will often
use the notation xX for the ultraproduct, and we use xx or hxni for the !–equivalence
class of a sequence .xn/, also called its ultraproduct equivalence class.

In a topological space X , the ultralimit of a sequence of points .xn/ is x , denoted
xD lim! xn or xn!! x , if for every neighborhood U of x the set fn Wxn2U g has !–
measure equal to 1. Ultralimits are unique when they exist, moreover two !–equivalent
sequences in X have the same ultralimit. In this language the Bolzano–Weierstrass
Theorem says that when X is compact every sequence has an ultralimit.
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The ultralimit of a sequence of based metric spaces .Xn;xn; distn/ is defined as follows:
for xy;xz 2 xX , we define dist.xy;xz/D lim! distn.yn; zn/, where the ultralimit is taken
in the compact set Œ0;1�. We then let

lim
!
.Xn;xn; distn/� fxy W dist.xy; xx/ <1g=�

where we define xy � xy0 if dist.xy; xy0/ D 0. Clearly dist makes this quotient into a
metric space called the ultralimit of the Xn .

Given a sequence of positive constants sn!1 and a sequence .xn/ of basepoints in
a fixed metric space .X; dist/, we may consider the rescaled space .X;xn; dist =sn/.
The ultralimit of this sequence is called the asymptotic cone of .X; dist/ relative to the
ultrafilter ! , scaling constants sn , and basepoint xx D hxni:

Cone!.X; .xn/; .sn//D lim
!

�
X;xn;

dist
sn

�
:

For the image of xy in the asymptotic cone, the rescaled ultralimit we use the notation
either y! or y . Given a sequence of subsets An � X we use the notation A! to
denote the subset of Cone!.X; .xn/; sn// consisting of all y! for sequences .yn/ such
that yn 2An for all n.

The rescaling limit works equally well for a sequence .Xn;xn; distn/ in which the Xn

are not all the same metric space, and so we call lim!.Xn;xn; distn =sn/ the asymptotic
cone of the sequence.

Convention For the remainder of the paper we fix a nonprincipal ultrafilter ! . Usually
also the scaling sequence sn!1 and the basepoint �0 for M.S/ are implicitly fixed,
and we write M! DM!.S/ to denote an asymptotic cone of M.S/ with respect to
these choices. Any choice of scaling sequence and basepoint will do, but in the last
section we will need the flexibility of varying the choice of the scaling sequence .sn/.
Further, properties of linear or sublinear growth of a nonnegative function f .n/ are
always taken with respect to the choice of ! and .sn/, that is, we say f .n/ has linear
growth if 0< lim!.f .n/=sn/ <1 and sublinear growth if lim!.f .n/=sn/D 0.

Note that since M.S/ is quasi-isometric to the group MCG.S/ with any finitely
generated word metric, and since the isometry group of MCG.S/ acts transitively, the
asymptotic cone is independent of the choice of basepoint.

Any essential connected subsurface W inherits a basepoint �M.W /.�0/, canonical
up to bounded error by Lemma 2.11, and we can use this to define the asymptotic
cone M!.W / of its marking complex M.W /. For a disconnected subsurface W DFk

iD1 Wi we have M.W /D
Qk

iD1 M.Wi/ and we may similarly construct M!.W /
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which can be identified with
Qk

iD1 M!.Wi/ – this follows from the general fact that
the process of taking asymptotic cones commutes with finite products. Note that for an
annulus A we have defined M.A/D C.A/ which is quasi-isometric to Z, so M!.A/

is bilipschitz equivalent (isometric) to R.

For a sequence .Wn/ of subsurfaces we can similarly form the ultraproduct of .M.Wn//,
which we denote by M. SW /, where SW D hWni. The asymptotic cone of this sequence
with the inherited basepoints is denoted M!. SW /. We also let xS denote the constant
sequence .S;S; : : :/ so that M. xS/ is the ultraproduct of .M.S/; : : :/ and M!. xS/

is the same as M!.S/.

Any sequence in a finite set A is !–a.e. constant: given .an 2 A/ there is a unique
a 2A such that !.fn W anD ag/D 1. It follows that the ultralimit xa of this sequence is
naturally identified with a. For example if .Wn/ is a sequence of essential subsurfaces
of S then the topological type of Wn is !–a.e. constant, so we call this the topological
type of SW . Similarly the topological type of the pair .S;Wn/ is !–a.e. constant. We
can moreover interpret expressions like xU � SW to mean Un �Wn for !–a.e. n, and
so on. Note that M!. SW / can be identified with M!.W /, where W is a surface
homeomorphic to Wn for !–a.e. n; this identification is not natural, however, because
it depends up to !–equivalence on choosing a homeomorphism between W and
each Wn .

For two sequences of sets .An/ and .Bn/ and a sequence of functions fnW An! Bn ,
passing to the ultralimit gives rise to a single function xf W xA! xB , and xf determines fn

up to !–equivalence in the ultraproduct of the sequence .BAn
n /. We can therefore

think of a sequence of projection maps �M.Wn/WM.S/!M.Wn/ as a single map

�M. SW /WM. xS/!M. SW /:

Upon rescaling, this map descends to a map of the asymptotic cones, the rescaled
ultralimit of the projection maps

�M!. SW /WM!.S/!M!. SW /:

Note by Lemma 2.11 that this is a Lipschitz map. This sort of notation will be used
heavily in Section 8.

3 Product regions and cubes

In this section we define and study subsets of the marking complex obtained by holding
fixed one part of the surface and varying the rest. These will be called product regions,
because of the product structure described in Proposition 3.1. A special case of a
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product region is a Dehn twist flat. We will also consider particular subsets of product
regions called cubes, which are in fact naturally quasi-isometrically parametrized by
cubes in Euclidean space.

The metric relation between a pair of product regions or cubes will be described in
terms of junctures, the part of each set which comes closest to the other. Later, when
we pass to the asymptotic cone, these junctures will become intersections, and will be
important in understanding the structure of orthants in the cone.

3.1 Product regions

For each partial marking � of S , define its associated product region

Q.�/D f�0 2M.S/ W �� �0g;

that is, the set of all (full) markings that extend �.

For example, if � is a curve system with no transversals then Q.�/ is the collection
of all markings whose base curves contain �. In this case Q.�/ is uniformly quasi-
isometric to a left coset of a subgroup stabilizing a certain curve system, just as Dehn
twist flats are uniformly quasi-isometric to left cosets of certain maximal rank Dehn
twist subgroups, as explained in Section 2.1.9.

In particular, if � is a pants decomposition with no transversals then Q.�/ is a Dehn
twist flat, and so our notation is consistent with the notation for Dehn twist flats
introduced in Section 2.1.1.

Product structure on Q.�/ An element �0 2Q.�/ is specified by choosing, for each
component Y of open.�/, a marking on Y which we denote �0jY , and which may
be identified with �M.Y /.�

0/. Hence Q.�/ is naturally identified with M.open.�//,
which is a product Y

Y 2jopen.�/j

M.Y /;

where jZj denotes the set of components of Z .

With this in mind, given two partial markings �; � on S , define the extension of �
by � to be the partial marking given by

� c � D �[�M.open.�//.�/:

If �M.open.�//.�/ is a full marking in open.�/ then � c � 2 Q.�/. This applies for
example when � itself is a full marking on S , in which case item (3) of the following
proposition tells us that � c� is (coarsely) the closest point projection of � onto Q.�/.

Geometry & Topology, Volume 16 (2012)



806 Jason Behrstock, Bruce Kleiner, Yair Minsky and Lee Mosher

The following result generalizes the case considered in [8], where � was a curve system
without transversals.

Proposition 3.1 Let �.S/� 1 and let � be a partial marking of S .

(1) The map
M.open.�//D

Y
Y 2jopen.�/j

M.Y /!M.S/

induced by the identification with Q.�/ is a quasi-isometric embedding, with
constants depending only on the topology of S .

(2) There is a constant A0 depending only on the topology of S such that for each
A � A0 , and for each x 2M.S/, the minimum distance dM.S/.x;Q.�//
from x to Q.�/ in M.S/ is estimated by

dM.S/.x;Q.�//�
X
Y t�

˚̊
dC.Y /.x; �/

		
A
;

where the constants of approximation depend on A and on the topology of S .

(3) Moreover, again with uniform constants, for each x 2M.S/,

dM.S/.x;Q.�//� dM.S/.x; � cx/:

As a consequence of (1), combined with the ordinary quasidistance formula for compo-
nents of S n base.�/, if we let � be the subset of base.�/ consisting of those curves
for which no transversal is defined then we have a quasi-isometry

Q.�/ � Z� �
Y

Y 2jopen.�/j
�.Y /�1

M.Y /:

As another example of (1), given an essential subsurface W , we have

Q.@W /�M.W /�M.W c/:

As an example of (2), if � is a full marking then Q.�/ D f�g, open.�/ D ∅,
supp.�/D S , and (2) is just the ordinary quasidistance formula to �.

Proof of Proposition 3.1 Suppose that F is an essential subsurface of S that is
not essentially contained in open.�/, and recall that � t F . It follows that for any
�0; �00 2Q.�/ each of �C.F /.�0/, �C.F /.�00/ is within a uniformly bounded distance
of �C.F /.�/ – this is a consequence of coarse well-definedness of �C.F / , Lemma 2.10.
We can therefore make the �C.F / term drop out of the quasidistance formula for
d.�0; �00/ by raising the threshold. The remaining terms can be collected to give the

Geometry & Topology, Volume 16 (2012)



Geometry and rigidity of mapping class groups 807

sums of the quasidistance formulas for the projections of �0; �00 to the components of
open.�/, and we obtain (1) as an immediate consequence.

Now consider a connected essential subsurface Y � S such that Y t �. For each
�0 2 Q.�/, from coarse well-definedness (Lemma 2.10) it follows that �C.Y /.�/
and �C.Y /.�0/ are within uniformly bounded distance of each other. Therefore, for
each x 2M.S/ we have dC.Y /.x; �/

1;C

� dC.Y /.x; �
0/ where C depends only on the

topology of S . The terms dC.Y /.x; �/ comprise the right side of (2) and the terms
dC.Y /.x; �

0/ are among the terms in the quasidistance formula for dM.S/.x; �
0/, so

after raising the threshold by 2C we obtain the & direction of (2).

Next, let �0 D � c x . For each Y , if � 6t Y then dC.Y /.x; �
0/ is bounded above

by a constant depending only on the topology of S , because Lemma 2.12 implies
�C.Y /.�

0/ is within uniformly bounded distance of �C.Y /.�C.open.�//.�
0//, which

equals �C.Y /.�C.open.�//.x//, which is itself within uniformly bounded distance of
�C.Y /.x/. We can then raise the threshold above this constant, so that all of these terms
drop out of the quasidistance formula for dM.S/.x; �

0/, leaving only the terms where
� t Y . This proves the . direction of (2), as well as (3).

Junctures Let F be a family of subsets of a metric space M. We say that F has
junctures if the following holds: for any X;Y in F there exist E.X;Y / � X and
E.Y;X /� Y , both members of F as well, such that

(1) the Hausdorff distance dH .E.X;Y /;E.Y;X // is finite.

(2) if x 2X;y 2 Y then

d.x;y/& d.x;E.X;Y //C dH .E.X;Y /;E.Y;X //C d.E.Y;X /;y/:

with constants of approximation being uniform over the family F .

The sets E.X;Y / and E.Y;X / are called the junctures of X and Y . Note that the
junctures are “parallel” in the sense not just of the bound on Hausdorff distance, but
the inequality the other way d.x;y/& dH .E.X;Y /;E.Y;X // which by (2) holds for
all x 2E.X;Y / and y 2E.Y;X /.

The motivating example of a family having junctures is the family of geodesics (finite
or infinite) in a ı–hyperbolic space. Here the implicit constants depend on ı . This
example has the feature that for any X;Y either E.X;Y / and E.Y;X / are points, or
dH .E.X;Y /;E.Y;X //� 0. Junctures for the family Q.�/ will not have this feature.

Junctures are examples of the general concept of “coarse intersection”, as we now
explain. In a metric space M, given subsets A;B �M, we say that the coarse
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intersection of A;B is well-defined if there exists R� 0 such that any two elements
of the collection of subsets fNr .A/\Nr .B/jr �Rg have finite Hausdorff distance.
For any subset C �M which has finite Hausdorff distance from any one of these sets,
we also say that the coarse intersection of A and B is represented by the set C . We
can define coarse intersection of a finite number of sets in the same way.

If the family F of subsets of M has junctures then the junctures are representa-
tives of coarse intersections. To prove this, choose K � 1, C � 0 to be constants
of approximation as in the definition of junctures and let L D 1 C 2

K
. For any

X;Y 2 F , let D D dH .E.X;Y /;E.Y;X //, and suppose that r � LD . We have
E.X;Y /;E.Y;X /�Nr .X /\Nr .Y / because r �D . If q 2Nr .X /\Nr .Y / then
we may choose x 2X , y 2 Y such that d.x; q/; d.q;y/� r , and we have

2r � d.x;y/

�K .d.x;E.X;Y /CDC d.E.Y;X /;y//CC;

2r

K
�D � d.x;E.X;Y //;

d.q;E.X;Y //� d.q;x/C d.x;E.X;Y //

�Lr �D;

and similarly for d.q;E.Y;X // (notice that Lr �D � 0 because r �LD �D=L).
We record this as:

Lemma 3.2 If M is a metric space and F is a family of subsets of M having
junctures then the coarse intersection of any two elements of F is well-defined and
is represented by their junctures. More precisely, there exists L � 1, depending
only on the constants of approximation, such that for all X;Y 2 F , letting D D

dH .E.X;Y /;E.Y;X //, for all r �LD we have

E.X;Y /[E.Y;X /�Nr .X /\Nr .Y /�NLr�D.E.X;Y //\NLr�D.E.Y;X //:

Junctures for the family fQ.�/g

Lemma 3.3 The family of subsets Q.�/ �M.S/ has junctures: for any partial
markings �0; �1 of S , the junctures for Q.�0/ and Q.�1/ are

E01 DE.�0; �1/DQ.�0 c�1/�Q.�0/;

E10 DE.�1; �0/DQ.�1 c�0/�Q.�1/:

More precisely we have:
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(1) The subsurfaces open.�0 c�1/, open.�1 c�0/, and open.�0/ \ı open.�1/ are
all isotopic. Let open.�0; �1/ denote a surface in this isotopy class.

(2) The Hausdorff distance dH .E01;E10/ in M.S/ is estimated by

dH .E01;E10/� dM.supp.�0;�1//.�0 c�1; �1 c�0/;

where we denote supp.�0; �1/D open.�0; �1/
c .

(3) For xi 2Q.�i/ we have

dM.S/.x0;x1/� dM.S/.x0;E01/C dM.S/.x1;E10/

C dM.supp.�0;�1//.�0 c�1; �1 c�0/C dM.open.�0;�1//.x0;x1/:

Proof Part (1) follows (by symmetry) from the general identity

(3-1) open.� c �/�i open.�/ \ı open.�/

for any two partial markings. The subsurface ZD open.�c�/ is the maximal essential
subsurface that does not overlap � c � , hence Z does not overlap � so Z �ı open.�/.
Also, Z does not overlap �M.open.�//.�/, so by Lemma 2.7, Z does not overlap �
and therefore Z �ı open.�/. We conclude that open.� c �/�ı open.�/ \ı open.�/.

Conversely letting X D open.�/ \ı open.�/, from Lemma 2.7 it follows that X �

openopen.�/.�M.open.�/.�// and so X does not overlap � c � . We conclude that
open.�/ \ı open.�/�ı open.� c �/, and (3-1) follows.

The proofs of (2) and (3) will be applications of the quasidistance formula. Note
that, now that we know that �0 c �1 and �1 c �0 have the same support surface
supp.�0; �1/, the distance between these markings in the complex M.supp.�0; �1//

is defined, so that (2) makes sense.

To obtain the inequality & in (2), consider any term in the quasidistance formula for
dM.supp.�0;�1//.�0 c�1; �1 c�0/, indexed by Y � supp.�0; �1/. This term is within
uniform distance of dC.Y /.x;x

0/ for any x 2 E01 and x0 2 E10 , since x contains
�0 c�1 and x0 contains �1 c�0 . Hence this term contributes to a lower bound for the
quasidistance formula for dM.S/.x;x

0/. As before, raising the threshold eliminates
the effect of the additive errors.

To prove the inequality . of (2), note that each x 2 Eij contains �i c �j . If we
replace this part of x by �j c�i , holding the part xjopen.�; �/ constant, we obtain
a point x0 2 Eji . For any Y � S which does not index the quasidistance formula
for the right hand side of (2), the term dC.Y /.x;x

0/ is uniformly bounded, as we
see by enumerating cases. If Y essentially intersects @ open.�; �/ then �C.Y /.x/

and �C.Y /.x0/ are uniformly close to �C.Y /.@ open.�; �//. If Y does not essentially
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intersect @ open.�; �/ then Y is isotopic into open.�; �/ or its complement. If Y is
isotopic into the complement of open.�; �/ then either Y is an annulus component of
open.�; �/ or Y is an index for the right hand side of (2). If Y is an annulus component
of open.�; �/, or if Y is an essential subsurface of a component of open.�; �/, then
�C.Y /.x/ and �C.Y /.x0/ are within uniformly bounded distance of the projection of
xjopen.�; �/ D x0jopen.�; �/. This exhausts all cases. By raising the threshold, it
follows that dM.S/.x;x

0/ reduces to the right hand side of (2), proving the inequality ..

To prove (3), let xi 2Q.�i/ for i D 0; 1. We just need to check that each term in the
quasidistance formula for dM.S/.x0;x1/ contributes to one of the four summands on
the right hand side.

The first summand dM.S/.x0;E01/, by Proposition 3.1(2), is estimated by

dM.S/.x0;E01/�
X

Y t�0c�1

˚̊
dC.Y /.x0; �0 c�1/

		
A
:

However, note that if Y t �0 then dC.Y /.x0; �0 c �1/ � 1 since both markings
contain �0 . On the other hand, if Y t �0 c �1 and Y 6t �0 then Y �ı open.�0/

and Y t �1 by Lemma 2.7; and the converse holds as well. Therefore by raising the
threshold A we get

dM.S/.x0;E01/�
X

Y�ıopen.�0/

Y t�1

˚̊
dC.Y /.x0; �0 c�1/

		
A
:

Each term dC.Y /.x0; �0c�1/ is within a uniformly bounded distance of dC.Y /.x0; �1/,
by Lemma 2.12; it follows that by raising the threshold above twice this bound, at the
cost of another multiplicative factor of 2, we get

(3-2) dM.S/.x0;E01/�
X

Y�ıopen.�0/

Y t�1

˚̊
dC.Y /.x0; �1/

		
A
:

We obtain a similar expression for the second summand:

(3-3) dM.S/.x1;E10/�
X

Y�ı open.�1/

Y t�0

˚̊
dC.Y /.x1; �0/

		
A
:

The third summand is given by

dM.supp.�0;�1//.�0 c�1; �1 c�0/�
X

Y�ı supp.�0;�1/

˚̊
dC.Y /.�0 c�1; �1 c�0/

		
A
:
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If Y �ı supp.�0; �1/ and Y 6t �0 then Y t �1 and both �C.Y /.�0 c �1/ and
�C.Y /.�1 c�0/ are within uniformly bounded distance of �C.Y /.�1/, so these terms
may be dropped by raising the threshold. Similarly, if Y �ı supp.�0; �1/ and Y 6t �1

then Y t �0 and these terms may be dropped.

If Y 6�ı supp.�0; �1/, and if Y t �0 and Y t �1 , then Y t @ supp.�0; �1/; for if
not, Y would be isotopic to the complement of supp.�0; �1/ and so to overlap �0

and �1 , Y would have to be an annulus isotopic to a boundary curve of supp.�0; �1/,
which is marked by both �1 and �0 . But in this case, by definition the annulus would
be a component of supp.�0; �1/ so Y �ı supp.�0; �1/ after all. In this situation
both �C.Y /.�0 c�1/ and �C.Y /.�1 c�0/ are within uniformly bounded distance of
�C.Y /.@ supp.�0; �1//, so that dC.Y /.�0 c�1; �1 c�0/ is uniformly bounded. Thus
although these terms do not appear in the sum, by raising the threshold we may formally
put them into it with only a bounded change to the estimate.

At this stage, the sum is indexed by the set of all Y � S such that Y t �0 and
Y t �1 . For such Y , �C.Y /.�0 c �1/ is within uniformly bounded distance of
�C.Y /.�0/, and �C.Y /.�1 c�0/ is within uniformly bounded distance of �C.Y /.�1/,
and so the dC.Y /.�0 c�1; �1 c�0/ is approximated within a uniform additive error by
dC.Y /.�0; �1/. By raising the threshold above twice this error we obtain

(3-4) dM.supp.�0;�1//.�0 c�1; �1 c�0/�
X

Y t�0

Y t�1

˚̊
dC.Y /.�0; �1/

		
A
:

The fourth summand is, by the quasidistance formula in open.�0; �1/, approximated by

(3-5) dM.open.�0;�1//.x0;x1/�
X

Y�ı open.�0;�1/

˚̊
dC.Y /.x0;x1/

		
A
:

Now putting these four sums (3-2), (3-3), (3-4), (3-5) together, and recalling that
Y �ı open.�i/ if and only if Y 6t �i , it follows that each Y � S appears in exactly
one of these four sums. Moreover, whenever �i appears it can be replaced by xi

with a bounded additive change in the term. Raising the threshold above twice the
value of this change, we see that the sum is approximated by the quasidistance formula
for dM.S/.x0;x1/.

3.2 Dimension and nonseparation in the asymptotic cone

We shall apply Proposition 3.1 and the results of [8] to compute the dimension of a
product region in the asymptotic cone, and combined with Alexander duality we will
obtain nonseparation results.
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Recall that the topological dimension of a topological space X is the least n such that
every open cover of X can be refined to an open cover U having the property that
for any subset of U whose members have nonempty intersection in X , the cardinality
of the subset is � nC 1. The locally compact topological dimension is the least n

such that each locally compact subset of X has topological dimension � n. It follows
immediately that the Čech cohomology of each locally compact subset of X vanishes
in dimensions above n.

Throughout this paper we usually use the word dimension to refer to locally compact
topological dimension. Also, given a subset A�X , we use the term codimension to
refer to the locally compact dimension of X minus the locally compact dimension
of A. Proposition 2.2 is useful in some contexts for computing codimension.

The following theorem is the main result of [8]:

Theorem 3.4 For each connected, finite type surface F with �.F / � 1, the locally
compact topological dimension of M!.F / is �.F /.

Consider a sequence of partial markings .�n/. Since an essential subsurface of S can
have only finitely many topological types, the type of open.�n/ is !–a.e. constant,
and so the number r.open.�n// is !–a.e. constant, a number we denote r.open.x�//.

By combining Theorem 3.4 with Proposition 3.1, in particular the coarse cartesian
product formula for Q.�n/ given after the statement of the proposition, plus the fact
that finite cartesian products commute with rescaled ultralimits, we immediately obtain:

Lemma 3.5 If .�n/ is a sequence of partial markings such that the rescaled ultra-
limit Q!.x�/ of .Q.�n// is nonempty in M!.S/, then Q!.x�/ has locally compact
topological dimension r.open.x�//.

Given a topological space X and two subsets A;B , we say that A separates B in X

if B has nonempty intersection with at least two components of X �A; in particular,
B �A is disconnected.

Lemma 3.6 Let .�n/ be as in Lemma 3.5. If E �M!.S/ is a connected oriented
manifold of dimension D � r.open.x�//C 2 then Q!.x�/ does not separate E in X .

Proof Since Q!.x�/ is closed and E is locally compact, the set E\Q!.x�/ is locally
compact, and therefore by Lemma 3.5 is of topological dimension �r.open.x�//<D�1.
By Alexander Duality,

zH0.E �Q!.x�//� LH D�1.E \Q!.x�//;

using reduced homology on the left hand side and Čech cohomology on the right hand
side, but the right hand side is trivial.
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3.3 Cubes and their junctures

Cubes are subsets of M.S/ obtained by choosing an essential subsurface of S whose
components all satisfy � � 1, marking the complement of that subsurface, and choosing
a geodesic in the marking complex of each component of the subsurface; the cube is
parameterized by the product of the chosen geodesics. A special case is a “Dehn twist
k –flat” in which S has k components, each one an annulus, and the chosen geodesic
in the marking complex of each annulus is bi-infinite; see Section 3.5 for more details
on Dehn twist k –flats. In this language, a “Dehn twist flat” as previously defined is
the same thing as a Dehn twist �–flat.

Given a connected V �ı S with �.V / � 1, the marking complex M.V / is quasi-
isometric to a tree which we denote TM.V /. When V is an annulus, TM.V / is
isometric to R, and the Dehn twist about V acts naturally by translation on TM.V /.
In the other two cases, where V is a one-holed torus or four-holed sphere, TM.V / is
isometric to the dual tree of the usual modular diagram for SL2 Z, on which MCG.V /
acts naturally. Given a geodesic segment r � TM.V / of positive length – finite,
half-infinite, or bi-infinite – and given an annulus U �ı S , we say that r is a twist
segment with support U if one of the following holds: U �i V is an annulus; or V is
not an annulus, U �ı V , and r is contained in the axis of the Dehn twist about U .

Consider a subset of M.S/ formed as follows. Choose a partial marking � such
that the components W1; : : : ;Wm of W D open.�/ satisfy �.Wi/ � 1. In each tree
TM.Wi/ choose ri to be a geodesic, finite, half-infinite or bi-infinite (we allow length 0
as well). Let r D fr1; : : : ; rmg. The cube C.�;W; r/ is the subset of Q.�/ consisting
of markings which, in each Wi , restrict to a marking in the geodesic ri . In other words,
under the quasi-isometry

Q.�/�M.W1/� � � � �M.Wm/

� TM.W1/� � � � � TM.Wm/;

we have
C.�;W; r/� r1 � � � � � rm:

Junctures of cubes can be described in a reasonably straightforward manner, with
careful bookkeeping, in terms of the description of junctures of product sets given in
Lemma 3.3. Here are the details.

Lemma 3.7 The family of cubes has junctures.

Proof Given cubes C.�;W; r/ and C.�;V; s/, we must construct subcubes which
will function as junctures. Denote the components as W D W1 [ � � � [Wm and
V D V1[ � � � [Vn .
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First we describe the essential subsurface open.�; �/ D W \ı V , whose marking
complex parameterizes the junctures of Q.�/ and Q.�/, by Lemma 3.3.

We claim that the components may be reindexed as

W D .W1[ � � � [Wk/[ .WkC1[ � � � [Wm/;

V D .V1[ � � � [Vk/[ .VkC1[ � � � [Vn/;

where k � 0, so that the components of W \ı V are

W \ı V D .W1\ıV1/„ ƒ‚ …
U1

[ � � � [ .Wk \ıVk/„ ƒ‚ …
Uk

and so that for each i D 1; : : : ; k one of the following holds: either Wi �i Vi �i Ui ;
or Ui is an annulus which is essentially contained in Wi and in Vi .

More generally, consider essential subsurfaces X;Y;Z of S with �.X /; �.Y /; �.Z/�1.
If U D X \ı Y is nonempty, it can only be an annulus or all of X and Y . The
complement of an annulus in X , if X is not an annulus itself, is either one or two
3–holed spheres. Now if Z is disjoint from Y , we claim that X \ı Z is empty. For
any curve c in �.Z/\ �.X / would have to be essential in X and isotopic to the
complement of Y – hence U would be an annulus and c isotopic to its core. This
would make c essential in both Y and Z , which is impossible unless Y and Z are
isotopic annuli.

In the context of W and V , this implies that the relation Wi \ı Vj ¤∅ is a bijection
between a subset of the components of W and a subset of the components of V , and
the claim immediately follows.

Now we will construct a quasi-isometric embedding of Q.�/ and Q.�/ into a product
of trees, which will allow us to see their junctures more clearly.

For each i D 1; : : : ; k the inclusion Ui � Wi induces an embedding TM.Ui/ ,!

TM.Wi/ whose image is a subtree denoted �i � TM.Wi/: either Ui �i Wi and
�i D TM.Wi/; or Ui is an annulus and �i is the axis in TM.Wi/ of the Dehn twist
about Ui . Similarly, the inclusion Ui � Vi induces a quasi-isometric embedding
M.Ui/! TM.Vi/ whose image is a subtree �i � TM.Vi/.

By composing a coarse inverse of the map M.Ui/! �i with the map M.Ui/! �i ,
we obtain a quasi-isometry gi W �i! �i . Notice that we may take gi to be a simplicial
isomorphism, as one can verify easily in either of two cases: if Wi �i Vi �i Ui then
these isotopies induce simplicial isomorphisms of marking complexes; and otherwise
�i and �i are the axes in the trees TM.Wi/ and TM.Vi/, respectively, of the Dehn
twist about Ui , and we can take gi to be a simplicial isomorphism between these two
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axes. Let Xi be the tree obtained from the disjoint union of the trees TM.Wi/ and
TM.Vi/ by gluing �i to �i isometrically using the map gi .

Let

‡ DR�
kY

iD1

Xi �

mY
iDkC1

TM.Wi/�

nY
iDkC1

TM.Vi/:

This is a product of trees on which we can put the `1 metric.

Now for i D k C 1; : : : ;m, let pi D �M.Wi /.�/ and note that in fact a bounded
neighborhood of pi contains all of �M.Wi /.Q.�//. Similarly, for j D kC 1; : : : ; n

let qj D �M.Vj /.�/ which approximates �M.Vj /.Q.�//:

The product structure of Q.�/ (Proposition 3.1) now gives us a quasi-isometric em-
bedding

��W Q.�/! ‡

which is the identity on the TM.Wi/ factors (including those embedded in the Xi ),
and maps to the constant qj on each TM.Vj /, j D kC 1; : : : ; n, and to 0 in the R
factor. Similarly we have

�� W Q.�/! ‡;

which is the identity on the TM.Vi/ factors (including those embedded in the Xi ),
and maps to the constant pj on each TM.Wj /, j D kC 1; : : : ;m, and to D in the
R factor, where D is the Hausdorff distance between E.�; �/ and E.�; �/.

Note, by Lemma 3.3, that the images ��.E.�; �// and ��.E.�; �// are parallel
products of subtrees, namely

f0g �

kY
1

�i �

mY
kC1

fpig �

nY
kC1

fqig;

fDg �

kY
1

�i �

mY
kC1

fpig �

nY
kC1

fqig;

recalling that �i and �i are identified in Xi .

Moreover we note that, by the distance formula (3) in Lemma 3.3 (and its interpretation
in terms of projections in ((3-2), (3-3), (3-4), (3-5))), �� and �� actually combine to
give us a quasi-isometric embedding of the union Q.�/[Q.�/ into ‡ , which we will
call � .

In particular �.E.�; �// and �.E.�; �// are junctures for �.Q.�// and �.Q.�// in
this product of trees. This is a special case of the following easy fact:
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Lemma 3.8 Let T D T1 � � � � � TN be a product of complete trees with the `1

metric. Then the family of products of closed subtrees has junctures. Moreover the
approximations in the definition of junctures are all exact.

Proof For a single tree this is easily checked: Any two subtrees either intersect, in
which case the junctures are (two copies of) their common subtree, or are disjoint, in
which case the junctures are the unique points of closest approach of each tree to the
other. For a product of subtrees in a product of trees, the junctures are the products of
junctures in the factors, and the distance formulas in the factors sum to give the desired
outcome.

Now it is easy to understand how the cubes C.�;W; r/ and C.�;V; s/ are situated
by considering their � –images. �.C.�;W; r// is a product of lines and points in the
factors of ‡ , with first coordinate 0, and �.C.�;V; s// is a similar product with first
coordinate D . Lemma 3.8 implies that the junctures of the images are again products
of subintervals, and we conclude that the � –preimages, which are subcubes of the
original cubes, are also junctures.

The proof of Lemma 3.7 gives some more information about the structure of the
junctures of two cubes, which we record here:

Lemma 3.9 Let C1 D C.�;W; r/ and C2 D C.�;V; s/. The junctures Cij D

E.Ci ;Cj /� Ci are subcubes of the form C12 D C.�;W; r 0/ and C21 D C.�;V; s0/,
where each component of r 0 or s0 is a subinterval or point of the corresponding
component of r or s .

After the renumbering in the proof of Lemma 3.7, the components of r 0 and s0 that
are not single points come in pairs r 0i ; s

0
i such that Ui D Wi \ı Vi ¤ ∅, and r 0i ; s

0
i

are images of the same segment of TM.Ui/ under the quasi-isometric embeddings
TM.Ui/ ,! TM.Wi/ and TM.Ui/ ,! TM.Vi/. Furthermore,

(1) if Ui is an annulus then r 0i ; s
0
i are twist segments with support Ui .

(2) if Ui �i Vi �i Wi then r 0i D s0i D ri \ si in the tree TM.Ui/ D TM.Vi/ D

TM.Wi/.

Proof This is a consequence of the fact that the map � in the proof of Lemma 3.7
respects the product structures in its domain and range. The image of C.�;W; r/

in ‡ is a product of line segments in the factors X1 , . . . , Xk and TM.WkC1/, . . . ,
TM.Wm/, and points in the other factors, whereas C.�;V; s/ maps to a product of
line segments in X1; : : : ;Xk and in TM.VkC1/; : : : ; TM.Vn/, and points in the rest.
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Thus, any tree factor in which the juncture factor is a nondegenerate segment is an Xi

which corresponds to a pair Wi ;Vi that has nontrivial essential intersection Ui , this
nondegenerate segment is the intersection of the images of ri and si via the quasi-
isometric embeddings TM.Wi/ ,! Xi and TM.Vi/ ,! Xi , the pullbacks of this
segment to TM.Wi/ and to TM.Vi/ are the segments r 0i ; s

0
i respectively, and the

pullbacks of these two segments to TM.Ui/ are the same segment; in the special case
when Ui is an annulus item (1) is an immediate consequence, and when Ui�i Vi�i Wi

item (2) is an immediate consequence. The pullbacks of the junctures by � are then
subcubes respecting the product structures of the original cubes, and with nondegenerate
segments r 0i ; s

0
i only in the factors TM.Wi/, TM.Vi/ corresponding to the Xi .

3.4 Cubes and junctures in the asymptotic cone

From the definition of junctures we can obtain the following statement in the asymptotic
cone: Let F be a family with junctures in M, let .Xn/ and .Yn/ be sequences in F and
let X! and Y! be their rescaling ultralimits in the cone M! . We find that E.X;Y /!
and E.Y;X /! are either disjoint or identical, depending on rate of growth of the
Hausdorff distance. Property 2 in the definition of junctures also implies that

X! \Y! DE.X;Y /! \E.Y;X /! ;

and hence this intersection is either empty or equal to the limit of the junctures.

Now given a sequence of cubes C n D C.�n;W n; rn/, denoted xC D C.x�; SW ; xr/, we
can take the cone C!.x�; SW ; xr/, which is nonempty provided that the distance from the
cubes to the basepoint of M.S/ does not grow too fast. This object has dimension less
than or equal to the number of components of W n for !–a.e. n. In fact the limit cube
is naturally bilipschitz homeomorphic to r!

1
� � � � � r!

k
where each r!i is an embedded

path in the R–tree M!. SWi/ whose length is in Œ0;1�, having positive length if and
only if the length of the sequence .rn

i / grows linearly. We will continue calling these
objects cubes.

Lemma 3.7 on junctures for cubes implies, using the discussion in the beginning of
this section, that the intersection of two cubes in M.S/ is empty or is a cube, possibly
a trivial cube, meaning a single point. Moreover this cube is described by data closely
related to the original cubes. We will use this in Section 9 to understand the complex
of orthants in the asymptotic cone.

3.5 Coarse set theory of Dehn twist k–flats

We have already explained in Lemma 3.2 how junctures are examples of coarse intersec-
tion. In this section we make a further study of coarse inclusion and coarse equivalence
among Dehn twist k –flats in M.S/.
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A Dehn twist k –flat in M.S/, 0� k � �.S/, is a subset of the form Q.�/ where � is
a marking such that base.�/ is a pants decomposition with exactly k unmarked com-
ponents. As the terminology suggests, each Dehn twist k –flat is a quasi-isometrically
embedded copy of Rk in M.S/, by Proposition 3.1(1).

Throughout the paper, the phrase “Dehn twist flat”, when unadorned by a dimension,
will by default refer to the top dimensional case, namely a Dehn twist �.S/–flat.
Sometimes we emphasize this by referring to maximal Dehn twist flats.

In a metric space M, given two subsets A;B�M, we say that A is coarsely included
in B if there exists r 2 Œ0;1/ such that A � Nr .B/. We say that A is coarsely
equivalent to B if there exists r 2 Œ0;1/ such that A�Nr .B/ and B �Nr .A/; the
infimum of all such r 2 Œ0;1� is equal to the Hausdorff distance between A and B .

Given a k � 1 simplex � in C.S/ and a Dehn twist k –flat Q.�/, we say that � is
represented by Q.�/ if the system of unmarked curves of base.�/ is isotopic to � .
In particular, vertices are represented by Dehn twist 1–flats and edges by Dehn twist
2–flats. Note that each Dehn twist k –flat represents a unique k�1 simplex. Conversely,
each k � 1 simplex is represented by infinitely many Dehn twist k –flats, except in
the case k D � where each maximal dimension simplex is represented by a unique
maximal Dehn twist flat.

Lemma 3.10 Given simplices �i � C.S/, i D 0; 1, and representative Dehn twist
ki –flats Q.�i/ respectively, we have:

(1) Q.�0/ is coarsely contained in Q.�1/ if and only if �0 � �1 .

(2) Q.�0/ is coarsely equivalent to Q.�1/ if and only if �0 D �1 .

(3) Given a simplex � � C.S/ and a representative Dehn twist l –flat Q.�/, Q.�/
represents the coarse intersection of Q.�0/ and Q.�1/ if and only if �D�0\�1 .

Proof First note that �0 � �1 if and only if Q.�0/ is equal to E.Q.�0/;Q.�1//D

Q.�0 c �1/. The “if” direction of item (1) is then an immediate consequence of
Lemma 3.3(2). Conversely, if �0 6� �1 then by applying Proposition 3.1(1) it follows
that there exist points of Q.�0/ which are arbitrarily far from Q.�0 c�1/, and then
Lemma 3.3(3) proves that Q.�0/ is not contained in any finite radius neighborhood of
Q.�1/.

Item (2) follows by symmetric applications of item (1).

To prove item (3), first apply Lemma 3.3 to conclude that Q.�0 c�1/ and Q.�1 c�0/

are the junctures of Q.�0/ and Q.�1/, then apply Lemma 3.2 to conclude that these
two junctures both represent the coarse intersection of Q.�0/ and Q.�1/, and then
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note that both of these junctures represent the simplex �0\ �1 . Now apply item (2) to
Q.�/ and either of the two junctures.

The proof of Lemma 3.10(3) does not make full use of the uniform control on coarse
intersection that is provided by Lemma 3.2. The following lemma makes use of this
control, which will be needed in Section 10.3.

Lemma 3.11 For each Dehn twist k –flat Q.�/ there exist two maximal Dehn twist
flats Q.�0/, Q.�1/ whose junctures Q.�0 c �1/ and Q.�1 c �0/ are Dehn twist
k –flats at uniform Hausdorff distance from each other and from Q.�/, and which
uniformly represent the coarse intersection of Q.�0/ and Q.�1/. To be precise,

Q.�/[Q.�0 c�1/[Q.�1 c�0/

�NR.Q.�0//\NR.Q.�1//

�NC .Q.�//\NC .Q.�0 c�1//\NC .Q.�1 c�0//;

where the constants C;R� 0 depend only on the topology of S .

Proof of Lemma 3.11 It suffices to prove that the three sets Q.�/, Q.�0 c �1/,
Q.�1 c�0/ are all at uniformly finite Hausdorff dimension from each other, for once
this is done we may apply Lemma 3.3 to obtain that Q.�0 c�1/, Q.�1 c�0/ are the
junctures of Q.�0/, Q.�1/, and then we may apply Lemma 3.2 to obtain the desired
uniform control on coarse intersection.

We first prove the lemma in the special case that k D 0, so � is a marking and
Q.�/D f�g. Note that a pants decomposition � overlaps each component of base.�/
if and only if base.�/ overlaps each component of �, in which case both base.�/ c�
and �cbase.�/ are markings of S . We shall find such a � so that each of the markings
base.�/ c� and � c base.�/ is uniformly close to � in M.S/.

To find the appropriate �, letting base.�/ D fc1; : : : ; c�g, we shall build up � D
fd1; : : : ; d�g one component at a time. Proceeding by induction, choose the subset
fd1; : : : ; dkg so that

� fd1; : : : ; dk ; ckC1; : : : ; c�g is a pants decomposition.

� ck ; dk are connected by an edge in the curve complex of the complexity 1

component of S � .d1[ � � � [ dk�1[ ckC1[ � � � [ c�/ that contains them.

� �C.ck/.dk/ is a uniform distance from the �–transversal of ck .

The last item is possible because each orbit of the action on C.ck/ of the Dehn
twist group h�ck

i comes uniformly close to each point of C.ck/. Application of
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Proposition 3.1(1) provides a uniform bound to d.�; base.�/ c �/. Consider the
sequence of markings defined by

�0 D base.�/ c�

D ..c1; d1/; : : : ; .ck ; dk//;

�i D ..d1; c1/; : : : ; .di ; ci/; .ciC1; diC1/; : : : ; .ck ; dk//; i D 1; : : : ; k � 1;

�k D� c base.�/

D ..d1; c1/; : : : ; .dk ; ck//:

The markings �i ; �iC1 are connected by an edge in M.S/ and so

d.base.�/ c�;� c base.�//� k:

Now we reduce the general case of the lemma to the special case just proved. Consider
any Dehn twist k –flat Q.�/ with k � � �1. Write �D�0[�00 where �0 consists of
the k unmarked curves of base.�/ and �00 consists of the ��k marked curves together
with their transversals. The subsurface F D supp.�/ is the union of the components
of S � �0 that are not 3–holed spheres, and �00 is a marking of F . Applying the
special case we obtain a pants decomposition � of F such that base.�00/ c� and
�cbase.�00/ are markings of F each at uniformly bounded distance from �00 in M.F /.
Let �0 D base.�/D�0[base.�00/ and �1 D�

0[�. By construction the sets Q.�/,
Q.�0c�1/, Q.�1c�0/ are all their own junctures among each other, and Lemma 3.3(2)
provides a uniform bound to their Hausdorff distances.

4 Consistency theorem

In this section we will derive a coarse characterization of the image of the curve complex
projections map

…WM.S/!
Y

W �S

C.W /

defined by ….�/D .�W .�//W .

Consider the following Consistency Conditions on a tuple .xW / 2
Q

W C.W /, where
c1 and c2 are a pair of positive numbers:

(C1) Whenever W t V ,

min .dW .xW ; @V /; dV .xV ; @W // < c1:

(C2) Whenever V �ı W and dW .xW ; @V / > c2 ,

dV .xV ;xW / < c1:
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In (C2) recall that dV .xV ;xW / is shorthand for dV .xV ; �V .xW // and so is only
defined if xW is in the domain of �V , which it may not be if dW .xW ; @V / is too
small. Notice that if (C1) and (C2) are satisfied with respect to positive constants c1; c2 ,
then they are satisfied with respect to any larger constants.

The conditions (C1)–(C2), with suitable constants, are satisfied by the image of …,
and moreover:

Lemma 4.1 Given K there exist c1; c2 � 1 such that, if � 2M.S/ and .xW / 2Q
C.W / such that dW .xW ; �/�K for all W � S , then .xW / satisfies (C1) and (C2)

with constants c1; c2 .

Proof The case K D 0, ie .xW /D….�/, follows from Behrstock’s inequality [3],
namely:

Lemma 4.2 There exists m0 such that for any marking � 2M.S/ and subsurfaces
V t W ,

min .dW .�; @V /; dV .�; @W // <m0:

This gives condition (C1). Condition (C2), with c2D 1 and suitable c1 , follows simply
because �V is determined by intersections, so whenever V �ı W , �V ı �W is a
bounded distance from �V when both are defined (Lemma 2.12).

For K > 0 we simply observe that (C1)–(C2) are preserved, with suitable change in
constants, when all the coordinates of .xW / are changed a bounded amount.

Our main point here is to show that conditions (C1)–(C2) are also sufficient for a point
to be close to the image of …, namely:

Theorem 4.3 Given c1 and c2 there exists c3 such that, if (C1)–(C2) hold with c1

and c2 for a point .xW /, then there exists � 2M.S/ such that

dW .xW ; �/ < c3

for all W � S .

The proof of this theorem will take up the rest of Section 4.
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4.1 Subsurface ordering induced by projections

In order to approach the proof of Theorem 4.3 we will first study more carefully the
structure imposed by (C1) and (C2). Recall from [40] that for any two markings of S ,
there is a natural partial order on the set of component domains of subsurfaces that
occur in a hierarchy between those two markings which reflects the order in which a
hierarchy traverses those domains. Motivated by the partial order in a hierarchy, we
generalize that notion by providing partial orders on the collection of proper, connected,
essential subsurfaces (up to isotopy). The partial orders we construct reflect the order
in which markings, curves, or subsurfaces appear as one moves in the marking complex
away from a fixed marking.

Let us fix a tuple .xW / satisfying (C1)–(C2). Without loss of generality, we will
assume c1 >maxfc2;m0;Bg, where m0 is the constant given by Lemma 4.2 and B

is the constant given by Theorem 2.6.

If W;V are proper, connected, essential subsurfaces of S and k 2N , define a relation

W �k V

to mean that
W t V and dW .xW ; @V /� k.c1C 4/:

The role of 4 here is that it is twice the maximal diameter of �C.Y /. / for a curve
system  – see Lemmas 2.10 and 2.11 and the comments thereafter.

We also allow the right hand side of �k to be a marking � : define W �k � to mean
that dW .xW ; �/� k.c1C 4/.

Although �k is not quite an order relation on the set of proper, connected, essential
subsurfaces, the family of all �k behaves roughly like a partial order in a way we shall
now explore. Let us also define a relation

W �k �;

where � is any partial marking, to mean that

W t � and dW .xW ; �/� k.c1C 4/:

Notice that if � is a marking then W �k � and W �k � are equivalent, since W

and � always overlap.

We then define W �k V to mean W �k @V . This is a weaker relation than W �k V

because W t @V allows the possibility that V �ı W , which cannot happen if W t V .

Note that if k � p then U �k V H) U �p V and U �k V H) U �p V . Next
we point out that property (C1) implies the following:
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� �k is antisymmetric in the following sense: if U �k V holds, then V 6�1 U ,
and hence V 6�k U .

Of course �k is antisymmetric as well, since containment is already antisymmetric.
Now we will prove the following lemma, which states that the system of relations is
transitive in a certain sense.

Lemma 4.4 Given an integer k > 1 we have:

(1) If U �k V and V �2 W then U �k�1 W .
Also, if � is a marking, and if U �k V and V �2 � , then U �k�1 � .

(2) If U �k V and V �2 W then U �k�1 W .
Also, if � is a marking, and if U �k V and V �2 � then U �k�1 � .

(3) If U t V and both U �k � and V �k � for some partial marking � , then U

and V are �k�1 –ordered – that is, either U �k�1 V or V �k�1 U .

Note that the weak transitivity of parts (1) and (2) tends to “decay” (k decreases) each
time it is applied, and hence does not give a partial order. However part (3) can be used
to restrengthen the inequalities under appropriate circumstances.

Proof Beginning with (1), suppose U �k V and V �2 W . From V �2 W we have

dV .xV ; @W /� 2.c1C 4/

and from U �k V and property (C1) we have

dV .xV ; @U / < c1:

By the triangle inequality, together with the fact that diam�C.V /. /� 2 for any disjoint
curve system  (see comments after Lemma 2.11),

dV .@U; @W /� dV .xV ; @W /� dV .xV ; @U /� diamV .@U /� diamV .@W /

> 2.c1C 4/� c1� 4D c1C 4:

In particular dV .@U; @W />2, so @U t@W , and so U tW . Now applying Lemma 4.2
we also get

dU .@V; @W / <m0 � c1;

and hence, using U �k V and the triangle inequality as above,

dU .xU ; @W / > .k � 1/.c1C 4/:

Hence, U �k�1 W , as desired.
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Replacing W (and @W ) by a marking � , the second clause of (1) is proved similarly,
noting that the question of whether U t � is not an issue.

The proof of part (2) is similar. The case not covered by part (1) is when V �ı U , and
we consider two cases, depending on whether W �ı V or W t V .

In the first case suppose that W �ı V . Since V 6�i U , it follows that @V and @W
together form a curve system in U , and hence diamU .@V [ @W / � 1. So by the
triangle inequality we have

dU .xU ; @W /� dU .xU ; @V /� 1� .k � 1/.c1C 4/

and we conclude U �k�1 W .

In the second case suppose that W t V . Since V �2 W we have

dV .xV ; @W /� 2.c1C 4/:

Since V �ı U we know that @W t U . Since dU .xU ; @V / � k.c1 C 4/ > c2 , by
property (C2) we have that

dV .xV ;xU / < c1

and hence

dV .xU ; @W /� dV .xV ; @W /� dV .xV ;xU /� diamV .@W / > c1C 4:

But now by Theorem 2.6, this implies that any C.U /–geodesic ŒxU ; �U .@W /� must
pass within distance 1 of @V , and we conclude

dU .xU ; @W /� dU .xU ; @V /� 1� diamU .@V /� .k � 1/.c1C 4/

and again we have U �k�1 W .

Again replacing W (and @W ) by a marking � , the second clause of (2) is proved
similarly, only the second case of the proof being relevant.

Now we prove (3): starting with U t V and

dU .xU ; �/� k.c1C 4/;

dV .xV ; �/� k.c1C 4/;

suppose U 6�k�1 V , so that

dU .xU ; @V / < .k � 1/.c1C 4/:

Then by the triangle inequality

dU .�; @V / > c1
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and by Lemma 4.2
dV .@U; �/ <m0:

Now by the triangle inequality

dV .xV ; @U / > .k � 1/.c1C 4/

so V �k�1 U , and we are done.

Let us now define

Fk..xW /; �/D fW ¨ S WW t � and dW .xW ; �/� k.c1C 4/g:

which is the collection of subsurfaces in whose curve complexes xW and � have large
distance. If xW D �W .x/ for x 2M.S/, then we use the notation Fk.x; �/.

Note that Fk..xW /; �/ D fW ¨ S W W �k �g, and so we sometimes simplify the
notation by simply writing Fk.�/. In this vein, when Z is a subsurface, we let Fk.Z/

denote Fk.@Z/.

As a corollary of the previous lemma we obtain:

Lemma 4.5 If k > 2 then the relation �k�1 is a partial order on Fk..xW /; �/.

Proof All that is needed is to prove that �k�1 is transitive on Fk.�/ – antisymmetry
is already established.

Suppose U;V;W 2 Fk.�/, and U �k�1 V and V �k�1 W . By Lemma 4.4 part (1),
this implies U �k�2 W . In particular U t W , so by Lemma 4.4 part (3) U and W

are �k�1 –ordered. Antisymmetry together with U �k�2 W implies that U �k�1 W ,
as desired.

We can also obtain a finiteness statement:

Lemma 4.6 If k > 2 then Fk..xW /; �/ is finite.

Proof Suppose that Fk.�/ is infinite and let fYig be an infinite, injective sequence
within it. After extracting a subsequence we may assume that @Yi ! � in PML.S/,
the projective measured lamination space of S . Let U be a subsurface filled by a
component of �; possibly U D S . Then @Yi meets U for all sufficiently large i ,
and �U .@Yi/!1 in C.U / – that is, dU .@Yi ; q/!1 for any fixed q . This is a
consequence of the Kobayashi/Luo argument that C.U / has infinite diameter; see [39,
Proposition 3.6]. Note in the special case that U is an annulus we are obtaining that
the twisting of @Yi around U is going to 1.
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Now, dU .xU ; @Yi/!1 means for any given p that eventually U �p Yi . However
we have Yi �k � by assumption, so

U �p�1 �

by Lemma 4.4, part (2). However U and � are fixed and p is arbitrary, so this is
impossible. We conclude that Fk.�/ is finite.

4.2 Proof of the consistency theorem

As stated at the outset of Section 4.1 we have .xW / satisfying (C1)–(C2) with the
same assumptions on c1 and c2 . We will construct � by induction.

Consider F3.xS /, which we recall is shorthand for F3..xW /;xS /. If F3.xS /D∅,
let �0 D xS . Otherwise, by Lemma 4.6 and Lemma 4.5, the set F3.xS / is finite
and partially ordered by �2 , and so this partial order contains minimal elements.
Among these minimal elements, choose one, Y , of maximal complexity �.Y /, and let
�0 D @Y .

Now consider any Z �ı S which overlaps �0 . We claim that

(4-1) dZ .xZ ; �0/ < 4.c1C 4/:

Suppose otherwise, so Z �4 �0 . If F3.xS / D ∅ then Z �4 xS which implies
Z 2 F4.xS /� F3.xS /, a contradiction. When F3.xS /¤∅, we would have Z�4

Y �3 xS , and by Lemma 4.4 part (2), Z�3 xS . Hence Z 2 F3.xS /.

Now since Y was �2 –minimal, we can’t have Z �2 Y and we conclude Y �ı Z . Now
Z cannot be �2 –minimal because its complexity is larger than that of Y , so there
must be V 2F3.xS / with V �2 Z . But then Lemma 4.4 part (1) implies V �1 Y . In
particular V t Y and so, arguing as in the proof of Lemma 4.5, we apply Lemma 4.4
part (3) with �D xS to conclude that V and Y are �2 ordered, and since V �1 Y it
follows by asymmetry that V �2 Y . Again this is a contradiction. We conclude that
(4-1) holds.

Now consider the restriction of .xW / to subsurfaces in S n�0 . In each component V

of S n�0 , the assumptions on .xW / still hold, so inductively there is a marking �V

in M.V / satisfying

(4-2) dZ .�V ;xZ / < c3.V /

for all Z � V . We append the �V to �0 to obtain a marking �0 which almost fills the
surface except that it has no transversal data on the curves of �0 . By (4-1) and (4-2),
it satisfies a bound on dZ .xZ ; �

0/ for every Z � S except the annuli whose cores are
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components of �0 . Let � be the enlargement of �0 obtained by setting the transversal
on each  2 �0 to be x . Now we obtain a bound on dZ .xZ ; �/ for all Z , so � is
the desired marking and the proof is complete.

5 †–Hulls

A †–hull of a finite set in M.S/ (and then, taking limits, of a finite set in M!.S/)
is a substitute for convex hull which is well adapted to the presence in M.S/ of both
hyperbolicity and product structure. In “hyperbolic directions” it looks like a hyperbolic
convex hull, and in product regions the hull of two points can be a rectangle. In general
it is a hybrid of these.

In this section we focus on the “coarse †–hull” of a finite set A�M.S/, a parame-
terized family of sets †�.A/ which are coarsely well-defined for sufficiently large �
(see Lemma 5.4(3)). Our main goal is Proposition 5.2, in which we show that †–hulls
admit coarse retractions.

In Section 6 we will apply this to †–hulls in the asymptotic cone, showing that they
are contractible and vary continuously with their extreme points.

5.1 Hulls in hyperbolic spaces

If A�X is a finite subset of a ı–hyperbolic geodesic space X , let hullX .A/ denote
the union of geodesics Œa; a0� with a; a0 2A, the hyperbolic hull of A in X . We will
need the following properties of this construction, which are easy exercises.

Lemma 5.1 The sets hullX .A/ satisfy the following properties, with implicit constants
depending only on the hyperbolicity constant of X and the cardinality of A:

(1) hullX .A/ is quasi-convex.

(2) If x 2X and y 2 hullX .A/ is the point nearest to x , and if y0 2 hullX .A/, then
d.y;y0/� d.x;y0/� d.x;y/.

(3) The map A 7! hullX .A/ is coarsely Lipschitz in the Hausdorff metric.

Also, for points x 2X and closed, quasiconvex subsets B �X :

(4) The nearest point retraction, which takes the pair .x;B/ to a point of B closest
to x , is coarsely Lipschitz in both x and B (in terms of Hausdorff distance
for B ), with implicit constants depending only on the hyperbolicity constant
of X and the quasiconvexity constants of B .
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We will apply these properties to curve complexes of surfaces and their subsurfaces, as
follows: if A is a finite subset of M.S/ then we let hullS .A/ denote hullC.S/.A0/,
where A0 is the set of curves in the bases of the markings in A. Similarly, if W � S

we let hullW .A/ denote hullC.W /.�W .A// where �W WM.S/! C.W / is the usual
subsurface projection.

5.2 †–Hulls and their projections

If A is a finite subset of M.S/, and � > 0, we define

†�.A/D f� 2M.S/ W dW .�; hullW .A//� �; 8W � Sg:

Here W varies over all essential subsurfaces of S (including S ) and hullW .A/ is the
hyperbolic hull as defined in Section 5.1. These sets, one for each � � 0, are called the
coarse †–hulls or just the †–hulls of A in M.S/. Usually we will assume � is large
enough so that the conclusions of Propositions 5.2 and 5.4 apply.

It is clear that A�†�.A/ and that †�.A/�†�0.A/ if � � �0 , but a priori not much
else. (For the reader familiar with the constructions in Masur–Minsky [40], we note
one of our motivations for this definition: there exists �0 such that, if � > �0 then
†�.A/ contains every hierarchy path between points a; a0 2A.)

In order to understand †–hulls better we will need a family of coarse retractions.

Proposition 5.2 There exists �0� 0 depending only on �.S/ such that for each �� �0

the following hold. Given a finite set A�M.S/ there exists a map

pAWM!†�.A/

which is a coarse retraction. That is,

(1) pAj†�.A/ is uniformly close to the identity.

(2) pA.x/ is coarse-Lipschitz not just in x , but jointly in x and in A (using the
Hausdorff metric on A).

(3) for each W � S , let yW be a nearest point on hullW .A/ to �W .x/. Then

dW .pA.x/;yW /

is uniformly bounded.

The implicit constants depend only on � , �.S/, and the cardinality of A.

Proof The proof will be an application of the Consistency Theorem 4.3. Given
x 2M.S/, for each W � S let yW D yW .x;A/ be a nearest point to �W .x/ on
hullW .A/.
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Lemma 5.3 For any x 2 M.S/ and finite A � M.S/, the tuple .yW .x;A//W
satisfies the consistency conditions (C1)–(C2) of Section 4, with constants c1; c2

depending only on the cardinality of A.

Proof To prove (C1), let U t V . First, by Lemma 4.2 we have

min .dU .x; @V /; dV .x; @U // <m0:

Consider the case dU .x; @V / < m0 ; the other case is similar. Now if dU .x;yU / <

2m0 C 2, we are done, because dU .yU ; @V / < 3m0 C 4. We have used here that
diamU .x/ is bounded above by 2 – see comments after Lemma 2.11 – and we shall
use the same bound several times below.

If dU .x;yU /� 2m0C 2 then dU .x; hullU .A//� 2m0C 2 since yU was the nearest
point to �U .x/, and we conclude by the triangle inequality that

(5-1) dU .@V; hullU .A//�m0:

Now since yV 2 hullV .A/, there must exist a; b 2A and a0 2�V .a/, b0 2�V .b/ such
that yV 2 Œa

0; b0�. Now dU .@V; a/ and dU .@V; b/ are �m0 by (5-1), and it follows by
Lemma 4.2 that dV .@U; a/ <m0 and dV .@U; b/ <m0 , and so dV .a

0; b0/ < 2m0C 6.
Since yV 2 Œa

0; b0� we conclude that one of dV .yV ; a
0/, dV .yV ; b

0/ is < m0 C 3,
implying that dV .yV ; @U / < 2m0C 5, and again we are done.

That is, we have shown that (C1) holds with c1 D 3m0C 5.

It remains to prove (C2). Let V �ı W , and suppose that dW .yW ; @V / > 4. We will
bound dV .yV ;yW /.

Suppose first that dV .yW ;x/ � m0 . Then by Theorem 2.6, the C.W /–geodesic
ŒyW ; �W .x/� must pass through a point t within 1 of @V . By the assumption that
dW .yW ; @V />4, it follows that dW .t;yW />3 and hence dW .t;x/<dW .x;yW /�3.
Now let  be a C.W /–geodesic Œ�W .a/; �W .b/� for a; b 2 A. If  were to pass
within 1 of @V then it would pass within 2 of t , so there would be a point of 
which is within dW .x;yW /� 1 of �W .x/. This contradicts the choice of yW as a
closest point to �W .x/. We conclude, by Theorem 2.6 that diamV . / < m0 , and
hence diamV .A/ <m0 .

Moreover, since yW itself is on such a geodesic, dV .yW ;A/ < m0 . Since yV 2

hullV .A/ we also have dV .yV ;A/ <m0 and we conclude dV .yV ;yW / < 3m0 .

Now suppose that dV .yW ;x/ <m0 . Let a; b 2A be such that yW 2 Œ�W .a/; �W .b/�.
Now, by our assumption that dW .yW ; @V / > 4, we have that �W .@V / may be within
distance 1 of either subsegment Œ�W .a/;yW � or ŒyW ; �W .b/�, but not both. Sup-
pose the former. Then by Theorem 2.6 we have dV .yW ; b/ < m0 . This yields that
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dV .x;A/ < 2m0 , and hence that the closest point yV to �V .x/ is within 3m0 of
�V .yW /.

Hence we have proved (C1) and (C2) both hold with constants c1 D 3m0 C 5 and
c2 D 4.

We turn now to the proof of Proposition 5.2. Using Lemma 5.3, the definition and
properties of pA follow directly from Theorem 4.3: given x 2M.S/ and .yW / as in
part (3), Lemma 5.3 tells us that .yW / satisfies conditions (C1)–(C2) with uniform
constants, and hence by Theorem 4.3 there exists � 2M.S/ with dW .�;yW / < c3

for uniform c3 and all W � S . We take �0 D c3 , for any � � �0 we define pA.x/�

� 2†�.A/, and clearly (3) holds.

Finally, let us show that the rest of the proposition follows from (3). To see (1), let
x 2 †�.A/, ie, for all W we have dW .x; hullW .A// � � , and so dW .x;yW / � � .
Now if �DpA.x/ we have from (3) that dW .�;yW / is uniformly bounded, and hence
we have a uniform bound on dW .x; �/. Corollary 2.9 of the quasidistance formula
now gives us a bound on dM.x;pA.x//.

To prove (2), suppose that we have dM.x;x
0/ < b and dH .A;A

0/ < b , where dH is
Hausdorff distance in M. The coarse-Lipschitz property of �W (Lemma 2.11) implies
that for any W we have bounds of the form dW .x;x

0/ < b0 , and dH ;C.W /.A;A
0/ < b0:

The latter implies a Hausdorff distance bound

dH ;C.W /.hullW .A/; hullW .A0//� b00

by Lemma 5.1(3). If y0
W

is a nearest point to �W .x
0/ in hullW .A0/ then we obtain a

uniform bound on dW .yW ;y
0
W
/ by Lemma 5.1(4).

But (3) now implies that dW .pA.x/;pA0.x
0// is uniformly bounded for all W . Again

the quasidistance formula gives us a uniform bound on dM.pA.x/;pA0.x
0//.

As a consequence of Proposition 5.2 we obtain the following facts:

Lemma 5.4 There exists �0�0 depending only on �.S/ such that for all �; �0��0 and
all I there exist K , C , and �00 such that if A;A0 �M.S/ each have cardinality � I

then:

(1) diam.†�.A//�K diam.A/CC .

(2) If A0 �†�.A/ then †�.A0/�†�00.A/.

(3) dH .†�.A
0/; †�.A//�KdH .A

0;A/CC .

(4) dH .†�.A/; †�0.A//� C .
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Proof Parts (1) and (2) follow from the definition of †�.A/ and the quasidistance
formula.

To prove (3), note by Proposition 5.2(2) the maps pA and pA0 differ by at most
K dH .A

0;A/CC 00 , for some K;C 00 (with the appropriate dependence). Since pA0

is uniformly close to the identity on †�.A0/, the restriction of pA to †�.A0/ must
be within K dH .A

0;A/CC 0 of the identity, for some C 0 . It follows that †�.A0/ is
within K dH .A

0;A/CC of †�.A/, for some C . The opposite inclusion is obtained
in the same way.

To prove (4), we may assume that � � �0 from which it immediately follows that
†�.A/ � †�0.A/. Consider the two projection maps pA;�WM.S/ ! †�.A/ and
pA;�0 WM.S/!†�0.A/. Given �2†�0.A/, by applying Proposition 5.2(3) we obtain
a uniform bound on dW .yW ;pA;�0.�// and on dW .yW ;pA;�.�// and so also on
dW .pA;�0.�/;pA;�.�//, over all essential subsurfaces W � S . Corollary 2.9 then
gives a bound on d.pA;�0.�/;pA;�.�//. Also, Proposition 5.2(1) gives a bound on
d.�;pA;�0.�//, and since pA;�.�/ 2†�.A/ we are done.

We shall also have use for the following lemma, where m0 is the constant in Lemma 4.2.

Lemma 5.5 There exists m1 � 0 depending only on �.S/ such that if A�M.S/ is
any subset and W � S is any essential subsurface satisfying

diamC.W /.A/ >m1;

then for all essential subsurfaces U � S with U t @W we have

dC.U /.@W; hullU .A//�m0:

Proof Since U t @W we either have W �ı U and W 6�i U , or W t U . We treat
these two cases separately.

First, if W � U and W 6�i U then Theorem 2.6 immediately implies that

dC.U /.@W; hullU .A//� 1

as long as diamC.W /.A/ > B .

Now, consider the case that W t U . As long as diamC.W /.A/ > 2m0C 2, it follows
that there exists a 2A for which dC.W /.a; @U /�m0 . Then by Lemma 4.2 it follows
that dC.U /.a; @W / <m0 .
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6 Contractibility and homology

In this section we prove contractibility of †–hulls in M!.S/ (Lemma 6.2), and use
this to develop †–compatible chains in the cone. This has applications in Section 7
and Section 8, as well as providing another proof of Hamenstädt’s theorem on the
homological dimension of M!.S/.

If A is a finite set in M! represented by a sequence .An/, the †–hull of A , denoted
†.A/, is the ultralimit of the coarse †–hulls †�.An/, where � is a fixed constant
chosen sufficiently large so that the lemmas in Section 5 apply. Note that changing �
does not change †.A/, by Lemma 5.4(4), nor does changing the representatives, by
Lemma 5.4(3). In fact Lemma 5.4 applied in the limit gives:

Lemma 6.1 For all I � 0 there exists a constant K , depending also on �.S/, such
that if A�M! is a set of cardinality � I then:

(1) diam.†.A//�K diam.A/.

(2) If A0 �†.A/ then †.A0/�†.A/.

The retractions pAn
of Proposition 5.2 ultraconverge to a Lipschitz retraction

pA WM!!†.A/

whose Lipschitz constant depends only on �.S/ and the cardinality of A. Moreover,
Proposition 5.2 implies that pA is jointly continuous in its arguments and in the points
of A. With this we can establish:

Lemma 6.2 †.A/ is contractible.

Proof First we note that †.A/ is path-connected: M!.S/ is path-connected since it
is the asymptotic cone of a path-metric space. Hence given a; b 2†.A/, let  .t/ be a
path connecting them and note that pA ı  is a path in †.A/ connecting them.

Now write AD fa0; a1; : : : ; akg, and for j D 1; : : : ; k let aj .t/ be a path in †.A/
from a0 to aj , where aj .0/D a0 and aj .1/D aj .

Let At D fa0; a1.t/; : : : ; ak.t/g for t 2 Œ0; 1�, and let pt be the retraction from M!

to †.At /. pt varies continuously in t , takes values within †.A/, and we note that p1

restricted to †.A/ is the identity while p0 is a constant. Hence †.A/ is contractible.
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6.1 †–Compatible chains and homological dimension

In this subsection we use †–hulls as a device to control singular chains in M!.S/, in
terms of what we call †–compatible chains. With these we compute the homological
dimension from the result of [8] that the topological (covering) dimension of compact
subsets of M!.S/ is bounded by �.S/. We also recall a local homology theorem of
Kleiner and Leeb [36](Theorem 6.8 below) and its Corollary 6.9, which we will use in
Section 7 and Section 8 to control the support of embedded top-dimensional manifolds
in M!.S/ in terms of †–compatible chains.

A polyhedron is a finite simplicial complex, and a polyhedral pair .P;Q/ consists
of a polyhedron P and a subcomplex Q. A polyhedral n–chain in a space X is
a continuous map from an n–dimensional polyhedron to X , where the domain is
equipped with a specified orientation and coefficient on each n–simplex. A polyhedral
n–cycle is a polyhedral n–chain such that, in the simplicial chain complex of the
domain, the linear combination of the n–simplices has zero boundary. Polyhedral
chains and cycles in X represent singular chains and cycles in the traditional sense,
by restricting the map to individual simplices and taking the indicated formal linear
combination. Every homology class in X can be represented by a polyhedral cycle.

A continuous map f W P !M! from a polyhedron to M! is †–compatible if for
each face � � P ,

f .�/�†.f .� .0///;

where � .0/ denotes the 0–skeleton of � . By applying Lemma 5.4(1) it follows that if
f W P !M! is †–compatible then for every face � � P ,

(6-1) diam.f .�//� diam.†.f .� .0////� C diam.f .� .0///;

where the constant C D C.dim �/ depends explicitly on dim � D #vertices.�/� 1,
and also depends implicitly on:

Lemma 6.3 Suppose .P;Q/ is a finite dimensional polyhedral pair, where the zero
skeleton of Q coincides with the zero skeleton of P . Then any †–compatible map
f0W Q!M! can be extended to a †–compatible map f W P !M! .

Proof The map f may be constructed by induction on the relative k –skeleton using
the contractibility of hulls.

Lemma 6.4 If � > 0 and f0W P !M! is a map from a finite polyhedron to M! ,
then there is a map f1W P !M! such that

(1) f1 factors through a polyhedron of dimension � �.S/.

(2) d.f0; f1/ < � .
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(Here d.f;g/D supx2P d.f .x/;g.x//).

Proof Pick � > 0.

Let Y WD f0.P / �M! . Since the topological dimension of Y is � �.S/ by [8],
there is an open cover UD fUigi2I of Y such that P 0 WD Nerve.U/ has dimension at
most �.S/, and diam.Ui/ < � for all i 2 I . Let f�i W Y ! Œ0; 1�gi2I be a partition of
unity subordinate to U , and �W Y !P 0 be the map with barycentric coordinates given
by the �i ’s.

Next, for each i 2 I , pick xi 2 Ui , and using Lemma 6.3 construct a †–compatible
map ˛W P 0 !M! with the property that ˛.Ui/ D xi (recall that the vertex set of
Nerve.U/ consists of elements of U ).

Set f1 WD ˛ ı� ıf0!M! .

We now estimate d.f0; f1/.

Pick x 2 P . If � ıf0.x/ lies in an open face � � P 0 whose vertices are Ui1
; : : : ;Uik

,
then f0.x/ 2 Ui1

\ : : :\Uik
, and

f1.x/ 2†.fxi1
; : : : ;xik

g/:

Therefore for a constant C depending only on �.S/ we have

(6-2)

d.f0.x/; f1.x//� d.f0.x/;xi1
/C d.xi1

; f1.x//

� �CC diam.fxi1
; : : : ;xik

g/

� �C 2 C�:

So when � < �=.1C 2C / we will have d.f0; f1/ < � .

Lemma 6.5 Let P be a finite polyhedron. Given a pair of maps f0; f1W P !M! ,
there is a homotopy fftgt2Œ0;1� from f0 to f1 whose tracks have diameter <C d.f0;f1/,
where C D C.dim P /.

Proof Pick � > 0. By subdividing P we may assume without loss of generality that
for i 2 f0; 1g and every face � of P ,

diam.fi.�// < �:

Let P D P1;P2; : : : ;Pk ; : : : be a sequence of successive barycentric subdivisions
of P , so the mesh size tends to zero. For i 2 f0; 1g, k 2ZC , let fi;k W Pk!M! be a
†–compatible map agreeing with fi on the 0–skeleton of Pk . Since fi is uniformly
continuous, the diameter estimate (6-1) implies that fi;k converges uniformly to fi as
k!1.
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We will construct the homotopy from f0 to f1 as an infinite concatenation of homo-
topies

f0 � � �
H0;3
� f0;3

H0;2
� f0;2

H0;1
� f0;1

H
� f1;1

H1;1
� f1;2

H1;2
� f1;3 � � � f1:

The homotopy fi;k

Hi;k
� fi;kC1 is constructed as follows. Triangulate P � Œ0; 1� such

that the 0–skeleton lies in P �f0; 1g, and the induced triangulation of P �fj g agrees
with PkCj , for j 2 f0; 1g. Now apply Lemma 6.3 to get a homotopy from fi;k to
fi;kC1 . The homotopy H is constructed similarly.

Now consider the track of the point x 2 P during the homotopy Hi;k . The point
x 2 P lies in some open simplex �k of Pk . Let Sd �k be the barycentric subdivision
of �k , a subcomplex of PkC1 . By the uniform continuity of fi and the fact that
fi;k ! fi uniformly, it follows that the diameter of fi;k.�k/[ fi;kC1.Sd �k/ tends to
zero as k !1. Now for every t 2 Œ0; 1�, the point .x; t/ 2 P � Œ0; 1� lies in a face
of the subdivision of P � Œ0; 1� used to construct Hi;k , and this face has vertices in
.�k � f0g/[ .Sd � � f1g/. By Lemma 6.3, we get d.Hi;k.x; t/; fi.x// < ık , where
ık < � and ık ! 0 as k!1. It follows that the concatenation of

Hi;j ;Hi;jC1; : : :

has tracks of diameter tending to zero as j !1 , yielding a homotopy fi;1� fi whose
tracks have diameter < C1� .

Similar estimates imply that the tracks of H have diameter < C2.d.f0; f1/C �/. So
if � is sufficiently small, we obtain the desired homotopy.

We now give some corollaries of Lemmas 6.4 and 6.5.

Our first corollary produces acyclic sets in M!.S/. A set X �M!.S/ is †–convex
if, for any finite set A�X the hull †.A/ is in X as well.

Corollary 6.6 If X �M!.S/ is open and †–convex then X is acyclic.

Notice that, as a consequence, M!.S/ is itself acyclic. But contractibility of M!.S/

was already known, as a consequence of the fact that MCG.S/ is automatic [44], by
using a folk theorem which says that the combing lines of an automatic structure induce
a contraction in the asymptotic cone.

Proof of Corollary 6.6 We claim that any polyhedral cycle f W P ! X can be
refined and then approximated by a †–compatible cycle, and openness allows us to
do this within X . To see how, refine P until the mesh size is sufficiently small, apply
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Lemma 6.3 to the pair .Q;Q0/ where Q is the refined polyhedron and Q0 is its
0–skeleton, and then use Lemma 6.1 to show that the new map f 0W Q!M!.S/ is
sufficiently close to the old to still be in X . Moreover Lemma 6.5 tells us the new and
old maps are homotopic with similar control, so that the homotopy may be made to lie
in X . The old and new cycles therefore represent the same homology class.

Now let C.Q/ be the cone of Q, the join of Q with a single point p . Extend f 0

to Q[ p by taking f 0.p/ to be in f 0.Q0/. Applying Lemma 6.3 extend f 0 to a
†–compatible map on C.Q/. By †–convexity this polyhedral chain lies in X , so our
original cycle bounds in X , and therefore X is acyclic.

Our next corollary computes the homological dimension of M!.S/. Note that in
Hamenstädt’s approach [27] the homological statement comes directly.

Corollary 6.7 If .U;V / is an open pair in M! , then Hk.U;V / D f0g for all
k > �.S/.

Proof Pick Œc� 2 Hk.U;V /. Then there is a finite polyhedral pair .P;Q/ and a
continuous map of pairs f0W .P;Q/! .U;V / such that

Œc� 2 Im
�
Hk.P;Q/

f0�
! Hk.U;V /

�
:

Pick � > 0. Applying Lemma 6.4, we obtain a continuous map f1W P !M! with
d.f0; f1/<� , such that f1 factors through a polyhedron P 0 of dimension at most �.S/.
By Lemma 6.5 there is a homotopy fftgt2Œ0;1� whose tracks have diameter < C� ,
where C D C.dim P /.

If � is sufficiently small, then f1 will induce a map of pairs .P;Q/! .U;V /, and
the homotopy fftg will be a homotopy of maps of pairs, so that f0 and f1 induce the
same map Hk.P;Q/!Hk.U;V /. But since f1 factors through a polyhedron P 0 of
dimension � �.S/, by subdividing P 0 if necessary we can arrange that f1 factors as
.P;Q/! .P 0;Q0/! .U;V /, where .P 0;Q0/ is a polyhedral pair of dimension ��.S/.
This implies that f1� D 0. Hence Œc�D 0.

We are now in a position to apply the following local homology results of Kleiner and
Leeb [36, Lemma 6.1.2], which we will be using in the proof of Theorem 7.10 and
Theorem 8.7.

Theorem 6.8 Let X be a contractible metric space and suppose Hk.U;V /D 0 for
any open pair V � U �X and k > n. If M �X is an embedded n–manifold then

Hn.M;M �p/!Hn.X;X �p/

is injective for any p 2M .
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Corollary 6.9 Let X be a contractible metric space and suppose Hk.U;V /D 0 for
any open pair .U;V / and k > n. Let M �X be an oriented compact n–manifold with
boundary, and let C be a singular chain in X , such that @C D @M . Then M � C .

By Corollary 6.7, we will be able to apply Corollary 6.9 in the setting of �.S/–
dimensional manifolds in M!.S/.

7 Separation properties

In this section we develop the notion of jets, which are local structures in the cone
corresponding to sequences of geodesics in subsurface complexes. Projections to a jet
serve to control separation properties in the cone. The two main results of the section
are Theorem 7.2 and Theorem 7.7, which are concerned with separation properties of
microscopic and macroscopic jets, respectively. Much of the technical work is done
in Lemma 7.4. Section 7.4 provides a brief digression, where we deduce information
about the tree-graded structure of M!.S/ as an application of microscopic jets.

7.1 Jets

Recall the following definition from [40]. Consider a finite type surface Y . If �.Y /� 2,
a tight geodesic in C.Y / is a sequence of simplices � D .w0; : : : ; wn/ such that any
selection of vertices vi 2 wi yields a geodesic in the 1–skeleton of C.Y /, and such
that for each 1 � i � n� 1, the curve system wi is the boundary of the subsurface
filled by wi�1 and wiC1 . If �.Y /D 1, every geodesic in C.Y / is considered to be
tight. If Y � S is an essential annulus, then every geodesic in C.Y / is considered
to be tight as long as it satisfies a technical finiteness condition on the endpoints of
arcs representing the vertices. It is shown in [40] that any two vertices in C.Y / can
be joined by a tight geodesic, and there are only finitely many possibilities. When the
sequence .w0; : : : ; wn/ is understood, we use the shorthand notation Œw0; wn�, and we
also refer to Œwi ; wj �D .wi ; : : : ; wj / as a subsegment of Œw0; wn�.

Let a; b 2M.S/, let W � S be a connected essential subsurface, and let g be a
tight geodesic in C.W / from an element of �C.W /.a/ to an element of �C.W /.b/. If
� D Œ˛; ˇ� is a subsegment of g , we call .�; a; b/ a tight triple supported in W . Let
j� j denote the length of � in C.W /. Although we have suppressed the geodesic g

from the notation for a tight triple, when we need to refer to it we shall call it the
ambient geodesic.

We also associate to the triple .�; a; b/ a pair of points in M.W /: the initial marking of
the triple, �.�;a;b/D˛c�M.W /.a/ and the terminal marking �.�;a;b/Dˇc�M.W /.b/.
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Up to the usual bounded ambiguity one can think of � as ˛[�M.W˛/.a/, where W˛

denotes the union of W n ˛ with the annuli whose cores are the curves of ˛ ; and
similarly for � .

We define
k�k.W ;a;b/ D distM.W /.�.�; a; b/; �.�; a; b//:

Using Theorem 2.8 we can establish the following properties of this notion of size:

Lemma 7.1 Given � D Œ˛; ˇ�;W; a; b as above, letting ˆ.�/ denote the set of sub-
surfaces Y �ı W that do not overlap some simplex of � , we have:

(1) k�k.W ;a;b/� dC.W /.˛; ˇ/C
X

Y 2ˆ.�/

˚̊
dC.Y /.a; b/

		
A

,

(2) If � is written as a concatenation of successive subintervals �1; : : : ; �k , then

k�k.W ;a;b/�
X

i

k�ik.W ;a;b/;

where the constant A and the constants of approximation depend only on �.W /.

Proof Let �D �.�; a; b/ and � D �.�; a; b/. To prove (1), first recall that Theorem 2.8
gives us, for large enough A and uniform constants of approximation (depending
on A), that

dM.W /.�; �/�
X

Y�ıW

˚̊
dC.Y /.�; �/

		
A
:

On the other hand, Theorem 2.6 gives a constant B such that, if Y �ı W , Y 6�i W ,
and if Y overlaps every simplex of � , then diamC.Y /.�/�B ; in particular since ˛; ˇ
are in � , and since ˛; ˇ are contained in � and � respectively, we get

dC.Y /.�; �/� B:

Thus, if the threshold constant A is raised above B all of these terms drop out of the
sum, leaving the Y DW term, and what is almost the summation in (1), indexed by
Y 2ˆ.�/, except with dC.Y /.�; �/ in place of dC.Y /.a; b/.

Now consider Y �ı W which does not overlap some simplex of � . By tightness of
the ambient geodesic g containing � , the set of simplices in g not overlapping Y

is a contiguous sequence of at most 3 simplices. If Y overlaps ˇ then the rest
of g between ˇ and �C.W /.b/ consists of simplices overlapping Y and so, since �
contains ˇ , Theorem 2.6 implies

dC.Y /.�; b/� B:
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If Y does not overlap ˇ then Y �Wˇ . By definition the restriction of � to Wˇ is
�M.Wˇ/.b/, and again we have a uniform bound on dC.Y /.�; b/. The same logic yields
a uniform bound on dC.Y /.�; a/. Thus, at the cost of again raising the threshold, we
can replace �; � in the sum by a; b – thus completing the proof of (1).

To prove (2), we simply apply the approximation of (1) to each �i separately and sum,
noting that for any Y �W there are at most 3 (successive) simplices disjoint from it,
and hence it can be in at most 4 different ˆ.�i/. This bounds the overcounting by a
factor of 4, and gives the estimate.

A jet, denoted J , is a quadruple .x�; SW ; xa; xb/, where .�n; an; bn/ are tight triples
with �n supported in Wn , and we assume that xa and xb have ultralimits in M!.S/

(ie, that they do not go to 1 faster than linearly). We refer to SW as the support
surface of the jet J . The sequence of initial points �n D �.�n; an; bn/ defines a point
�!.x�; xa; xb/ 2M!. SW /, which we will call the basepoint of the jet and denote �.J / or
just � when J is understood. Similarly one obtains �.J /.

Call a jet microscopic if k�nk.Wn;an;bn/ grows sublinearly – that is, if

1

sn
k�nk.Wn;an;bn/!! 0:

A jet J is macroscopic if it is not microscopic, which occurs if and only if �.J /¤ �.J /.
Often we write k�nkJ to denote k�nk.Wn;an;bn/ .

7.2 Projection and separation properties of microscopic jets

Let J D .x�; SW ; xa; xb/ be a microscopic jet with basepoint �2M!. SW /. As in Section 3
we have product regions

Q.@Wn/ŠM.Wn/�M.W c
n /

which give rise in the cone to

Q!.@ SW /ŠM!. SW /�M!. SW
c/:

We let Ln.J / denote the slice Q.�n[@Wn/, which by Proposition 3.1 can be identified
with f�ng �M.W c

n /. In the cone we get

L!.J /DQ!.x�[ @ SW /Š f�g �M!. SW
c/:

Applying Lemma 3.5, the locally compact dimension of L!.J / equals ı. SW c/ which
equals �.S/�ı. SW /D �.S/��. SW /, applying the codimension formula Proposition 2.2.

Denote by ��n
WM.S/! �n the composition of projection M.S/! C.Wn/ with

closest point projection C.Wn/! �n .
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Projection equivalence In terms of the jet J we can define a relation on sequences .xn/

in M.S/ as follows. Say that .xn/�x� .x
0
n/ if

dC.Wn/.��n
.xn/; ��n

.x0n//

is bounded for !–a.e. n. It is immediate that this is an equivalence relation on the
ultraproduct M. xS/. We will deduce the following stronger result.

Theorem 7.2 For any microscopic jet J , the relation �x� descends to an equivalence
relation on M!.S/ nL!.J /. Moreover, every equivalence class is open.

This theorem is a consequence of the following more quantitative statement:

Lemma 7.3 There exists C > 0 such that for any microscopic jet J , if .�n/ and .� 0n/
are sequences in M.S/ representing �; �0 2M!.S/, and if .�n/, .� 0n/ are inequivalent
under �x� , then

d.�; �0/� C d.�;L!.J //:

We now show how the lemma implies the theorem.

Proof of Theorem 7.2 If � D �0 then Lemma 7.3 implies either .�n/ �x� .� 0n/ or
� 2L!.J /. Hence in the complement of L!.J / the equivalence relation �x� descends
to an equivalence relation in the asymptotic cone.

Further, if � … L!.J / then Lemma 7.3 implies that there is a positive radius neighbor-
hood of � consisting of points represented by sequences which are �x� equivalent to � .
Hence equivalence classes are open.

Lemma 7.3 is an immediate consequence of the following stronger statement, which
will have other applications in what follows:

Lemma 7.4 There exist K;C >0 such that for any microscopic jet J , if .�n/ and .� 0n/
are sequences in M.S/ representing points �; �0 2M!.S/, and if for !–a.e. n we
have dC.Wn/.��n

.�n/; ��n
.� 0n// >K , then

d.�; �0/� C d.�;L!.J //:

Proof Proposition 3.1(2) gives us the following estimate on distance to Ln.J /:

dM.S/.�n;Ln.J //�
X

Y t.�n[@Wn/

˚̊
dC.Y /.�n; �n[ @Wn/

		
A

�

X
Y�ıWn

˚̊
dC.Y /.�n; �n/

		
A
C

X
Y t@Wn

˚̊
dC.Y /.�n; @Wn/

		
A
;
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where A is any sufficiently large threshold and the approximation constants depend
only on A.

For each Y indexing this sum, we will show an inequality of the form

(7-1) dC.Y /.�
0
n; �n/� dC.Y /.�n; �n/� dC.Y /.�n; �n/� q

if Y �ı Wn , and of the form

(7-2) dC.Y /.�
0
n; �n/� dC.Y /.�n; @Wn/� q

if Y t@Wn , where q is a uniform constant. Since the left hand sides of these inequalities
are terms in the quasidistance formula for dM.S/.�n; �

0
n/, we will obtain (with the

usual threshold adjustment)

(7-3) dM.S/.�n; �
0
n/� p0dM.S/.�n;Ln.J //�p00dM.Wn/.�n; �n/� q0;

where p0;p00; q00 are additional constants. This will be sufficient, since by assumption
lim! dM.S/.�n; �n/=sn D lim! k�nkJ =sn D 0, and hence the second term disappears
in the asymptotic cone. We proceed to establish (7-1) and (7-2).

Let

xn D �C.Wn/.�n/; x0n D �C.Wn/.�
0
n/;

zn D ��n
.�n/; z0n D ��n

.� 0n/:

Let hn D Œxn; zn� and h0n D Œx
0
n; z
0
n� be C.Wn/–geodesic segments. Because zn is a

nearest point to xn on �n (and similarly for z0n and x0n ), and C.Wn/ is ı–hyperbolic,
there is a constant Kı such that, if d.zn; z

0
n/ >Kı , the union Tn D �n[ hn[ h0n can

be considered as a finite tree, and the distance function of C.Wn/ restricted to Tn is
approximated by the distance function along the tree, up to some additive error ı0 .

In the case that Y �i Wn , we immediately find that

dC.Wn/.x
0
n;xn/� dC.Wn/.xn; zn/� ı

0

� dC.Wn/.xn; �n/� diamC.Wn/.�n/� ı
0;(7-4)

which is (7-1) in this case.

Consider next the case that Y �ı Wn and Y 6�i Wn . Let B be the bound in Theorem 2.6.
Suppose first that @Y is disjoint from a radius 1 neighborhood of hn in C.Wn/. Then
zn t Y , and dC.Y /.xn; zn/ � B . Moreover, @Y can only be disjoint from simplices
on one side of zn in �n (not both) since �n is a tight geodesic. It follows that �Y .zn/

is within B of either �Y .�n/ or �Y .�n/, and hence

minfdC.Y /.xn; �n/; dC.Y /.xn; �n/g � 2B:
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It follows that

dC.Y /.x
0
n;xn/� 0� dC.Y /.xn; �n/� dC.Y /.�n; �n/� 2B � 3;

which again gives (7-1).

Now suppose that @Y intersects a radius 2 neighborhood of hn . Assuming K >

max.Kı; 2ı
0C 4/, and using the remark above about the tree Tn , it follows that @Y is

disjoint from a radius 2 neighborhood of h0n . Hence the same argument as above gives

minfdC.Y /.x
0
n; �n/; dC.Y /.x

0
n; �n/g � 2B:

If dC.Y /.x
0
n; �n/� 2B then the triangle inequality gives

dC.Y /.xn;x
0
n/� dC.Y /.xn; �n/� 2B � 3

and if dC.Y /.x
0
n; �n/� 2B then the triangle inequality gives

dC.Y /.xn;x
0
n/� dC.Y /.xn; �n/� dC.Y /.�n; �n/� 2B � 6:

Either way this again gives us (7-1).

Now consider the case when Y t @Wn . We may assume dC.Y /.�n; @Wn/ >A. As in
Section 4, for essential subsurfaces U and partial markings  of S , for each k > 0

define the relation U �k  by

U t  and dC.U /.�n;  /� k c1C 4;

where c1 is a constant which is chosen as follows. As noted in Section 4, the consistency
conditions hold for .�U .�n// for any sufficiently large constants c1; c2 . Without loss
of generality, we will assume c1 >maxfc2;m0;Bg, where m0 is the constant given
by Lemma 4.2 and B is the constant given by Theorem 2.6.

We may assume A> 4.c1C4/. Setting k D bdC.Y /.�n; @Wn/=.c1C4/c � 4, we have

Y �k Wn:

Moreover, dC.Wn/.�n; �
0
n/>dC.Wn/.zn; z

0
n/�ı

0>K�ı0 , so if K�ı0>2.c1C4/ we get

Wn�2 �
0
n:

Now Lemma 4.4 implies that
Y �k�1 �

0
n

so in particular

(7-5)
dC.Y /.�n; �

0
n/� .bdC.Y /.�n; @Wn/=.c1C 4/ c�1/.c1C 4/

� dC.Y /.�n; @Wn/� 2.c1C 4/:

This gives us (7-2).
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Finding microscopic jets The next lemma constructs microscopic jets having proper-
ties that we will utilize in Sections 7.4 and 8.

Lemma 7.5 Let a! ; b! 2M!. xS/ be represented by xa; xb 2M. xS/, let .Wn/ be a
sequence of connected essential subsurfaces, and suppose that dC.Wn/.an; bn/!! 1.
Then there exists a microscopic jet J D .x�; SW ; xa; xb/ such that

xa 6�x� xb:

Proof Let �n D �M.Wn/.an/ and �n D �M.Wn/.bn/. Let `n be a tight C.Wn/

geodesic between �n and �n .

We use a counting argument to produce a sequence of subsegments �n of `n with
j�nj ! 1 but k�nk.Wn;an;bn/ growing sublinearly. Let f .n/ be an integer val-
ued function going to C1 more slowly than j`nj, meaning that f .n/ ! C1
but j`nj=f .n/! C1. Divide `n into f .n/ subsegments, each of length between
.j`nj=f .n//� 1 and .j`nj=f .n//C 1. The sum of the k � k.Wn;an;bn/–sizes of these
subsegments is approximated by k`nk.Wn;an;bn/ up to bounded multiple by part (2) of
Lemma 7.1, and this in turn is bounded by a multiple of dM.S/.�n; �n/ by part (1) of
Lemma 7.1, and hence by a multiple of sn . Therefore there must be a fixed C such
that there is, for !–a.e. n, a subsegment �n with k�nk.Wn;an;bn/ � C sn=f .n/.

Sublinear growth of k�nk.Wn;an;bn/ implies that J D .x�; SW ; xa; xb/ is a microscopic
jet. By construction, an and bn project to opposite ends of �n , and therefore xa, xb are
inequivalent under �x� .

7.3 Linear/sublinear decomposition of macroscopic jets

For macroscopic jets, the way in which the linear growth happens turns out to be
important.

Consider a macroscopic jet J D .x�; SW ; xa; xb/ with �n D Œ˛n; ˇn�, and with initial and
terminal markings �n; �n 2M.Wn/. We will say that the jet J has sudden growth if
there exist simplices yn and zn on �n such that

� kŒ˛n;yn�kJ grows sublinearly.

� kŒyn; zn�kJ grows linearly.

� dC.Wn/.yn; zn/ is bounded for !–a.e. n.

We say that J has gradual growth if it does not have sudden growth.
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Given xz 2M. xS/ we say that xz escapes linearly along J if

kŒ˛n; ��n
.zn/�kJ

has linear growth, otherwise xz escapes sublinearly.

Although linear and sublinear escape are only defined in the ultraproduct M. xS/, the
following lemma says that they are defined in the asymptotic cone M!.S/ as long as
the jet in question has gradual growth.

Lemma 7.6 Let J be a macroscopic jet with the gradual growth property. The
linear/sublinear escape properties for sequences descend to the ultralimits when these
lie in M!.S/ n L!.J /. In other words, we can decompose M!.S/ n L!.J / as a
disjoint union

M!.S/ nL!.J /D�J [ƒJ

so that z2ƒJ implies that any sequence .zn/ representing z escapes linearly along J ,
and z 2�J implies any .zn/ escapes sublinearly.

We will establish the following.

Theorem 7.7 Let J be a macroscopic jet with the gradual growth property. Then ƒJ

and �J are both open. Moreover, ƒJ is †–convex, and therefore is acyclic.

Note that �J is not acyclic at all – indeed it is not even connected. It breaks up into
uncountably many connected components as an application of Theorem 7.2.

We will establish both the theorem and the lemma as consequences of the following
more quantitative fact:

Lemma 7.8 There exists C > 0 such that the following holds for any macroscopic
jet J with gradual growth. Suppose that x�; x� 0 2M. xS/ represent �; �0 2M!.S/ and
that

(1) � … L!.J /.
(2) dM!.S/.�; �

0/ < C d.�;L!.J //.

Then either �n and � 0n both escape linearly along J , or both escape sublinearly.

Proof of Lemma 7.8 Write J D .x�; SW ; xa; xb/, let C be the constant in Lemma 7.4,
and suppose, by way of contradiction, that (1) and (2) hold but one of x�; x� 0 escapes
sublinearly and the other escapes linearly. After renaming the one that escapes
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linearly x� and the one that escapes sublinearly x�, we find that ��n
.�n/ must pre-

cede ��n
.�n/ along �n for !–a.e. n, and that kŒ˛n; ��n

.�n/�kJ grows sublinearly
while kŒ��n

.�n/; ��n
.�n/�kJ grows linearly (this uses the additivity property (2) in

Lemma 7.1).

Since x� escapes sublinearly, the restricted jet

J 0 D .x� 0; SW ; xa; xb/;

defined by letting � 0n D Œ˛n; ��n
.�n/�, is microscopic. Moreover, gradual growth

implies, as above, that if we enlarge � 0n in the forward direction by an amount which is
bounded for !–a.e. n then we still obtain a microscopic jet. Thus, we may produce a
new microscopic jet extending � 0n along �n by any bounded amount which is larger
than the constant, K , needed to apply Lemma 7.4. In this new jet J 00 D .x� 00; SW ; xa; xb/

we find that �� 00n .�n/ D ��n
.�n/, while �� 00n .�n/ equals (up to bounded error) the

forward endpoint of � 00n , and hence

dC.Wn/.�� 00n .�
0
n/; �� 00n .�n// >K:

Thus Lemma 7.4 implies that d.�; �0/� C d.�;L!.J //. (Note that �.J /D �.J 00/, so
L!.J / D L!.J 00/.) This contradicts our hypothesis that d.�; �0/ < Cd.�;L!.J //.
Hence it must hold that x� escapes linearly if and only if x� 0 does.

Lemma 7.6 follows immediately from Lemma 7.8 by considering the case � D �0 .

Proof of Theorem 7.7 The openness of ƒJ and �J is an easy consequence of
Lemma 7.8. It remains to prove that ƒJ is †–convex, for we can then apply
Corollary 6.6 to conclude that ƒJ is acyclic.

Let A � ƒJ be finite and let xA represent it. Then each xa 2 xA has projections
to �n which escape linearly. The projection of †�.An/ to �n is, up to bounded error,
the projection in C.Wn/ of hullWn

.An/ to �n , and hyperbolicity implies that this is
contained (up to bounded error) in the hull along �n of the projections of An . Hence
any point in the hull has projections that escape linearly, and so is in ƒJ . This proves
†–convexity.

7.4 Classification of pieces

We now record an application of Theorem 7.7, which classifies the maximal subsets
of M! which can not be separated by a point. This result will help to motivate the
statement of Theorem 8.1.
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First, let us recall the notions of pieces and tree-graded spaces as defined by Druţu and
Sapir [12].

A complete geodesic metric space X is called tree-graded if it there exists a collection
of proper closed convex subsets, P , called pieces, which pairwise intersect in at most
one point and such that every nontrivial simple geodesic triangle in X is contained
in one piece. It is an easy observation that if X contains a point whose removal
disconnects it, then X is tree-graded. Further, in any tree-graded space X there exists
a unique finest way to write X as a union of pieces none of which can be separated by
a point; see eg, [12, Remark 2.32].

In terms of C.S/–distance, we now provide a complete criterion for when two points
in M!.S/ can be globally separated by a point. In particular, the following result
describes the pieces in the finest decomposition of M!.S/ as a tree-graded space.
We note that by results of [4] such pieces can not be realized as asymptotic cones of
subgroups of M.S/.

Theorem 7.9 Suppose that �.S/ � 2. For any pair of points �; � 2M!.S/, the
following are equivalent:

(1) No point of M!.S/ separates � from �.

(2) In any neighborhoods of �; �, respectively, there exist points �0; �0 with repre-
sentative sequences .�0n/; .�

0
n/ such that

lim
!

dC.S/.�
0
n; �
0
n/ <1:

Remark Theorem 7.9 can be thought of as a first step in working out the results of
Section 8, which provide conditions under which a finite subset of M!.S/ is separated
by a product region. Nevertheless, Theorem 7.9 will not be used in the rest of the paper.

Proof We begin by showing (2) implies (1). Suppose first that � and � have representa-
tive sequences .�n/ and .�n/ for which lim! dC.S/.�n; �n/<1. Hence there is a fixed
m� 0 such that dC.S/.�n; �n/Dm for !–a.e. n, and we can let vn;0; : : : ; vn;m denote
the simplices of a tight geodesic in C.S/ connecting vn;02base.�n/ to vn;m2base.�n/.
For a fixed i let xvi D hvn;ii. The regions Q.vn;i/ have the structure described in
Proposition 3.1, and in particular the cone Q!.xvi/ is nontrivial (not a singleton) and
connected.

Since vn;i and vn;iC1 are disjoint (here we use �.S/ � 2), we have vn;i c vn;iC1 D

vn;i [ vn;iC1 , so by Lemma 3.3 the intersection Q!.xvi/ \ Q!.xviC1/ is equal to
Q!.xvi [ xviC1/. This again is not a singleton, and it follows that the union

Q!.xv0/[ � � � [Q!.xvm/
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cannot be disconnected by a point. Since � 2 Q!.xv0/ and � 2 Q!.xvm/, this gives
property (1) in this case where lim! dC.S/.�n; �n/ <1.

Now for general � and � satisfying (2), the above argument implies that � and � can
be approximated arbitrarily closely by �0 and �0 which cannot be separated by a point.
Since maximal subsets without cutpoints are closed [12], this completes the proof that
(2) implies (1).

We now establish that (1) implies (2), by proving the contrapositive. Namely suppose
that (2) fails to hold for � and �, so that there exists r > 0 such that whenever
d.�;�0/ � r and d.�; �0/ � r , we have dC.S/.�

0
n; �
0
n/!1 for any representative

sequences. We can assume r < dM!
.�; �/=2.

Note that Proposition 5.2 implies that †�.�n; �n/ is coarsely connected. In particular,
by projecting a continuous path in M.S/ from �n to �n into †�.�n; �n/, we can
obtain points �0n; �

0
n 2 †�.�n; �n/ such that dM.S/.�n; �

0
n/ and dM.S/.�n; �

0
n/ are

in the interval Œ1
2
rsn; rsn� for all sufficiently large n. Fix such a pair of sequences

.�0n/ and .�0n/. It follows that dC.S/.�
0
n; �
0
n/!1, and by Lemma 7.5 there exists a

microscopic jet J D .x�; xS ; x�0; x�0/ such that x�0 6�x� x�0 .

Since �0n and �0n are in †�.�n; �n/, the segments �n must be within a bounded distance
of any C.S/–geodesic between base.�n/ and base.�n/. It follows that ��n

.�n/ and
��n

.�n/ are within bounded distance of ��n
.�0n/ and ��n

.�0n/, respectively. Hence
we also have x� 6�x� x� .

Now L!.J /D f�.J /g since J is built on the main surface S . We claim that �¤ �.J /
and �¤ �.J /. This follows from two facts about †–hulls:

First, for any a; b 2M.S/ we claim that, if a0; b0 2†�.a; b/, then

d.a; †�.a
0; b0//& d.a; fa0; b0g/

(with uniform constants). In the projection to each C.W /, the †–hulls map to coarse
intervals, and the corresponding inequality is simply the fact that if two intervals are
nested then the endpoints of the inner one separate its interior from the endpoints of the
outer one. The statement then follows from the quasidistance formula, Theorem 2.8.

Second, if v is a vertex on a tight C.S/–geodesic g from a vertex of base.a/ to a vertex
of base.b/, then v c a is in †�.a; b/, for a uniform � . This will follow by showing,
for all W � S , that �C.W /.v c a/ is uniformly close to hullW .a; b/. If W 6t v , the
projections of v ca and a are by definition close. If W t v and W ¤S , then tightness
of g implies that either the subsegment from v to a or the one from v to b consists
of simplices overlapping W , and so Theorem 2.6 implies that one of dW .v; a/ or
dW .v; b/ is uniformly bounded. If W D S then v is already in hullS .a; b/.
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Applying the first fact and the choice of r; �0n and �0n , we see that

dM.S/.�n; †�.�
0
n; �
0
n//& 1

2
rsn:

From the second fact and the definition of �n.J /, we see that �n.J / 2†�.�0n; �
0
n/, for

a uniform � . Hence �¤ �.J /. The same applies to �.

We have shown that x� 6�x� x� , and that � and � are different from �.J /. Hence by
Theorem 7.2, � and � are separated by the point �.J /.

7.5 Manifolds and jets

As an application of the linear/sublinear decomposition associated to a macroscopic jet
with the gradual growth property, together with the homology result Theorem 6.8 and
Corollary 6.9, we can obtain:

Theorem 7.10 Let E be a �.S/–dimensional connected manifold in M!.S/ and
let J be a macroscopic jet with the gradual growth property. Suppose the supporting
subsurface SW of J has �. SW / > 1. Then if E \L!.J /¤∅, we conclude

E \ƒJ D∅:

Proof Let q 2 L!.J /\E . Suppose on the contrary that E\ƒJ ¤∅. Now L!.J /
has codimension at least 2 since �. SW / > 1. Applying Lemma 3.6 the set L!.J /
cannot separate E which has dimension �.S/. However, L!.J / does separate ƒJ

from �J in M! , by Theorem 7.7. We conclude that E nL!.J / is contained in ƒJ .

Now let B be a ball in E containing q in its interior. Since L!.J /\ @B is a compact
set of codimension � 1 in @B , for any � > 0 there exists a triangulation of @B with
vertices outside L!.J / and mesh size � . Using Lemmas 6.1, 6.3 and 6.5, as in the
proof of Theorem 7.7, B can be deformed to a †–compatible chain C , such that
every point moves at most c� (with c a uniform constant) and the 0–skeleton does
not move at all. Since the 0–skeleton is contained in ƒJ , by Theorem 7.7 all of C is
contained in ƒJ as well. Let U be the r –chain giving the homotopy of @B to C , ie
@U D @B �C and U is supported in a c� neighborhood of @B .

Since C sits within ƒJ , Theorem 7.7 also implies that it bounds an r –chain B0 in ƒJ .

Corollary 6.9 now implies, since B is embedded and @BD@.B0CU /, that B�B0CU .
Assuming we have chosen � so that c� < d.q; @B/=2, we find that q cannot be in U .
Hence q 2 B0 �ƒJ . This is a contradiction.

Geometry & Topology, Volume 16 (2012)



Geometry and rigidity of mapping class groups 849

8 Local finiteness for manifolds

Our main goal in this section is Theorem 8.7, which says that any top-dimensional
submanifold of M!.S/ is locally contained in a union of finitely many cubes.

This will be a consequence of Theorem 8.5, in which we will consider the †–hull of
a finite number of points in a connected top-dimensional manifold in M!.S/, and
show that it is always contained in a finite complex made of cubes of the appropriate
dimension. In order to do this we will prove Theorem 8.1, which will show that points
in the manifold can be represented by sequences of markings whose projections to all
but the simplest subsurfaces remain bounded. This in turn will be possible because of
the separation theorems established in Section 7.

8.1 Trimming theorem

In Theorem 7.9 we showed that for any �; �2M!.S/, if no point in M!.S/ separates
�; � then – after perturbation – the curve complex distance dC.S/.�n; �n/ is !–a.e.
bounded.

Theorem 7.9 can be regarded as a baby version of Theorem 8.1. Given a top-dimensional
manifold E in M!.S/, the Alexander duality argument given in Lemma 3.6 shows
that E cannot be separated by any product region of codimension � 2 in M!.S/;
such product regions are associated to sequences of connected, essential subsurfaces SW
such that �. SW / > 1. From this, Theorem 8.1 will conclude that the curve complex
diameters of finite subsets of E – after trimming – are !–a.e. bounded, and this will
be true in the curve complexes of all SW such that �. SW / > 1.

A manifold in M!.S/ is top dimensional if it is of dimension �.S/, equal to the
locally compact dimension of M!.S/.

Theorem 8.1 Let xA be a finite set of elements in M. xS/. Suppose A! is contained in
a connected top-dimensional manifold E �M!.S/. There exist constants � and k0

(both depending only on �.S/ and jAj), a new set, xA0 , and an onto map � W xA! xA0

with the following properties.

(1) �.xa/! D a! for each xa 2 xA.

(2) A0n �†�.An/ for !–a.e. n.

(3) For any SW with �. SW / > 1,

diamC.Wn/.A
0
n/ < k0

for !–a.e. n.
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Notation because xA is finite we can think of it, up to ultraproduct equivalence, as a
sequence of finite sets An , and we can think of the “trimming map,” � , as a sequence
of maps from An to A0n . With slight abuse of notation we will also use � to denote
these maps, thus writing for example �.an/ 2 �.An/DA0n .

Proof We will argue by induction on the cardinality of xA. The case of cardinality 1
is trivial, so let us consider the case that xA has two points.

The fundamental step of the proof is the following lemma, which “trims” xA to reduce
its projections to a given subsurface sequence SW :

Lemma 8.2 Suppose xA has two elements and A! is contained in a connected top-
dimensional manifold E �M!.S/. Let SW be represented by a sequence .Wn/ of
connected, essential subsurfaces with �. SW / > 1. There exists a map � W xA!†�. xA/

such that
.� xx/! D x!

for each xx 2 xA, and
diamC.Wn/ .�.An//

is bounded, for !–a.e. n. The constant � depends only on the topological type of S .

Proof We may assume that diamC.Wn/.An/!! 1, for if not then diamC.Wn/.An/

is !–a.e. bounded, and we may simply take � to be inclusion of xA into †�. xA/. All
we need is that diamC.Wn/.An/!! 1 is greater than the constant m1 of Lemma 5.5
for !–a.e. n, for we may then apply that lemma, concluding that for each connected,
essential subsurface U of S ,

(8-1) if U t Wn for !–a.e. n then dC.U /.@Wn; hullU .An//�m0 for !–a.e. n:

This fact is used repeatedly below, although only once with explicit details, in the proof
of (3) below.

We find the trimming map, � , in stages. First let �1.xx/, for xx 2 xA, be defined as

(8-2) �1.xx/D

�
xx if x! …Q!.@ SW /;

�Q.@ SW /.xx/ if x! 2Q!.@ SW /:

The notation �Q.�/WM.S/!Q.�/ denotes the map � 7! � c � from Section 3.1. In
particular the sequence �Q.@Wn/ gives rise to a map �Q.@ SW /WM. xS/!Q.@ SW /.

We claim that �1.xx/ has the properties:

(1) �1.xx/! D x! .

(2) Either �1.xx/! 62Q!.@ SW /, or �1.xn/ 2Q.@Wn/ for !–a.e. n.

(3) �1.xx/ 2†�. xA/ for suitable � .
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Property (1) is immediate from the definition and the fact that (by Proposition 3.1(3))
�Q.@W /.x/ realizes, within bounded factor, the distance from x to Q.@W /. Prop-
erty (2) similarly follows from the definition.

To see Property (3), note it is obvious when �1.xx/D xx . Hence, assume that �1.xx/D

�Q.@ SW /.xx/ 2 Q.@ SW /. By definition of †� , it suffices to bound the distance from
�C.U /.�1.xn// to hullU .An/, for every U � S and !–a.e. n. We treat separately the
cases U t @Wn and U 6t @Wn .

If U 6t @Wn for !–a.e. n, then dC.U /.�1.xn/;xn/ is uniformly bounded: this can be
seen easily from the definition of the projection �Q.@Wn/ and the coarse composition
properties of subsurface projection maps, Lemma 2.12. Since xn 2An �†�.An/, this
gives the desired bound for (3).

If U t @Wn for !–a.e. n, then dC.U /.�1.xn/; @Wn/ is bounded by Lemma 2.11, and
by applying (8-1) we obtain (3).

Now for notational simplicity let us assume that we have replaced xA by �1. xA/. For
each xx 2 xA properties (1) and (3) become trivial, and property (2) holds with the
consequence that either x! 62 Q!.@ SW /, or xx 2 Q.@ SW /. Recalling that xA has two
elements, write xA D fxa; xbg, and the discussion separates into two cases: neither of
a! , b! is in Q!.@ SW /; or one of xa; xb is in Q.@ SW /.

Case 1 Neither a! nor b! lies in Q!.@ SW /.

We claim that already dC.Wn/.an; bn/ is bounded for !–a.e. n, and hence there is
nothing left to do in this case. Suppose otherwise, that dC.Wn/.an; bn/!! 1. Then
Lemma 7.5 yields a microscopic jet J D .x�; SW ; xa; xb/, built from C.Wn/–geodesics �n

for which .an/ 6�x� .bn/. Moreover, by our assumption that a! ; b! 62Q!.@ SW /, we know
that neither of them is contained in L!.J /�Q!.@ SW /. It follows from Theorem 7.2
that L!.J / separates a! from b! .

However, L!.J / is homeomorphic to M!. SW
c/, which by Proposition 2.2 has codi-

mension at least 2 since �. SW / > 1, so by Lemma 3.6 it cannot separate E . This
contradiction implies that in fact dC.Wn/.an; bn/ is bounded !–a.s.

Case 2 At least one of xa; xb , say xa, lies in Q.@ SW /.

Now we consider the projections of a! and b! to the factor M!. SW / of Q!.@ SW /�

M!. SW /�M!. SW
c/. Using the coarse product structure Q.@Wn/�M. SWn/�M. SW c

n /,
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let
an �

�
�M. SWn/

.an/; �M. SW c
n /
.an/

�
D .˛n; ˇn/;

�Q.@Wn/.bn/�
�
�M. SWn/

.bn/; �M. SW c
n /
.bn/

�
D .n; ın/:

Case 2a ˛! D ! .

In this case, we can simply adjust xa so that the projections, before rescaling, are a
bounded distance apart: replace an by

�2.an/D .n; ˇn/:

We need to check, as before, that �2.an/ 2†�.An/ for a fixed � . This is again done
by considering projections to all connected, essential subsurfaces U � S , treating
separately the cases U �ı Wn , U �ı W c

n , or U t @Wn , for !–a.e. n; in the latter
case (8-1) is again applied, and remaining details are left to the reader. Similarly
�2.xa/! D a! , and of course dC.Wn/.�2.an/; bn/ is now bounded !–a.s.

Note that this argument works whether or not xb 2Q.@ SW /. If it is, then the roles of xa
and xb can be reversed.

Case 2b ˛! ¤ ! .

In this case, consider the jet J D .x�; SW ; xa; xb/, where �n D Œxn;yn� with xn 2

�C.Wn/.an/ and yn 2 �C.Wn/.bn/. Notice that the initial marking of J is x�.J / D x̨ ,
because �n.J / D �.�n; an; bn/ D xn c �M.Wn/.an/ D xn c ˛n D ˛n where the last
equation follows since xn is a vertex of ˛n . Similarly the terminal marking of J is
x�.J /D x . Since ˛! ¤ ! it follows that the jet J is macroscopic.

In the arguments to follow we abbreviate the notation for the jet norm k�nkJ D

k�nk.Wn;an;bn/ to k � k, and similarly for jets built on subsegments of �n , because
in all cases the jet norm is equal to k � k.Wn;an;bn/ which is independent of how the
subsegments were chosen.

Since a! and b! are contained in a connected top-dimensional manifold E , we can
apply Theorem 7.10 to conclude that J cannot have the gradual growth property, for
L!.J /DQ!.x̨ [ @ SW / contains a! , and if J had gradual growth then b! would be
in ƒJ , but then Theorem 7.10 would forbid b! from being in E .

Since J has sudden growth, the following must occur: in �n there must be points pn

and qn such that kŒxn;pn�k grows sublinearly and kŒpn; qn�k grows linearly, while
dC.Wn/.pn; qn/ stays bounded.
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Let �3.an/ be the marking obtained by projecting an to Q.pn [ @Wn/. Since an is
already in Q.@Wn/ it follows that �3.an/ is coarsely equal to the projection of an

to Q.pn/. We have

dM.S/.an; �3.an//� dM.S/.an;Q.pn//

� dM.Wn/.�M.Wn/.an/;QWn
.pn//;

the last equation following from Proposition 3.1, where QWn
.pn/ denotes the product

region in M.Wn/ associated to the partial marking pn . This product region contains
the projection to M.Wn/ of pn c n and so

dM.Wn/.�M.Wn/.an/;QWn
.pn//� dM.Wn/.�M.Wn/.an/;pn c n/

� dM.Wn/.xn c˛n;pn c n/

� kŒxn;pn�k:

The quantity dM.S/.an; �3.an// therefore grows sublinearly, and so �3.xa/! D a! . As
before we can show that �3.xa/ 2†�. xA/.

In the case that xb 2Q.@ SW /, by reversing the direction of J so that its initial marking
is x , the same argument as above shows that the reversed jet has sudden growth,
and we obtain a path sequence Œvn;un� in �n such that kŒvn;un�k grows linearly and
kŒun;yn�k grows sublinearly while dC.Wn/.vn;un/ stays bounded !–a.e. As with xa,
in this case we define �3.bn/D �Q.un[@Wn/.bn/, and so �3.xb/! D b! . In the case that
b! …Q!.@ SW /, then we simply let �3.xb/D xb , and let un D vn D yn . In �n we have a
sequence xn � � �pn � � � qn � � � vn � � �un � � �yn , where we can ensure that qn precedes vn

by shortening the segments Œpn; qn� and Œvn;un� if necessary, maintaining the property
that kŒpn; qn�k and kŒvn;un�k each grow linearly.

We claim now that dC.Wn/.�3.an/; �3.bn//� dC.Wn/.pn;un/ is bounded !–a.s. For
if it were not then neither would dC.Wn/.qn; vn/ be bounded !–a.s., and so as in
case (1) we could extract a microscopic jet J 0 D .x� 0; SW ; xa; xb/ with � 0n a subsegment
of Œqn; vn�. Neither of the points a! and b! can be in L!.J 0/. For a! , this follows
from the fact that kŒpn; qn�k grows linearly and hence insulates an from � 0n – that is,
by Lemma 7.1(1) and the quasidistance formula we obtain, term-by-term, a linearly
growing lower bound for dM.Wn/.˛n; �n.J

0//. For b! this is the same argument if
xb 2Q.@ SW /, and if not it is even easier for b! is not even in Q!.@ SW /.

Hence, Theorem 7.2 would imply that L!.J 0/ separates E , and applying Lemma 3.6
this would again contradict the assumption that �. SW / > 1.

We conclude that, in case (2), we can find �3. xA/ such that diamC.Wn/.�3. xA// is
bounded !–a.s. This concludes the proof of Lemma 8.2, where � is the composition
of the appropriate �i .
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Hierarchies of geodesics Before we can continue the proof of Theorem 8.1 we must
recall a few of the details of the construction of hierarchies of tight geodesics from [40].
A hierarchy H DH.a; b/ is associated to any a; b 2M.S/, and is a certain collection
of tight geodesics in curve complexes of connected, essential subsurfaces of S . The
subsurface whose complex contains a geodesic h is called its domain D.h/. The
properties relevant to us are the following:

Theorem 8.3 Let a; b 2M.S/ and H.a; b/ a hierarchy between them.

(1) There is a unique main geodesic gH with D.gH /D S , whose endpoints lie on
base.a/ and base.b/.

(2) For any geodesic h 2 H other than gH , there exists another geodesic k 2 H

such that, for some simplex v in k , D.h/ is either a component of D.k/ n v , or
an annulus whose core is a component of v . We say that D.h/ is a component
domain of k .

(3) A subsurface in S can occur as the domain of at most one geodesic in H .

(4) For each h 2H , the endpoints of h are within uniformly bounded distance of
�D.h/.a/ and �D.h/.b/.

(5) For each connected, essential subsurface W � S , if dC.W /.a; b/ > m0 , then
there exists h 2H.a; b/ with D.h/DW .

Define the complexity of a geodesic g 2H.a; b/ to be �.D.g//. The following count-
ing argument allows us, under the appropriate circumstances, to bound the cardinality
of the set of geodesics with a given lower bound on complexity.

Lemma 8.4 For all t � 1, all a; b 2 M.S/, and all k � 1, if dC.W /.a; b/ � k

for all subsurfaces W with �.W / � t , then the hierarchy H.a; b/ contains at most
O.k�.S/�tC1/ geodesics of complexity � D t � 1.

Proof The proof is by induction, using the properties listed in Theorem 8.3. Every
subsurface of complexity � D s in H.a; b/ appears as a component domain in some
geodesic of complexity > s . Hence the number of � D s geodesics is bounded by the
number of � > s geodesics times the length bound on those geodesics.

We now turn to the proof of Theorem 8.1 in the case that xA has two elements. We first
apply Lemma 8.2 with SW D xS . Thus we obtain �. xA/, such that diamC.S/.�.An// is
!–a.s. bounded. Again for notational convenience we replace xA by �. xA/ and continue.

Writing xADfxa; xbg as before, we consider hierarchies HnDH.an; bn/. By property (5),
for any SW with diamC.Wn/.An/!! 1, Wn must be a domain in Hn for !–a.e. n.
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The main geodesics gHn
have bounded length for !–a.e. n, by property (1) and the

bound on diamC.S/.An/. Applying Lemma 8.4 with t D �.S/ we obtain an !–a.s.
bound on the number of geodesics of complexity �.S/� 1 in Hn , because the domain
of such a geodesic must be a component domain of the main geodesic gHn

. We have
therefore bounded how many SW exist with �. SW /D �.S/� 1 and with Wn a domain
in Hn for !–a.e. n – we use here the general fact that the ultraproduct of a sequence of
sets Xn of finite cardinality � k has cardinality � k . For each such SW successively,
use Lemma 8.2 again to find �. xA/ such that diamC.Wn/.�.

xA/n/ is bounded, and again
replace xA by �. xA/ and continue.

Every time we apply Lemma 8.2, we maintain the boundedness that we had for diamC. xU /
for any previous xU . This is because �. xA/ always lies in †�. xA/, so in the projections
to C.Un/, it follows that �C.Un/.�.An// lies uniformly near the hull of �C.Un/.An/

which is bounded. Hence after finitely many steps we have diameter bounds for all SW
with �. SW /D �.S/� 1.

This procedure repeats �.S/ times. At the k –th step we have bounds on the lengths
of all geodesics of complexity � �.S/� k C 1 that occur in the hierarchy, and by
applying Lemma 8.4 we bound the number of geodesics of complexity � �.S/�k . A
finite number of applications of Lemma 8.2 renders bounded the projections to those
surfaces without spoiling the previous ones.

The procedure ends when all projections to surfaces of � > 1 are bounded. The final set,
which we might denote �N . xA/ (for some N which grows with �.S/ and the bounds
at each level), lies in †�0. xA/ (where �0 depends on � and N ), and each �N .xx/ defines
the same point in the cone as xx .

This concludes the proof of Theorem 8.1 when xA has two elements. We are now ready
for the inductive step, where we write xA as fxag [ xB , and we assume that there is
already a bound on diamC.Wn/.Bn/ for !–a.e. n, whenever �. SW / > 1.

We wish to prove an analogue of Lemma 8.2, and there is a similar breakup into cases.
Let SW be such that �. SW / > 1 and diamC.Wn/.An/!! 1. First we note as in the
proof of Lemma 8.2 that we may assume (after a first trimming operation �1 ) that each
element xx 2 xA either satisfies

x! …Q!.@ SW /

or satisfies

xn 2Q.@Wn/

for !–a.e. n (or as we wrote above, xx 2Q.@ SW /).
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Case 1a 0 Suppose that there is at least one element xb 2 xB with b! …Q!.@ SW /, and
that a! 62 Q!.@ SW /. Then the same argument as Case 1 of Lemma 8.2 shows that
diamC.Wn/.an; bn/ is bounded. Since diamC.Wn/.Bn/ was already bounded, this gives
us the desired bound for An .

Case 1b 0 Suppose that there is at least one element xb 2 xB with b! … Q!.@ SW /,
but that xa 2 Q.@ SW /. Depending on whether or not �M!. SW /.a!/ D �M!. SW /.b!/,
we can apply the argument of Cases 2a and 2b of Lemma 8.2, concluding that an

can be replaced by �2.an/, for which dC.Wn/.�2.an/; bn/ is bounded. Again since
diamC.Wn/.Bn/ is assumed bounded we are done.

Case 2a 0 Suppose that xb 2Q.@ SW / for each xb 2 xB , and suppose also �M!. SW /.B!/

is a single point.

In this case, choose one element xb0 2
xB . Now apply the argument of Case 2a and 2b

in Lemma 8.2 to xb0 and xa. Note that here xb0 plays the role that xa played in 2a and 2b,
whereas xa itself may or may not be in Q.@ SW /. This step produces �3.xb0/ which
possibly modifies the M. SW / component of xb0 (and similarly for xa), so that afterwards
their C.Wn/ distance is !–a.s. bounded. Define �3 on the remaining elements of xB by
making their M. SW / components equal to that of �3.xb0/. This is a sublinear change
which as before produces points in †�.Bn/. We now have the desired bound on
diamC.Wn/.�3.An//.

Case 2b 0 Again suppose that xb 2 Q.@ SW / for each xb 2 xB , but now suppose that
�M!. SW /.B!/ contains at least 2 distinct points. Let xb1; xb22

xB have distinct projections
to M!. SW /.

If xa 2 Q.@ SW /, and �M!. SW /.a!/ D �M!. SW /.bi!/ for i D 1 or i D 2, then as in
Case 2a of Lemma 8.2, we can replace the M. SW / component of xa to agree with that
of xb1 or xb2 , respectively, and are done.

If xa2Q.@ SW / but �M!. SW /.a!/ is different from �M!. SW /.b1!/ and �M!. SW /.b2!/,
or if a! …Q!.@ SW /, then we work with xb1 and xa as follows.

If a! … Q!.@ SW / then let �4.xa/ D xa. If xa 2 Q.@ SW /, we argue as in Case 2b of
Lemma 8.2, first to show that a jet from xa to xb1 cannot have gradual growth, and
then to modify xa: along the geodesic from xn 2 �C.Wn/.an/ to yn 2 �C.Wn/.b1n/, we
find pn and qn such that kŒxn;pn�k grows sublinearly, kŒpn; qn�k grows linearly, and
dC.Wn/.pn; qn/ is !–a.s. bounded. We then let �4.xa/D .pn[ @Wn/ c an .

Unlike Case 2b of Lemma 8.2, we do not attempt to modify xb1 . If dC.Wn/.�4.an/; b1n/

is still unbounded, we find a microscopic jet J 0 built from subgeodesics �n of Œqn;yn�,
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so that a! … L!.J 0/ by the same argument at Case 2b. The points an and b1n project
to opposite sides of �n so xa 6�x� xb1 . Hence if b1! …L!.J 0/, then we are done, because
L!.J 0/ then separates a! from b1! and hence separates E , which is a contradiction.
But if b1! 2L!.J 0/ then we must have b2! …L!.J 0/, because .b1/! and .b2/! have
distinct images in M!. SW /. Since dC.Wn/.b1n; b2n/ is !–a.s. bounded, we also have
xa 6�x� xb2 , and hence L!.J 0/ separates b2! from a! , and we still have a contradiction.

We conclude that dC.Wn/.�4.an/; b1n/ is !–a.s. bounded, which is what we wanted to
show.

This gives the analogue of Lemma 8.2 for xAD xB [fxag. Now we finish the proof as
we did before: we repeatedly apply this result, bounding first the lengths of the main
geodesics in hierarchies between elements of xA, and then inducting downward to bound
the lengths of geodesics of lower complexities, until only domains of complexity 1 are
left with unbounded diameters.

8.2 Finitely many cubes

As a consequence of Theorem 8.1, we will show that the †–hull of a finite number of
points in a connected top-dimensional manifold is composed of finitely many cubes (in
the sense of Section 3.1). From this we’ll get the statement on finitely many orthants
in a neighborhood of a point.

Theorem 8.5 If A is a finite subset of a connected top-dimensional manifold E

in M!.S/, then †.A/ is contained in a finite union of cubes.

The first step towards establishing this theorem is the following lemma. Here we use
Nr to denote a radius r neighborhood. We will consider a set U which enumerates
the components of an essential subsurface of S , which we abuse notation by also
calling U . Recall that Q.@U/ has a natural product structure M.Uc/�M.U/. We
will be interested in subsets of Q.@U/ of the following form

(8-3) G.A;U ; a/D f�M.Uc/.a/g �
Y

U2jU j

†�0.�M.U /.A//;

where jU j is the set of components of U , and †�0 is defined within M.U / just as it
was in M.S/.

Lemma 8.6 For each integer N , there exists a constant k2 , such that for any finite
set A �M.S/ with #A D N and diamC.S/.An/ < k0 the following holds for each
a 2A: the set †�.A/ is contained in the union of sets

G0.A;U ; a/DNk2
.G.A;U ; a//;

where U varies over all sets of the form U.�; a/ for � 2†�.A/.
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Proof Fix � large enough for Proposition 5.2 (on retractions of †–hulls) to apply.
For later use fix another constant k0 >maxf3.m0C4/; 2m0C �;B� �g, where m0 is
the constant of Lemma 4.2 and B is the constant of Theorem 2.6.

Fix a 2A, and now consider any � 2†�.A/. Following Section 4, we use � and a

to define a partial order among certain subsurfaces of S . As noted in Section 4, the
projections .�W .�// satisfy the consistency conditions with any c1 �m0 . Now define
�k and �k as in Section 4, that is, V �k W if and only if V t @W and

(8-4) dC.V /.�; @W / > k.c1C 4/;

whereas V �k W if and only if V �k W and V t W . We choose c1 so that
k0C � D 3.c1C 4/. In particular F3.�; a/D fW WW �3 ag is the set

fW ¨ S W dC.W /.�; a/ > k0C �g:

Lemma 4.5 now tells us that �2 is a partial order on F3.�; a/. Moreover, by Lemma 4.4,
if V;W 2 F3.�; a/ and if V t W then V;W are �2 –ordered.

The set F3.�; a/ is finite – using the quasidistance formula for example, or Lemma 4.6
– so we can let VDV.�; a/ be the set of �2 –minimal elements. Any two elements of V
are disjoint or nested in S , so let UDU.�; a/ be the subset of V consisting of elements
maximal with respect to containment in S ; thus, U enumerates the components of
an essential subsurface of S . We claim that � is within uniformly bounded distance
of a subset of Q.@U/ of the form G.A;U ; a/, as defined by Equation (8-3), for a
constant �0 depending only on � and �.S/.

To prove this, we first bound dM.S/.�;Q.@U//. By Proposition 3.1, we just need
to establish a bound on dC.W /.�; @U/ for all W that overlap @U . By hypothesis,
diamC.S/.An/ < k0 which implies by Theorem 2.6 a uniform bound on dC.S/.�; @U/;
hence we now assume W ¨ S . Suppose that dC.W /.�; @U/ > 4.c1C 4/. In particular
W �4 U for some U 2 U such that W t @U . Since U �3 a, by Lemma 4.4(2) we
have W �3 a, so that W 2 F3.�; a/.

If W t U then W �3 U and in particular W �2 U , contradicting the minimality
of U . Hence W must contain U . However, by choice of U this means W cannot
be �2 –minimal, so there exists Z 2 F3.�; a/ such that Z �2 W . By Lemma 4.4(1),
Z �2 W �3 U implies that Z �1 U . But in particular this means Z t U so they are
�2 –ordered. U �2 Z would contradict Z �1 U , so we must have Z �2 U , but this
contradicts again the minimality of U .

We conclude that for all W such that W t @U ,

dC.W /.�; @U/� 4.c1C 4/;
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and this gives a bound of the form

dM.S/.�;Q.@U//� k1

for some k1 depending on c1 (and hence on m0 and k0 ).

Next we claim that �M.Uc/.�/ is uniformly close to �M.Uc/.a/. For this, by the
quasidistance formula we need to bound dC.W /.�; a/ for all W � Uc . Suppose
that dC.W /.�; a/ > 3.c1C 4/, and so W 2 F3.�; a/. Since W is disjoint from all
components of U and hence of V , it is not �2 –ordered with or isotopic to any of
them. W cannot be �2 –minimal as then it would have to be one of V . Hence there is
some W 0 �2 W which is �2 –minimal – but then W 0 is in V , and again we have a
contradiction.

Finally we consider �M.U/.�/. Since � 2 †�.A/, for each connected subsurface
W �ı U we have �W .�/ 2N�.hullW .A//, where N�.�/ denotes the radius � neigh-
borhood (this involves an abuse of distance notation, as explained under the heading
“Subsurface projections” in Section 2.1.1). But hullW .A/ is within uniformly bounded
distance of hullW .�M.U/.A// by the coarse composition property of projections
(Lemma 2.12). Hence �M.U/.�/ 2 †�0.�M.U/.A// for some �0 depending on �

and �.S/.

This establishes that � is within uniform distance of the set G.A;U ; a/ described in
(8-3), proving the Lemma.

Proof of Theorem 8.5 From Theorem 8.1 we may assume that A is represented
by .An/ such that, for !–a.e. n, diamC.W /.An/ is bounded by some fixed k0 whenever
�.W / > 1. Let us consider an arbitrary A �M.S/, of fixed cardinality #A D #A,
satisfying this condition.

Let k2 denote the constant given by Lemma 8.6 for #A. Now we would like to bound
the number of U that can occur in the output of Lemma 8.6.

If W occurs as a component of U.�; a/ for some �, then dC.W /.�; a/> k0C� . Since
�W .�/ 2N�.hullW .A//,

diamC.W /.A/ > k0:

By our assumptions about A, this means �.W /� 1. Now define

S1 D fU ¨ S W �.U /D 1 and diamU .A/ > k0g;

S0 D fU ¨ S W �.U /D 0 and diamU .A/ > k0g:

By Theorem 8.3(5), every element in S0[S1 must be the domain of some geodesic in
H.a; b/ for some a; b 2A. Hence the counting argument, Lemma 8.4, directly gives
a bound on the cardinality of S1 .

Geometry & Topology, Volume 16 (2012)



860 Jason Behrstock, Bruce Kleiner, Yair Minsky and Lee Mosher

There is no uniform bound for the cardinality of S0 , but we can control the number
of annuli U 2 S0 which are components of U.�; a/ for some � 2†�.A/. The main
reason for this is the following statement:

(�) For each connected, essential W � S , each essential annulus U �ı W , each
a 2A, and each � 2†�.A/, if diamC.W /.A/ > k0 , and if U is a component of
U.�; a/, then dC.W /.@U;A/� k3 for k3 depending on k0 and #A.

To prove (�), define F3.�; a/ using � as before, and consider two cases depending
on whether W 2 F3.�; a/.

If W … F3.�; a/ then dC.W /.�; a/ � k0C � . Since dC.U /.�; a/ > k0C � > B , any
C.W /–geodesic from �W .�/ to �W .a/ must pass within distance 1 in C.W / of @U ,
by Theorem 2.6. It follows that dC.W /.@U; a/� dC.W /.�; a/C 1� k0C �C 1.

If W 2F3.�; a/ then, since U �ı W , the surface W cannot be a �2 –minimal element
of F3.�; a/, because then W would have been included in U.�; a/ instead of U .
Hence there is some element Y 2 V.�; a/ such that Y �2 W .

We claim that dC.W /.@Y; b/ is bounded for some b 2 A. The argument is similar
to the partial-order arguments in Section 4. Since � 2 †�.A/, we have �Y .�/ 2

N�.hullY .A//. Also, since dC.Y /.�; a/ > k0 C � there must be b 2 A such that
dC.Y /.a; b/ � k0 . Now Y �2 W implies that dC.Y /.�; @W / � 2.c1 C 4/ > m0 so
that dC.W /.�; @Y / < m0 by Lemma 4.2. Further, since dC.W /.a; �/ � k0 , we have
dC.W /.@Y; a/ > k0�m0�2>m0 . Again by Lemma 4.2, we have dC.Y /.@W; a/ <m0 .
Now since dC.Y /.a; b/� k0 we have dC.Y /.@W; b/ > k0�m0� 2>m0 , so applying
Lemma 4.2 one more time we get dC.W /.@Y; b/ <m0 .

Since Y and U are disjoint, we conclude dC.W /.@U; b/ <m0C 1. This finishes the
proof of (�).

Now we can control the number of elements in S0 which occur as components of
U.�; a/ for � 2†�.A/. Given such a U , there exists b 2A such that dC.U /.a; b/�

.k0 � �/=2 > m0 , and so by Theorem 8.3 there exists a geodesic h 2 H.a; b/ with
domain D.h/DW such that �.W /� 1 and U is a component domain of h. Noting
that either h has length � k0 or �C.W /.A/ has diameter > k0 , by applying .�/ it
follows that there exists c 2A such that

dC.W /.@U; c/� k4 Dmaxfk0; k3g:

This restricts @U , for each c , to a segment of length at most 2k4 in h. Now since the
number of hierarchies involved is controlled in terms of #A, and the number of � � 1

surfaces appearing is controlled in terms of #A and k0 by Lemma 8.4, this gives us a
bound on the total number of components of the U.�; a/ as � varies over †�.A/.
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We now apply this result to the sets An in the sequence xA. Each one is covered by the
uniformly bounded number of sets G0.A;U ; a/. Taking rescalings, we obtain in the
asymptotic cone the statement that †.A/ is contained in a finite union of asymptotic
cones of sequences G.An;Un; an/, which by (8-3) must be sets of the form

fx!g �
Y
xU2j xU j

T xU

in Q!.@ xU/, where x! 2M!.xVc/, each component xU of xU has � � 1, and each T xU
is the convex hull of a finite set in the R–tree M!. xU /. Hence each T xU is a finite tree,
so after breaking each tree into a finite union of segments, we obtain the desired finite
union of cubes.

8.3 Local finiteness

The main application of Theorem 8.5 is the following:

Theorem 8.7 y If E �M!.S/ is a connected top-dimensional manifold, then any
compact subset of E is contained in a finite union of cubes.

Proof It suffices to show that a ball B �E is contained in finitely many cubes.

Let B � int.B0/ where B0 is a larger ball. Triangulate @B0 with simplices of diameter
smaller than r , where r will be chosen shortly. Let f0W B

0 ! E be the inclusion
map, and let f1W @B

0!M!.S/ be a †–compatible map with respect to the trian-
gulation, which agrees with f0 on the 0–skeleton; the existence of f1 follows from
Lemma 6.3. By Lemma 6.1 we have d.f0; f1/ < C r , and by Lemma 6.5 there exists
a homotopy hW @B0 � Œ0; 1�!M!.S/ with track diameters at most C 0r , for uniform
constants C;C 0 .

Choose r small enough that C 0r < 1
2
d.B; @B0/. Then we find that the image of h is

disjoint from B .

Extend the triangulation of @B0 to one of B0 without adding any vertices. Then using
Lemma 6.3 again, f1 can be extended to a †–compatible map F W B0!M!.S/ with
respect to this triangulation. Let K be the chain which is the sum of F and h – then
we note that @K D @B0 . By Corollary 6.9, we conclude that B0 � K . Since B is
disjoint from h, we have

B � F:

Now F is contained in the †–hulls of a finite collection of finite subsets of E . By
Theorem 8.5, it must therefore be contained in a finite union of cubes.
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9 Germs and orthants

In this section, we study the local structure of the set of top-dimensional manifolds
passing through a point x 2M!.S/, by considering the germs of such manifolds, and
using the Local Finiteness Theorem 8.7 to relate this to the complex of orthants through
x .

We then apply this to a study of Dehn twist flats in the asymptotic cone M!.S/: given
a sequence x� of pants decompositions of S , we obtain a sequence Q.x�/ of Dehn
twist flats in M.S/, and passing to the rescaled ultralimit we obtain Q!.x�/ which, if
nonempty, is by definition a Dehn twist flat in M!.S/. By Proposition 3.1, Q!.x�/ is
a bilipschitz embedded copy of R�.S/ , although we shall not make use of this property.

The main result is Corollary 9.8, which states that germs of Dehn twist flats passing
through x admit a purely topological characterization. This will be applied in Section 10
in the proof that Dehn twist flats in M!.S/ are preserved by homeomorphisms, and
Dehn twist flats in M.S/ are coarsely preserved by quasi-isometries.

9.1 Poset of germs

Consider the set of closed subsets of M! containing x, modulo the equivalence
C � C 0 if there exists an open neighborhood U of x such that C \U D C 0\U . The
equivalence classes are called germs through x , and we let  .C / denote the germ of C

through x . Note that finite intersection and union yield well-defined operations on the
set of germs, and the subset relation is well-defined as well. Let G denote the poset
(partially ordered set) of germs at x; this is a lattice, meaning that least upper bounds
and greatest lower bounds exist for all pairs C;C 0 2 G , namely C [C 0 and C \C 0 .

A property P of germs at points of M!.S/ is topologically characterizable if any local
homeomorphism of M!.S/ taking x to y takes germs at x satisfying P to germs at
y satisfying P . For example, germs of manifolds are topologically characterizable, as
is the dimension function on such germs.

9.2 Structure of orthants

In this section we fix x 2M!.S/ and study the set of germs of cubes in M!.S/ for
which x is a corner. These germs will be called orthants at x . The goal in this section
is Lemma 9.1 which shows that the poset of nontrivial orthants at x has the structure
of a simplicial flag complex. For this purpose we need to study the relations of equality,
subset and intersection of orthants. The main complication that arises is that an orthant

Geometry & Topology, Volume 16 (2012)



Geometry and rigidity of mapping class groups 863

has many different representations by sequences of cubes in M.S/, so these relations
are not trivial to detect.

Recall from Section 3.3 that if V �ı S satisfies �.V / � 1 then TM.V / denotes a
particular tree quasi-isometric to the marking complex M.V /, which in the annulus
case is a line.

A cube with distinguished corner is a cube C D C.�;W; r/ for which each geodesic
ri � TM.Wi/ has a distinguished endpoint ri.0/. The corner of C is, by definition,
the marking �.C /D f�g �

Q
ri.0/, where the right side is interpreted as usual within

Q.@W /ŠM.W c/�
Q

M.Wi/. Given a sequence C.x�; SW ; xr/ of cubes with distin-
guished corners, we obtain in M!.S/ a cube C! D C!.x�; SW ; xr/ with corner �! .

We recall a few features of the notation for cubes. First, up to ultraproduct equivalence,
the sequence SW D .W n/ of essential subsurfaces can be identified with a finite set
of sequences SW1 D .W

n
1
/; : : : ; SWk D .W

n
k
/ of connected essential subsurfaces such

that (for !–a.e. n) the components of W n are W n
1
; : : : ;W n

k
. Second, the sequence xr

can be identified with a finite set of sequences xr1 D .r
n
1
/; : : : ; xrk D .r

n
k
/ such that rn

i

is a geodesic segment or ray in the tree TM.W n
k
/ with initial point rn

i .0/. Third,
recall from Section 3.4 that the dimension of the asymptotic cube C!.x�; SW ; xr/ is
equal to the number of components xri of xr such that the length of the limiting segment
ri 2M!. SW / is positive – equivalently the lengths l.rn

i / grow linearly. Finally, given
two essential subsurface sequences SW ; xV , up to reindexing we may assume that for
each i; j , if W n

i �i V n
j for !–a.e. n then i D j ; reindexing in this manner is implicit,

for example, in the statement of Lemma 9.1.

Define an orthant at x to be the germ O D  .C!/ of an asymptotic cube C! with
distinguished corner �! D x. A k –orthant is the germ of an asymptotic cube of
dimension k . If an orthant O can be expressed as O D  .C!.x�; SW ; xr// where all
components of SW are annuli, then we say that O is a Dehn twist orthant.

Note that for any orthant O D  .C!.x�; SW ; xr// at x, the asymptotic partial marking
�2M!. SW

c/ is determined by the subsurface sequence SW and the corner x, being
the projection of x to M!. SW

c/.

For example, the germ of every Dehn twist flat is a union of 2�.S/ Dehn twist �.S/–
orthants. To be precise, consider a Dehn twist flat Q!.x�/ through xD x! 2M!.S/,
where base.xi/D �i . Let SW be the sequence of annulus neighborhoods of the pants
decomposition sequence x� . The surface SW c is empty, so we take x� to be the empty
partial marking. The projection of xx to the line TM. SWi/ has two directions denoted
xr1
i ; xr

2
i (using the usual identification between an ultraproduct of finite sets and a finite

subset of an ultraproduct). We may therefore express the germ at x of Q!.x�/ as the
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union of the Dehn twist orthants  .C!.x�; SW ; xr
y|

i //, where the multi-index y| varies
over f1; 2g�.S/ .

First we describe a way to normalize representations of orthants by requiring that
Dehn twists be transparently represented. Given a cube sequence C.x�; SW ; xr/ and a
component SWi we say that r!i is a twist direction in the R–tree M!. SWi/ if r!i has
positive length and there exists a sequence of linearly growing twist segments xsi in
TM. SWi/ such that r!i and s!i have the same germ in M!. SWi/; equivalently, one
can truncate sublinearly growing initial segments of rn

i so that what is left has linearly
growing initial subsegments that are twist segments. A cube sequence C.x�; SW ; xr/

is said to be twist normalized if for each i the segment r!i has positive length, and
r!i is a twist direction if and only if SWi is an annulus. The dimension of a twist
normalized asymptotic cube C!.x�; SW ; xr/ equals the number of components of SW ,
which is therefore well-defined independent of the choice of a twist normalization.
Lemma 9.1(1) shows more, namely that SW itself is well defined up to ultraproduct
equivalence.

We claim that every orthant O can be represented by a twist normalized cube sequence.
To see why, consider an arbitrary representation OD .C!.x�; SW ; xr//. First, for each i

such that r!i has zero length, we can extend x� by the partial marking xri.0/, and then we
can drop the components SWi and xri from the notation, obtaining a new cube sequence
representing O . Next, for each i such that r!i is not a twist direction, it is already true
that SWi is not an annulus sequence. Finally, for each i such that r!i is a twist direction,
if SWi is not already an annulus sequence then we can replace SWi by an annulus
sequence xVi �ı

SWi , and we can replace xri by a linearly growing segment sequence xsi

in TM. xVi/, such that the image of s!i under the embedding M!. xV / ,!M!. SW /

has the same germ as r!i . The result of these replacements is a twist normalized cube
sequence still representing the orthant O .

Define O , the orthant complex at x , to be the poset of all nontrivial orthants at x – all
orthants except for the singleton fxg – with respect to the subset relation. We shall use
junctures to show that O has the structure of a simplicial flag complex. Recall that
a simplicial complex is a flag complex if, whenever a subgraph of the 1–skeleton is
isomorphic to the 1–skeleton of a simplex, it is equal to the 1–skeleton of a simplex in
the given complex.

Lemma 9.1 For any orthants O1;O2 , and for any twist normalized representations
O1 D  .C

!.x�; xV ; xr// and O2 D  .C
!.x�; SW ;xs//, the following hold:

(1) O1 D O2 if and only if for !–a.e. n the following hold: W n �i V n , and for
each i the segments r!i ; s

!
i have the same germ in the R–tree M!. SWi/ D

M!. xVi/.
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(2) O1 �O2 if and only if for !–a.e. n the following hold: each component W n
i

of W n is isotopic to a component V n
i of V n and the segments r!i ; s

!
i have the

same germ in the R–tree M!. SWi/DM!. xVi/. In this case we say that O is a
face of O 0 .

(3) O1\O2 is the maximal common face of O1 and O2 .

Moreover, the poset O is isomorphic to the poset of simplices of a flag complex K ,
having one simplex of dimension k � 1 for each k –orthant.

Remarks Since equality, subset, and intersection are well-defined set theoretic opera-
tions, it follows from items (1)–(3) that the face relation and the “maximal common
face” are well-defined independent of the choice of twist normalized representations,
which is not at all clear a priori.

Proof While items (1) and (3) formally follow from item (2), the proofs of (1–3) will
all follow by studying O1\O2 using junctures.

Let C!
1
DC!.x�; xV ; xr/ and C!

2
DC!.x�; SW ;xs/. To understand C!

1
\C!

2
, recall from

Section 3.4 that this intersection is either empty or equal to the common ultralimit of
the junctures of the approximating cubes. Since both cubes contain x , the empty case
cannot occur, and we are left to study the junctures.

Lemma 3.7 and Lemma 3.9 show that the junctures of the approximating cubes C n
1
D

C.�n;V n; rn/ and C n
2
D C.�n;W n; sn/ are themselves subcubes C n

12
� C n

1
and

C n
21
� C n

2
, which have the form

C n
12 D C.�n;V n; r 0n/;

where r 0n denotes a collection consisting of a subinterval (or point) or each segment
of the collection rn , and similarly

C n
21 D C.�n;W n; s0n/;

where s0n is a collection of subintervals or points of sn . These lemmas also produce
an indexing of V n and W n and a k � 0 so that for !–a.e. n we have: V n

i \
ı W n

j ¤∅
if and only if 1� i D j � k in which case we set U n

i D V n
i \
ı W n

i ; this occurs only if
r 0ni , s0ni have the same length (positive or zero), and all other lengths in r 0n and s0n

are zero. Following our usual ultraproduct convention we can say that xVi \ı
SWj is

nonempty if and only if i D j 2 f1; : : : ; kg, in which case it is isotopic to xUi .

We can and do parametrize each r 0ni in such a way that r 0ni .0/ is the point nearest rn
i .0/,

and so the corner �.C n
12
/Df�ng�

Q
r 0ni .0/ is the nearest corner to �.C n

1
/. Because the
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limiting cube C!
12

contains x , it must be that the ultralimit �!. xC12/ of �.C n
12
/ equals x .

It follows that for each i D 1; : : : ; k we have r 0!i .0/ D r!i .0/, or equivalently the
subsegment of rn

i from rn
i .0/ to r 0ni .0/ grows sublinearly. Similar comments applied

to s0ni yield a corner �.C n
21
/ D f�ng �

Q
s0ni .0/ such that �!. xC21/ D x. A note of

caution is that this does not mean that the initial segments of rn
i and sn

i overlap – again,
there can be large but sublinearly growing initial segments between rn

i .0/ and r 0ni .0/,
and similarly for sn

i and s0ni . Note also from Lemma 3.9 that for each i D 1; : : : ; k we
have Length.r 0ni / � Length.s0ni /, and so the sequences Length.xr 0i /;Length.xs0i/ both
grow linearly or both grow sublinearly.

Hence we conclude that O1\O2 can be identified with the face of O1 associated to
those components SWi of SW where Length.xr 0i / grows linearly, by replacing sublinearly
growing segments xr 0i with the basepoints of xri , and replacing linearly growing seg-
ments xr 0i with initial segments of xri that contain them. The resulting sequence of faces
has an ultralimit that coincides with C!

1
\C!

2
in a neighborhood of x , and hence its

germ is equal to O1\O2 .

Furthermore, we claim that for each i , Length.xr 0i / grows linearly if and only if i 2

f1; : : : ; kg, U n
i �i W n

i �i V n
i for !–a.e. n, and r!i , s!i have the same positive length

germ in M!. SWi/DM!. xVi/.

Once this claim is proved, it follows that the intersection O1\O2 can be described as the
face of O1 associated to those components SWi such that SWi isotopic to a component xVi

of xV and r!i , s!i have the same positive length germ in M!. SWi/ DM!. xVi/, and
O1\O2 is similarly described as a face of O2 . Items (1), (2) and (3) are all immediate
consequences of this description.

For the “if” direction of the claim, suppose that Length.xr 0i / grows sublinearly, that i 2

f1; : : : ; kg, that U n
i �i W n

i �i V n
i for !–a.e. n – so Length.xs0i/ also grows sublinearly

– and that Length.r!i /, Length.s!i / are both nonzero, so Length.xri/, Length.xsi/ both
grow linearly. By Lemma 3.9(2), for !–a.e. n we have r 0ni D s0ni D rn

i \ sn
i in the tree

TM.V n
i /D TM.W n

i /. By truncating sublinearly growing initial subsegments of rn
i

and of sn
i , namely the smallest initial segments containing r 0ni and s0ni , respectively,

we obtain linearly growing segments r 00ni ; s00ni such that r!i D r 00!i and s!i D s00!i ,
and such that r 00ni and s00ni have disjoint interiors, so r 00!i , s00!i have distinct germs in
M!. SWi/DM!. xVi/.

For the “only if” direction, suppose that Length.xr 0i / does grow linearly, implying that
i 2 f1; : : : ; kg and that Length.xs0i/ also grows linearly. If U n

i is an annulus then, by
Lemma 3.9(1), each of r 0ni and s0ni is a twist segment supported by U n

i , and by Dehn
twist normalization it follows that U n

i �i W n
i �i V n

i . If U n
i is not an annulus then

we also have U n
i �i W n

i �i V n
i , because all these surfaces have � D 1 and U n

i is
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essentially contained in each. Applying Lemma 3.9(2), it follows that r 0!i , s0!i have
the same germ in M!. SWi/DM!. xVi/. But r!i ; r

0!
i have the same germ, and s!i ; s

0!
i

have the same germ, so r!i , s!i have the same germ. This completes the proof of
the claim.

We have shown that the intersection of two orthants is an orthant which is equal to a
common face of the two. Also, the poset of nontrivial faces of a k –orthant, meaning
all faces except the singleton fxg, is isomorphic to the lattice of nonempty sets of
components of a k –component surface, which is isomorphic to the poset of faces of
a k � 1 simplex. Having excluded the unique 0–orthant fxg from O , this completes
the proof that O has the structure of a simplicial complex K with one simplex of
dimension k � 1 for each k –orthant.

Now we show that K is a flag complex.

Let O1; : : : ;Ok be distinct 1—orthants which represent vertices of a complete graph
in K , and so for each i; j there is a 2—orthant Oij whose faces are Oi and Oj .
Choose twist normalized representatives Oi D  .C!.x�i ; SWi ; xri// where SWi has a
single component. Choose twist normalized representatives Oij D  .C

!.x�ij ; xVij ;xsij //

where xVij has two components xVi and xVj . By item (2) of the lemma, for !–a.e. n

and each i; j the surfaces W n
i , W n

j are isotopic to distinct components of V n
ij , and we

may choose the notation so that W n
i �i V n

i , W n
j �i V n

j . It follows that W n
i and W n

j

are disjoint and nonisotopic for n in a set Iij of full !–measure. The intersectionT
Iij over all .i; j / still has full !–measure, so we conclude that W n

1
; : : : ;W n

k
are

pairwise disjoint and nonisotopic for !–a.e. n, and we obtain an essential subsurface
SW D SW1[ � � � [

SWk . Let x� be a marking sequence on SW c defined as the projection
�M. SW c/.xx/, and let xr D .xr1; : : : ; xrk/. Then we obtain an orthant

O D  .C!.x�; SW ; xr//:

We need to check that the corner of O , namely the limit of x�Dfx�g�
Q
xri.0/, equals x .

But this is a consequence of the quasidistance formula for d.�n;xn/, in which we
separate the terms ffdZ .�

n;xn/ggA according to whether Z �ı .W n/c , Z �ı W n , or
Z t @W n . The first type of term adds up to an estimate of dM.W n/c .�

n;xn/, which
by definition of x� is bounded. The second type adds up to estimate the finite sumP

i dM.W n
i
/.r

n
i .0/;x

n/, each of whose terms grows sublinearly since the corner of
each 1—orthant Oi is x . The third type is estimated, termwise, by ffdZ .@W

n;xn/ggA ,
which sum up to estimate d.xn;Q.@W n//, by Proposition 3.1. This again grows
sublinearly since x 2

T
i Q!.@ SWi/DQ!.@ SW /. We conclude that d.�n;xn/ grows

sublinearly, so �! D x! .

This tells us that O 2O . It is clear by construction and item (2) of the lemma that Oi

are the vertices of O . This completes the proof.
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The following observation will be used later when we give a topological characterization
of Dehn twist flats.

Corollary 9.2 The germ of every Dehn twist � –orthant is contained in a unique Dehn
twist flat germ.

Proof Consider two Dehn twist flat germs Q!.x�/, Q!.x�
0/ whose intersection con-

tains a common Dehn twist �–orthant O . Let SW , SW 0 be the sequences of annulus
neighborhoods of the pants decomposition sequences x� , x�0 . We obtain two twist
normalized expressions OD .C!.x�; SW ; xr//D .C!.x�0; SW 0; xr 0//. By Lemma 9.1(1)
the sequences SW , SW 0 are !–equivalent, which implies that Q!.x�/DQ!.x�

0/.

9.3 Applying local finiteness

We continue to fix the base point x 2M!.S/. Inside the poset of germs, G , defined in
Section 9.1 we consider the subset consisting of germs at x of submanifolds of M! of
dimension � D �.S/. This subset generates a sublattice F � G by taking finite unions
and intersections. Since germs of manifolds are topologically characterizable, it follows
that germs in F are topologically characterizable. Our goal in this section is to produce
finer topological properties in F , in order to yield a topological characterization of
germs of Dehn twist flats given in Corollary 9.8.

Let �O � G be the sublattice generated from the orthant complex O at x by taking
finite unions and intersections. By Lemma 9.1, �O is isomorphic to the lattice of finite
subcomplexes of the simplicial complex K .

The manifold local finiteness theorem, Theorem 8.7, will imply:

Lemma 9.3 F � �O .

Proof Let M be a manifold of dimension � D �.S/ passing through x . Theorem 8.7
states that there is a neighborhood U of x such that M \U is contained in a finite
union of cubes. After subdivision and possibly replacing U by a smaller open set
containing x, we obtain a finite collection of cubes C1; : : : ;CI , each having x as a
corner, whose union contains M \U . Applying local compactness of M , choose an
open set V � U containing x such that the closure of M \ V is a compact subset
of M \U .

Suppose M\V has nontrivial intersection with the interior of a cube Ci of dimension � .
For j ¤ i 2 f1; : : : ; Ig the intersection Ci \Cj is contained in the boundary of Cj ,
by Lemma 9.1, and so int.Ci/ is disjoint from the closed set Cj . It follows that
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M \ int.Ci/ is open in M . Since M and Ci are both of the same dimension, it
follows from the above combined with invariance of domain that int.Ci/\V �M ,
and so Ci \V �M .

Suppose next that M \V has nontrivial intersection with a cube Cj of dimension < � .
Again by invariance of domain, M \V must meet the interior of some cube Ci of
dimension � having Cj as a face, and so Cj \V � Ci \V �M .

We conclude any germ of a manifold is equal to a finite union of orthants, so F � �O .

To clarify the structure of F , we introduce some more objects.

Consider a top dimensional orthant O and a twist normalized representation O D

 .C!.x�; SW ; xr//. Let the components of SW be SW1; : : : ; SW� . In each SWi we have a
ray ri in the associated R–tree M!. SWi/. Actually we only need to consider the germ
of a ray, but we will still denote it ri . A component SWi is called a boundary annulus
if for !–a.e. n the surface W n

i is an annulus homotopic to the boundary of another
component W n

j , necessarily of complexity 1. Let b.O/D b. SW / denote the number of
boundary annuli, which is a well-defined function of O by Lemma 9.1(1). Note that
b.O/D 0 if and only if all components of SW are annuli, if and only if O is a Dehn
twist orthant, if and only if each xri is a twist direction – the first “if and only if” is a
consequence of top dimensionality, the second is a matter of definition, and the last is
a consequence of twist normalization.

Fix j 2 f1; : : : ; �g, and consider the j –th codimension 1 face of O , obtained by
restricting the ray rj to its initial point. If O 0 D  .C!.x�0; SW 0; xr 0// is another twist
normalized top dimensional orthant meeting O along the j –th codimension 1 face,
then by applying Lemma 9.1(3) it follows that O 0 is obtained from O in one of the
following ways: only the component SWj is changed; or SW 0 and SW are equivalent and
only the ray germ rj is changed (all of these changes are up to !–equivalence). If SWj

is of complexity 1 then there are infinitely many different choices for O 0 , for example
there are infinitely many different ray germs r0j to choose from in the R–tree M!. SWj /.
If SWj is a nonboundary annulus then there are also infinitely many different choices
for O 0 , for instance there are infinitely many annuli SW 0j that can replace SWj . However,
if SWj is a boundary annulus then the only change we can make is to replace rj by the
unique opposite ray germ �rj in the line M!. SWj /.

We conclude that, along each of the bD b.O/ codimension–1 faces of O associated to
boundary annuli, there is a unique orthant adjacent to O . It follows that any manifold
germ M containing O must contain all of these unique neighboring orthants. Further-
more each of these orthants still has the same defining surface SW and the same set of
b boundary annuli, and for all the corresponding faces the unique neighboring orthants
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must be included. We conclude that all 2b orthants obtained in this way must be con-
tained in the germ M . We call this set a lune, and refer to the number b as its rank. We
note that it is naturally identified with a Euclidean spherical lune Rb�.RC/��b\S��1 ,
with its subdivision into Euclidean orthants (ie, spherical simplices).

Lemma 9.4 Lunes are precisely the minimal � –dimensional elements of the lattice F .

Proof Consider L a lune of rank b . We first show that L2F , and that L is a minimal
�–dimensional element of F . As discussed above, L is a union of 2b orthants, and
without loss of generality the associated (germs of) rays for these orthants are of the form

r
j1

1
; : : : ; r

jb

b
; r1

bC1; : : : ; r
1
� ;

where SW1; : : : ; SWb are the boundary annuli in a decomposition SW , and for each
i 2 f1; : : : ; bg we have ji 2 f1; 2g and the ray germs r1

i ; r2
i are opposite pairs.

For each i 2 fbC 1; : : : ; �g we define the following objects. First, choose r2
i to be a

ray in M!. SWi/ with germ distinct from r1
i ; if �. SWi/D 1 make sure that r2

i is not a
twist direction. Next, let xVi be SWi if �. SWi/D 1, and if �. SWi/D 0 let xVi be the unique
sequence (up to the usual ultraproduct equivalence) of �D 1 subsurfaces containing SWi

and disjoint from all the other SWk . We can interpret r1
i , r2

i as ray germs in M!. xVi/

via the natural embedding M!. SWi/!M!. xVi/. Denote s1
i D r1

i . Finally, choose s2
i

to be a ray germ in M!. xVi/ which shares its basepoint with r1
i , r2

i but is distinct from
both. Let SW Œi � be the subsurface sequence obtained from SW by replacing SWi by xVi .

Now for each i 2 fbC 1; : : : ; �g and each tuple y| D .j1; : : : ; j�/ 2 f1; 2g
� , consider

the orthant O Œi �.y|/ formed from SW Œi � and the ray germs

r
j1

1
; : : : ; r

jb

b
; : : : ; r

ji�1

i�1
; s

ji

i ; r
jiC1

iC1
: : :

in other words, we use r
jk

k
for all k except k D i , where we use s

ji

i . Let

M Œi �D
[
y|

O Œi �.y|/:

This is a manifold germ, and our lune L is the intersection

LDM ŒbC 1�\ � � � \M Œ��:

This shows that L is in F . Since any � –dimensional element C of F contained in L

must contain a top dimensional orthant O �L, it follows from the paragraph before
Lemma 9.4 that C contains L, and so L is minimal. Each lune is therefore a minimal
�–dimensional elements of F .
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Now let C be any minimal �–dimensional element of F . Then C must contain a
�–dimensional orthant O , by Lemma 9.3. By the discussion above, C must contain
the lune L determined by O , and by the minimality of C , we have C D L. Each
minimal �–dimensional element of F is therefore a lune.

We will also make use of the following:

Lemma 9.5 For each lune L of rank b there exists a manifold germ containing L

which is a union of 2��b distinct lunes of rank b , no two of which have an orthant in
common.

Proof We borrow the notation of Lemma 9.4, but in this case the construction is
somewhat easier. For each tuple y| D .jbC1; : : : ; j�/ 2 f1; 2g

��b let L.y|/ be the lune
of rank b which is the union of the orthants associated to ray germs

r
j1

1
; : : : ; r

jb

b
; r

jbC1

bC1
; : : : ; r

j�
�

where .j1; : : : ; jb/ varies freely in f1; 2gb . The union of these lunes, over all y| 2
f1; 2g��b , is a manifold germ.

Finally, note that distinct lunes have no orthants in common, by the paragraph before
Lemma 9.4.

Since �O is isomorphic to the poset of finite subcomplexes of the .��1/–dimensional
simplicial complex K of Lemma 9.1, each element C 2 �O determines a simplicial
.��1/–chain with Z2 –coefficients in K , namely the formal sum of the simplices
corresponding to the top dimensional orthants appearing in C . In what follows we will
conflate the chain with C when convenient. Given two chains ˛; ˇ 2 C��1.K/, we
say that ˛ is part of ˇ if ˇ D ˛C˛0 where the chains ˛ and ˛0 have no simplices in
common.

We let L denote the collection of lunes, which by Lemma 9.4 are topologically charac-
terized. Our next goal is a characterization of the rank of lunes as a function on L:

Lemma 9.6 The rank is the unique function f W L! f0; : : : ; �g with the following
property:

� If C is a lune and if f .C /� b 2 f0; : : : ; �g, then f .C /D b if and only if C is
part of a nonzero cycle

2��bX
iD1

Ci ;

such that each Ci is a lune satisfying f .Ci/� b .
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To prove this, we will need a lemma about flag complexes:

Lemma 9.7 Every nontrivial reduced Z2 n–cycle in an n–dimensional flag complex
has cardinality at least 2nC1 .

Proof The lemma obviously holds for 0–dimensional flag complexes, since the support
of a nontrivial reduced 0–cycle must contain at least two vertices.

Assume inductively that nD dim X > 0, and that the lemma holds for flag complexes
of dimension <n. We first observe that the link of any vertex is an .n�1/–dimensional
flag complex, and hence by the induction assumption, the lemma holds for links.

Let M be a Z2 n–cycle in X . Consider two adjacent n–simplices �1; �2 meeting
at a codimension 1 face � . Let vi be the vertex of �i complementary to � . The link
of vi in M is a Z2 .n�1/–cycle, hence by the assumption has cardinality at least 2n .
The lemma would follow if we show that the stars of v1 and v2 do not have common
n–simplices.

Suppose there is such a simplex. Then v1 and v2 must be joined by an edge e . Now
the abstract join � � e is an .nC1/–simplex all of whose edges are in the complex X .
Since X is a flag complex, it must contain an .nC1/–simplex, but this contradicts
dim X D n.

Proof of Lemma 9.6 We will refer to the property stated in Lemma 9.6 as Property S.

We first show that the rank function has Property S. If C is a lune of rank b then,
by Lemma 9.5, C is part of a cycle consisting of 2��b lunes of rank b . Conversely,
suppose b 2 f0; : : : ; �g, C is a lune of rank � b , and C is part of a nonzero cycleP2��b

iD1 Ci where each Ci is a lune of rank � b , so Ci is composed of 2rank.Ci / � 2b

orthants, and the entire cycle is composed of � 2� orthants. Nonzero cycles require
at least 2� orthants by Lemma 9.7, which implies that rank.Ci/D b for all i . Since
C is part of

P
i Ci , the intersection C \Cj must contain a top dimensional orthant

for some j . The minimality property for lunes, Lemma 9.4, implies that C D Cj and
hence rank.C /D rank.Cj /D b . This shows that rank has Property S.

Now suppose f W L! f0; : : : ; �g has Property S, but is not equal to rank. Let b be
the maximum of the integers xb 2 f0; : : : ; �g such that f �1.xb/¤ rank�1.xb/.

Suppose C is a lune of rank b . Then C belongs to a cycle
P2��b

iD1 Ci where rank.Ci/Db.
By choice of b we have f .Ci/ � b . Hence by Property S, we get f .C /D b . Thus
rank�1.b/� f �1.b/.

Now suppose C 2f �1.b/. Then C belongs to a cycle
P2��b

iD1 Ci where f .Ci/�b . By
the choice of b , we have rank.Ci/�b for all i , and by Lemma 9.7 we get rank.Ci/Db
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for all i . We conclude as above, using Lemma 9.4, that C DCj for some j , and hence
rank.C /D b . Thus f �1.b/� rank�1.b/. This contradicts the choice of b .

All the pieces are now in place for the main result of this section:

Corollary 9.8 There is a topological characterization of Dehn twist orthant germs and
Dehn twist flat germs in M!.S/.

Proof Membership in the lattice F is topologically characterized, as is the dimension
function on F . Therefore Lemmas 9.4 and 9.6 give topological characterizations of
lunes and lune rank. Dehn twist �–orthants are the lunes of rank 0, so these are
also topologically characterizable. Dehn twist orthants of arbitrary dimension are
topologically characterized as intersections of sets of Dehn twist �–orthants.

It remains to topologically characterize Dehn twist flat germs – those configurations
of 2� orthants associated to a Dehn-twist flat through x . This boils down to finding a
topological characterization of those antipodal pairs of Dehn twist 1–orthants (also
known as Dehn twist vertices) that occur in Dehn twist flat germs.

Consider a twist normalized Dehn twist vertex O D  .C!.x�; SW ; xr//, so W n is
connected and is an annulus for !–a.e. n. The antipodal point of O is defined
to be �O D  .C!.x�; SW ;�xr//, where xr and �xr have the same initial point but
opposite directions in the line TM. SW /. Note that the antipodal point of O is well-
defined, for suppose that OD .C!.x�0; SW 0; xr 0// is another twist normalized expression.
By Lemma 9.1(1), for !–a.e. n we have W n �i W 0n and r , r0 have the same
direction in the line M!. SW /DM!. SW

0/. Moreover, the asymptotic partial markings
�;�0 2 M!. SW

c/ are each equal to the projection of x. It follows that the two
asymptotic cubes C!.x�; SW ;�xr/, C!.x�0; SW 0;�xr 0/ are equal in M!.S/ and so the
two expressions for the antipodal point  .C!.x�; SW ;�xr// and  .C!.x�0; SW 0;�xr 0//

define the same Dehn twist vertex �O .

This shows that the relation of “antipodal point” gives a decomposition of the set of
Dehn twist vertices into pairs. We now show that antipodal pairs are topologically
characterizable.

Consider a lune of positive rank b > 0. The corresponding decomposition SW contains
b boundary annuli associated to which are b antipodal pairs of Dehn twist vertices that
span a sphere of dimension b� 1 in the orthant complex, which is subdivided in the
standard way into 2b simplices.

These lune boundary spheres are topologically characterizable: they are precisely the
.b�1/–dimensional spheres which may be obtained as the intersection of two lunes
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of rank b . Moreover the simplicial decomposition of such a sphere is topologically
characterizable, since the simplices are Dehn-twist orthants. Hence the pairs of antipodal
vertices of lune boundary spheres are topologically characterizable in terms of this
simplicial structure.

Now any Dehn twist vertex of O can be placed into such a lune boundary sphere,
simply by extending its defining annulus to a decomposition where it is a boundary
annulus. Thus antipodal pairs of Dehn twist vertices may be characterized topologically
as those vertex pairs which may be embedded as antipodal vertices in a triangulated
lune boundary sphere.

To summarize, germs of Dehn twist flats are topologically characterized as those flag
subcomplexes C �O whose vertex set decomposes into a union of � antipodal pairs
of (twist normalized) Dehn twist vertices

˙Oi D  .C
!.x�i ; SWi ;˙xri//; i D 1; : : : ; �;

such that any choice of one vertex from each pair spans a � –orthant: C is the union of
those 2� orthants; by Lemma 9.1(2) applied to any such orthant the annuli SW1; : : : ; SW�

form a sequence of pants decompositions SW ; and the Dehn twist flat germ associated
to SW is C .

9.4 Characterizing Dehn twist flats

We conclude Section 9 with the following observation, which gives a local topological
characterization of Dehn twist flats.

Lemma 9.9 Suppose E �M!.S/ is a connected top-dimensional manifold, and that
for every x 2 E , the germ of E at x is the germ of a Dehn twist flat. Then E is
contained in a Dehn twist flat. If in addition E is a closed subset of M!.S/, then E

is a Dehn twist flat.

Proof Pick any Dehn twist flat E0 �M! such that the interior in E of E \E0 is a
nonempty set U �E . Suppose x 2E lies in the closure of U in M! . Since E0 is a
closed subset of M!.S/, we have x 2E \E0 . By the definition of U , the germ of
E\E0 at x has dimension � , so by Corollary 9.2 it follows that E;E0 have the same
germ at x, and we conclude that x 2 U . Thus U is an open and closed subset of E .
Since E is connected, we have E D U �E \E0 �E0 .

If E is a closed subset of M!.S/, then E \E0 is open and closed in E0 , and hence
E \E0 DE0 .
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10 Finishing the proofs

We are now ready to prove our main theorems on quasi-isometric classification and
rigidity. The proof will follow the general sketch from the introduction. Let us first
state the theorems in their complete form:

Theorem 1.1 (Classification of quasi-isometries) Suppose that �.S/� 2.

If S ¤ S1;2 then quasi-isometries of MCG.S/ are uniformly close to isometries
induced by left-multiplication.

That is, given K; ı > 0 there exists D > 0 such that, if f WMCG.S/!MCG.S/ is a
.K; ı/–quasi-isometry then there exists g 2MCG.S/ such that

d.f .x/;Lg.x//�D for all x 2MCG.S/;

where Lg is left-multiplication by g .

If S D S1;2 then the same result holds if we replace Lg by a quasi-isometry of
MCG.S1;2/ induced by an element g 2MCG.S0;5/ via the standard index 5 embed-
ding MCG.S1;2/=Z.MCG.S1;2// ,!MCG.S0;5/.

Here Z.G/ denotes the center of G , which is trivial for all mapping class groups with
�.S/ > 2; furthermore, in the cases where it is nontrivial, it is finite.

Theorem 1.2 (Quasi-isometric rigidity) If � is a finitely generated group quasi-
isometric to MCG.S/, then there exists a finite-index subgroup � 0 < � and a homo-
morphism

� 0!MCG.S/=Z.MCG.S//

with finite kernel and finite index image.

In the cases of mapping class groups of complexity less than 2, quasi-isometric rigidity
is either trivial or well known. On the other hand, the analogue of Theorem 1.1 fails in
the case of complexity one, as there are quasi-isometries of the free group which are
not a bounded distance from isometries.

An immediate consequence of Theorem 1.1 is the following characterization of the
quasi-isometry group QI.MCG.S//, ie the group of quasi-isometries of MC G.S/

modulo those that are finite distance from the identity.
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Corollary 10.1 If S has complexity at least 2 then the natural homomorphism

MCG.S/=Z.MCG.S//! QI.MCG.S//

is an isomorphism except when S D S1;2 , in which case it is an isomorphism to a
subgroup of index 5.

The proof of this corollary is embedded in the proof of Theorem 1.2 in Section 10.4
below.

10.1 Preservation of asymptotic Dehn twist flats

We begin the proof by showing that the local topological characterization of Dehn twist
flats in the asymptotic cone, given in Lemma 9.9, implies a global characterization:

Theorem 10.2 If �.S/� 2, any homeomorphism f WM!.S/!M!.S/ permutes
the Dehn twist flats in M!.S/.

Proof By Corollary 9.8, any homeomorphism must preserve the set of Dehn twist flat
germs in M!.S/ (with arbitrary basepoints) since they are topologically characterized.
It follows that, at every point in the image f .E/ of a Dehn twist flat E , its germ is
equal to the germ of a Dehn twist flat. Lemma 9.9 therefore implies that f .E/ is itself
a Dehn twist flat.

10.2 Coarse preservation of Dehn twist flats

We next descend to the group itself, where we show that a quasi-isometry of M.S/

coarsely preserves Dehn twist flats, in a uniform sense.

Theorem 10.3 If �.S/� 2, then given K � 1 and C � 0 there exists A such that, if
f WMCG.S/!MCG.S/ is a .K;C /–quasi-isometry and E is a Dehn twist flat in
MCG.S/ then there exists a unique Dehn twist flat E0 such that the Hausdorff distance
between f .E/ and E0 is at most A.

Proof Uniqueness of E0 follows from the fact that distinct Dehn twist flats have infinite
Hausdorff distance, an immediate consequence of Proposition 3.1 and Lemma 3.10.

The existence proof is essentially an argument by contradiction, using Theorem 10.2. If
there is no uniform control of the Hausdorff distance between Dehn twist flats and their
quasi-isometric images, while on the other hand in every limiting situation the Dehn
twist flats are preserved in the asymptotic cone, then in a sequence of counterexamples
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we can carefully select basepoints and scales to get configurations in which the image
of a Dehn twist flat is simultaneously very close to two distinct Dehn twist flats. This
contradicts the fact that distinct Dehn twist flats look different at all scales (Lemma 10.5,
which is a consequence of Lemma 3.3).

We will find the following variation of the Hausdorff metric useful. Given subsets A;B

of a metric space X and a point p 2X , for each r > 0 we define

Dr;p.A;B/D inffs � 0jA\Nr .p/�Ns.B/ and B \Nr .p/�Ns.A/g:

Notice that, if Nr .p/ � Nr 0.p
0/, then Dr;p � Dr 0;p0 . This is not quite a distance

function – it fails the triangle inequality – but it does give a useful criterion for equality
of ultralimits.

In the following lemma we consider a sequence .Xi ;pi/ of based metric spaces with
ultralimit X! . No rescaling is assumed here; in applications below, Xi will be the
rescaled MCG.S/.

Lemma 10.4 Given .Ai/, .Bi/ two sequences of closed subsets, A! D B! if and
only if for each basepoint .qi/ and for each r � 0 the ultralimit of Dr;qi

.Ai ;Bi/ equals
zero.

Proof Suppose that for some .qi/ and some r > 0 we have Dr;qi
.Ai ;Bi/!! � 2

.0;1�. Choose � 2 .0; �/. It follows that, for !–a.e. i , one of the following is true:

(1) Ai \Nr .qi/ 6�N�.Bi/.

(2) Bi \Nr .qi/ 6�N�.Ai/.

Furthermore, either (1) is true for !–a.e. i , or (2) is true for !–a.e. i ; let us assume
the former. From this we conclude that there is a sequence

xi 2Ai \Nr .qi/ nN�.Bi/

for which x! 2A! but the distance between x! and B! is at least �. Hence A!¤B! .

Suppose next that lim! Dr;qi
.Ai ;Bi/ D 0 for all .qi/ and all r � 0. To prove that

A! � B! , consider x! 2 A! represented by a sequence .xi/ at bounded distance
from .qi/, so there exists some r � 0 such that xi 2 Ai \Nr .qi/ !–almost surely.
For any integer k > 0 it follows that xi 2 N1=k.Bi/ !–almost surely, so we may
choose a sequence yk

i 2Bi such that di.xi ;y
k
i / < 1=k !–almost surely, and therefore

yk
! 2B! and d.x! ;y

k
!/� 1=k . The sequence yk

! therefore converges to x! , but this
sequence is in the closed set B! , proving that x! 2B! . A symmetric argument proves
that B! �A! .

Geometry & Topology, Volume 16 (2012)



878 Jason Behrstock, Bruce Kleiner, Yair Minsky and Lee Mosher

We turn now to the proof of Theorem 10.3. Suppose that the theorem is false. Then
we may fix K � 1, C � 0 so that the following is true: for any A � 0 there is a
.K;C /–quasi-isometry f WMCG.S/!MCG.S/, and a Dehn twist flat F , such that
for any Dehn twist flat F 0 , the Hausdorff distance between f .F/ and F 0 is greater
than A.

From this symmetric statement we make the further asymmetric conclusion that for
each s > 0 there is a .K;C /–quasi-isometry f WMCG.S/!MCG.S/ and a Dehn
twist flat F such that for all Dehn twist flats F 0 we have

f .F / 6�Ns.F
0/:

For if not, then there exists s > 0 such that for all .K;C /–quasi-isometries f and all
Dehn twist flats F there exists a Dehn twist flat F 0 such that f .F /�Ns.F

0/. The
closest point projection � from the .K;C /–quasiflat f .F / to the Dehn twist flat F 0

moves points a distance at most s and can therefore be regarded as a .K0;C 0/–quasi-
isometry from Rn to Rn for constants K0;C 0 that depend only on K;C; s . Now any
.K0;C 0/–quasi-isometric embedding from Rn into Rn is a .K0;C 00/–quasi-isometry
where C 00 depends only on K0;C 0 , and n; see, for example, Kapovich [35]. It follows
that � is uniformly onto, meaning that there exists a constant B depending only on
K0;C 0 such that F 0 is in the B neighborhood of �.f .F //, and so F 0�NsCB.f .F //.
This shows that f .F / and F 0 have Hausdorff distance at most s CB , which is a
contradiction for A> sCB .

Fix a sequence si diverging to C1, a sequence fi WMCG.S/!MCG.S/ of .K;C /–
quasi-isometries and a sequence of Dehn twist flats Fi , such that for all i and all Dehn
twist flats F 0 we have

(10-1) fi.Fi/ 6�Nsi
.F 0/:

Since there are finitely many MCG.S/–orbits of Dehn twist flats, by precomposing
with elements of MCG.S/ and extracting a subsequence we may assume that the Fi

takea constant value F . Fix a base point p0 2 F . By post-composing with elements
of MCG.S/ we may assume that fi.p0/ D p0 , and in particular p0 2 fi.F /, for
all i . We may therefore pass to the asymptotic cone with base point p0 and scaling
sequence si producing a bilipschitz homeomorphism f! WM!.S/!M!.S/ and a
Dehn twist flat F! D lim!.F /, the asymptotic cone of F . Applying Theorem 10.2
we obtain a Dehn twist flat F 0! D lim! F 0i such that f!.F!/ D F 0! . By applying
Lemma 10.4 it follows that, fixing any R> 0,

(10-2)
1

si
DRsi ;p0

.fi.F /;F
0
i /!! 0:
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On the other hand, (10-1) implies that there is a point qi 2 fi.F /�Nsi
.F 0i /, and so

for any r > 0 the following statement is always true:

(10-3) Dr;qi
.fi.F /;F

0
i / > si :

In order to get a contradiction out of (10-2) and (10-3) we shall reapply Theorem 10.2
to a properly chosen sequence of intermediate basepoints, near which fi.F / is still
close to F 0i , but sufficiently far that another Dehn twist flat, F 00i , is also close to it. The
contradiction will then come from the following rigidity property of Dehn twist flats,
which expresses that any Dehn twist flat spreads away from any other one in a linear
fashion:

Lemma 10.5 There exists �1 2 .0; 1/ such that for any sufficiently large r , any
x 2MCG.S/, and any Dehn twist flats F1 , F2 , if F1\Nr=2.x/¤∅ and if

F1\Nr .x/�N�1r .F2/

then F1 D F2 .

Proof Express Fi as Q.Pi/ for a pants decomposition Pi (i D 1; 2). Lemma 3.3
implies that the junctures of Q.P1/ and Q.P2/ are E1 D Q.P1 c P2/ and E2 D

Q.P2 cP1/. Note that P1 cP2 is a marking with base equal to P1 , and a transversal
for each component of P1 that is not a curve of P2 . Hence, assuming F1 ¤ F2 , E1

and E2 must be subflats of strictly smaller dimension. The pair .Fi ;Ei/ is therefore
uniformly quasi-isometric to the pair .R� ;Rk/ for some k < � D �.S/.

If F1 meets Nr=2.x/ then pick y 2 F1 such that d.x;y/� r=2. Lemma 3.3 implies
that for any z 2 F1 the distance d.z;F2/ is bounded below (up to uniform coarse-
Lipschitz error) by the distance d.z;E1/. Now use the elementary fact that for any
y 2 R� and any R > 0 the Euclidean R–ball around y contains a point z that is
not contained in the Euclidean .R=2/–neighborhood of Rk . After adjusting for the
multiplicative errors, and setting r large enough to overcome the additive errors, we
find that for suitable �0

1
; �1 > 0 we have

F1\Nr=2.y/ 6�N�0
1
r .E1/

and so

F1\Nr=2.y/ 6�N�1r .F2/:

Since Nr=2.y/ is contained in Nr .x/, this is what we wanted to prove.
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Let �2Dminf1=R; �1=2g. Applying (10-2) and (10-3), !–almost surely the following
two statements are true:

DRsi ;p0
.fi.F /;F

0
i /� �2Rsi :

DRsi ;qi
.fi.F /;F

0
i / > si � �2Rsi :

For each i , consider a sequence .pi;k/ starting at p0 and ending with qi , with step
size d.pi;k ;pi;kC1/ � 1. There must be some j such that, labeling xi D pi;j and
x0i D pi;jC1 ,

(10-4) DRsi ;xi
.fi.F /;F

0
i /� �2Rsi

but such that

(10-5) DRsi ;x
0
i
.fi.F /;F

0
i /� �2Rsi :

Now assuming �2Rsi > 1 (which is true for large enough i ), we have NRsi
.x0i/ �

NRsi .1C�2/.xi/ and hence (10-5) implies

(10-6) DRsi .1C�2/;xi
.fi.F /;F

0
i /� �2Rsi :

Now we apply Theorem 10.2 again, this time using .xi/ as the basepoints, and we
conclude via Lemma 10.4 that there exists a sequence .F 00i / of Dehn twist flats such
that, for !–almost every i ,

(10-7) DRsi .1C�2/;xi
.fi.F /;F

00
i / < �2Rsi ;

and in particular F 00i ¤ F 0i for !–a.e. i , by (10-6). Now (10-7) implies in particular
that

fi.F /\BRsi .1C�2/.xi/�N�2Rsi
.F 00i /:

Moreover by (10-4) we have

F 0i \NRsi
.xi/�N�2Rsi

.fi.F //

and moreover (by the triangle inequality)

F 0i \NRsi
.xi/�N�2Rsi

.fi.F /\NRsi .1C�2/.xi//:

Putting this together we see

(10-8) F 0i \NRsi
.xi/�N2�2Rsi

.F 00i /:

Now since xi 2 fi.Fi/ we note that N�2Rsi
.xi/, which is contained in NRsi=2.xi/,

intersects F 0i nontrivially. Now (10-8) implies, by Lemma 10.5 (noting 2�2 � �1 ), that
F 0i D F 00i , a contradiction.
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10.3 Quasi-isometry classification

We are now ready to prove Theorem 1.1, classifying quasi-isometries of MCG.S/�
M.S/. The first step is to show that a .K;C /–quasi-isometry f WM.S/!M.S/

induces an automorphism of the curve complex �W C.S/! C.S/.

First we define � on the vertex set C0.S/. Given a vertex c 2 C0.S/, choose a Dehn
twist 1–flat Q.�/ representing c , as defined in Section 3.5. We claim that there
exists a Dehn twist 1–flat Q.�/ at finite Hausdorff distance from f .Q.�//. From this
claim, choose a vertex d 2 C0.S/ represented by Q.�/, define �.c/D d , and apply
Lemma 3.10(2) to conclude that �.c/ is well-defined. To prove the claim, first apply
Lemma 3.11 to obtain two maximal Dehn twist flats Q.�0/, Q.�1/ whose coarse
intersection is represented by Q.�/. Then apply Theorem 10.3 to obtain Dehn twist flats
Q.�0

0
/, Q.�0

1
/ at finite Hausdorff distance from f .Q.�//, f .Q.�1// respectively.

The coarse intersection of Q.�0
0
/ and Q.�0

1
/ is represented by f .Q.�//, and also by

Q.�0
0
c�0

1
/ according to Lemma 3.11. It follows that Q.�0

0
c�0

1
/ is quasi-isometric

to f .Q.�// which is quasi-isometric to R, and so Q.�0
0
c�0

1
/ is a Dehn twist 1–flat.

The proof of the claim in the previous paragraph also shows for any k D 0; : : : ; � that
the image under f of any Dehn twist k –flat is coarsely equivalent to a Dehn twist
k –flat. The dimension k only plays a role in the final sentence of the paragraph, in
which R is replaced by Rk .

To prove that � is a bijection of C0.S/, apply the same process to a coarse inverse
xf WM.S/!M.S/ to obtain a map x�W C0.S/! C0.S/. The curve c00 D x�.c0/ is

represented by a Dehn twist 1–flat Q.�00/ at finite Hausdorff distance from xf .Q.�0//.
The latter is at finite Hausdorff distance from xf .f .Q.�//, which is at finite Haus-
dorff distance from Q.�/ because f and xf are coarse inverses. The Dehn twist
1–flat Q.�/ therefore represents both c and c00 , and it follows that cD c00 by applying
Lemma 3.10 (2). This shows that x�� is the identity, and a similar proof shows that
�x� is the identity.

We next show that two vertices c0; c1 2 C.S/ are endpoints of an edge of C.S/ if and
only if �.c0/, �.c1/ are endpoints of an edge of C.S/. We need only prove the “only if”
direction, the converse following by the same argument applied to a coarse inverse for f .
Assuming c0; c1 are endpoints of an edge in C.S/, this edge is represented by some
Dehn twist 2–flat Q.�/. The image f .Q.�// is coarsely equivalent to some Dehn twist
2–flat Q.�0/ which represents an edge with endpoints d0; d1 2 C.S/. We must show
that f�.c0/; �.c1/gD fd0; d1g. Let Q.�0/, Q.�1/ be Dehn twist 1–flats representing
c0; c1 , and let Q.�0

0
/, Q.�0

1
/ be Dehn twist 1–flats representing �.c0/, �.c1/. By

Lemma 3.10(1) each of Q.�0/, Q.�1/ is coarsely contained in Q.�/, and so each of
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Q.�0
0
/, Q.�0

1
/ is coarsely contained in Q.�0/, and by Lemma 3.10(1) again it follows

that �.c0/; �.c1/ 2 fd0; d1g. Since c0 ¤ c1 it follows that Q.�0/, Q.�1/ are not
coarsely equivalent, so Q.�0

0
/, Q.�0

1
/ are not coarsely equivalent, so �.c0/¤ �.c1/,

from which it follows that f�.c0/; �.c1/g D fd0; d1g.

This finishes the description of the automorphism �W C.S/! C.S/ induced by f .

Now suppose that S ¤ S1;2 , returning to the case of S1;2 in the end. The theorem of
Ivanov, Korkmaz and Luo shows that � is induced by some mapping class ˆ2MCG.S/
[34; 37; 38]. We must show that the quantity

d.f;ˆ/D inf
x2M.S/

d.f .x/; ˆ.x//

is bounded by a constant depending only on K , C , and the topology of S .

Consider a Dehn twist flat Q.�/. Theorem 10.3 tells us that the Hausdorff distance
between f .Q.�// and some Dehn twist flat Q.�0/ is bounded uniformly in terms
of K , C , and the topology of S . We claim that �0 D ˆ.�/. To prove this let
� D fc1; : : : ; c�g, and let c0i D ˆ.ci/, and so ˆ.�/ D fc0

1
; : : : ; c0

�
g. Let Q.�i/ be

Dehn twist 1–flats representing ci , i D 1; : : : ; � , and so Q.�i/ is coarsely contained
in Q.�/. The image f .Q.�i// has finite Hausdorff distance from some Dehn twist
1–flat Q.�0i/ representing c0i , and so Q.�0i/ is coarsely contained in Q.�0/ as well
as in Q.ˆ.�//. It follows that c0i 2 �

0 , and so ˆ.�/� �0 . But �0; ˆ.�/ are sets of
the same cardinality � , and so ˆ.�/D �0 , proving the claim.

We now find a uniform bound to d.f .x/; ˆ.x// for each x2M.S/. From Lemma 3.11
we obtain two Dehn twist flats Q.�0/, Q.�1/ whose coarse intersection is represented
uniformly by the point x , with constants depending only on the topology of S . Apply-
ing ˆ, we obtain pants decompositions �0i Dˆ.�i/ and the coarse intersection of the
corresponding Dehn twist flats Q.�0

0
/, Q.�0

1
/ is represented uniformly by the point

ˆ.x/ in terms of the topology of S only. Letting �0
0
D �0

0
c�0

1
and �0

1
D �0

1
c�0

0
, the

junctures Q.�0
0
/, Q.�0

1
/ also represent the coarse intersection, and so must be single

points �0
0

, �0
1

respectively. Choose points yi 2Q.�0i/ whose distance to ˆ.x/ is � C

depending only on the topology of S , and so d.y0;y1/� 2C . By Lemma 3.3(3) we
obtain a bound on d.y0; �

0
0
/, and so also a bound on d.ˆ.x/; �0

0
/, depending only on

the topology on S .

On the other hand, applying the map f , and using the bound on the Hausdorff distance
between f .Q.�i// and Q.�0i/, the point f .x/ also uniformly represents the coarse
intersection of Q.�0

0
/ and Q.�0

1
/, the bounds now being in terms of K , C , and the

topology of S . The same argument as in the last paragraph, using Lemma 3.3(3), now
produces a bound on d.f .x/; �0

0
/ depending only on K , C , and the topology of S .
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Combining the last two paragraphs, we obtain the desired bound on d.f .x/; ˆ.x//,
completing the proof when S ¤ S1;2 .

In the case of S DS1;2 , we still get an automorphism �W C.S1;2/! C.S1;2/ as before,
but it may no longer be induced by a mapping class of S1;2 . This is a finite-index
problem caused by the hyperelliptic involution � W S1;2! S1;2 which we now recall.
See Luo [38].

The map � interchanges the two punctures of S1;2 . The quotient of S1;2 by � , minus
the four branch points, is S0;5 . Since � is central in MCG.S1;2/, every element
descends to S0;5 and we get a map ˇWMCG.S1;2/!MCG.S0;5/ whose kernel is
the center h�i � Z=2Z. The image has index 5, because an element of MCG.S0;5/

lifts if and only if it preserves the puncture which is the image of the two punctures
of S1;2 . Hence ˇ is a quasi-isometry, and we let ˇ0WMCG.S0;5/!MCG.S1;2/ be
a quasi-inverse.

Now any quasi-isometry f WMCG.S1;2/!MCG.S1;2/ gives rise to a quasi-isometry
f 0 D ˇ ı f ıˇ0 , and Theorem 1.1 applied to S0;5 gives an element g 2MCG.S0;5/

such that d.f 0;Lg/ is bounded. If g is in the index 5 image of MCG.S1;2/ then a
preimage h 2MCG.S1;2/ works for h, ie, d.f;Lh/ is bounded. If not, then at least
we can produce the “almost-geometric” quasi-isometry LD ˇ0 ıLg ıˇ , and obtain a
bound on d.f;L/. This completes the proof.

10.4 Quasi-isometric rigidity

We conclude with the proof of Theorem 1.2, quasi-isometric rigidity of MCG.S/. The
argument here is well-known; cf Schwartz [52].

Let G DMCG.S/. We may assume �.S/ � 2 as the finite and virtually free cases
are already known. Left-multiplication gives a homomorphism �W G! QI.G/, where
QI.G/ is the group of quasi-isometries of G modulo the bounded-displacement sub-
group. The kernel of � is the center Z DZ.G/ (in general, ker� consists of those
elements whose centralizer has finite index in G . For MCG.S/ it is easy to show that
the center are the only such elements).

Now supposing S ¤ S1;2 , Theorem 1.1 implies that � is surjective. Hence we have
QI.G/DG=Z (this is Corollary 10.1).

Now if � is quasi-isometric to G then conjugation by the quasi-isometry ˆ gives an
isomorphism QI.�/Š QI.G/ so we get a map �0W � ! QI.G/. Moreover ker�0 is
finite: for each  2 � , the quasi-isometry ˆLˆ

�1 representing �0. / has uniformly
bounded constants (depending on ˆ), and hence by Theorem 1.1 is a uniformly bounded
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distance from its approximating element of G . Hence if  2 ker�0 , the approximating
element is in Z , and so  is restricted to a bounded set in � . Thus ker�0 is finite.

Finally, the image of �0 has finite index in QI.G/: this follows from the fact that
the left-action of � on itself is transitive, and hence the conjugated action on G is
cobounded. This gives the desired map �!G=Z with finite kernel and finite-index
image.

If G DMCG.S1;2/, we observe as in the proof of Theorem 1.1 that G=Z injects as a
finite-index subgroup of G0 DMCG.S0;5/, and hence it inherits the rigidity property
from G0 with the additional cost of restricting to a finite-index subgroup of � .
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