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Abstract. The rank of a hierarchically hyperbolic space is the maximal number of un-
bounded factors in a standard product region. For hierarchically hyperbolic groups, this
coincides with the maximal dimension of a quasiflat. Several noteworthy examples for which
the rank coincides with familiar quantities include: the dimension of maximal Dehn twist
flats for mapping class groups, the maximal rank of a free abelian subgroup for right-angled
Coxeter groups and right-angled Artin groups (in the latter this can also be observed as the
clique number of the defining graph), and, for the Weil–Petersson metric, the rank is the
integer part of half the complex dimension of Teichmüller space.

We prove that, in a hierarchically hyperbolic space, any quasiflat of dimension equal to the
rank lies within finite distance of a union of standard orthants (under a very mild condition
on the HHS satisfied by all natural examples). This resolves outstanding conjectures when
applied to a number of different groups and spaces.

In the case of the mapping class group, we verify a conjecture of Farb; for Teichmüller
space we answer a question of Brock; in the context of certain CAT(0) cubical groups, our
result handles novel special cases, including right-angled Coxeter groups.

An important ingredient in the proof, which we expect will have other applications, is
that the hull of any finite set in an HHS is quasi-isometric to a CAT(0) cube complex of
dimension bounded by the rank (if the HHS is a CAT(0) cube complex, the rank can be
lower than the dimension of the space).

We deduce a number of applications of these results. For instance, we show that any
quasi-isometry between HHSs induces a quasi-isometry between certain factored spaces,
which are simpler HHSs. This allows one, for example, to distinguish quasi-isometry classes
of right-angled Artin/Coxeter groups.

Another application of our results is to quasi-isometric rigidity. Our tools in many
cases allow one to reduce the problem of quasi-isometric rigidity for a given hierarchically
hyperbolic group to a combinatorial problem. As a template, we give a new proof of
quasi-isometric rigidity of mapping class groups, which, once we’ve established our general
quasiflats theorem, uses simpler combinatorial arguments than in previous proofs.
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Introduction

A classical result of Morse shows that, in a hyperbolic space, quasigeodesics lie close to
geodesics [Mor24]. This raises the question of what constraints exist on the geometry of
quasiflats in more general coarsely non-positively curved spaces.

A key step in proving Mostow Rigidity is proving that an equivariant quasi-isometry
of a symmetric space sends each flat to within a bounded neighborhood of a flat [Mos73].
Unlike a quasigeodesic in a hyperbolic space, a quasiflat need not lie close to any one flat.
However, generalizing Mostow’s result, Eskin–Farb and Kleiner–Leeb each proved that, in a
higher-rank symmetric space, an arbitrary quasiflat must lie close to a finite number of flats
[EF97, KL97b]. This result can be used to prove quasi-isometric rigidity for uniform lattices
in higher-rank symmetric spaces [KL97b]; see also [EF97].

In this paper, we explain the structure of quasiflats in a broad class of spaces and groups
with a property called hierarchical hyperbolicity [BHS17b, BHS19, BHS17a]. Hierarchical
hyperbolicity captures the coarse nonpositive curvature visible in many important groups
and spaces, including mapping class groups, right-angled Artin groups, many CAT(0) cube
complexes, most 3–manifold groups, Teichmüller space (in any of the standard metrics), etc.

Hierarchical hyperbolicity generalizes, and was inspired by, theorems about the mapping
class group established by Masur–Minsky [MM00], Behrstock [Beh06], and others. Motivation
also comes from Kim–Koberda’s work towards obtaining an analogue of some of those mapping
class group results in the setting of right angled Artin groups [KK14]. To approach other
problems, some features of the mapping class group were axiomatized by Bestvina–Bromberg–
Fujiwara to great effect [BBF15, BBF19].

The class of hierarchically hyperbolic spaces is preserved by quasi-isometries, and also
includes many examples not on the preceding list: one can readily produce new hierarchically
hyperbolic spaces from old. In particular, trees of hierarchically hyperbolic spaces satisfying
natural constraints (and thus many graphs of hierarchically hyperbolic groups) are again
hierarchically hyperbolic [BHS19, BR17]. Groups that are hyperbolic relative to hierarchically
hyperbolic groups are again hierarchically hyperbolic [BHS19]. It is shown in [BHS17a]
that suitable small-cancellation quotients of hierarchically hyperbolic groups are again
hierarchically hyperbolic.

This article establishes a relationship between some of these examples: in particular, we
show that these spaces all admit a very strong local approximation by CAT(0) cube complexes
(Theorem F). This allows us to use cubical techniques in new settings. For example, it enables
application of cubical geometry to mapping class groups.

Even for CAT(0) cube complexes our approximation provides new information. The reason
is that Theorem F allows one to approximate convex hulls of finite sets in an HHS by finite
CAT(0) cube complexes, and if the ambient HHS is a CAT(0) cube complex, the dimension
of the approximating complex — which is bounded by the rank — can be much lower than
the dimension of the ambient complex. This is essential for our applications to quasiflats.

Our techniques are intrinsic to the category of hierarchically hyperbolic spaces, in the
sense that the arguments in this paper couldn’t be carried out strictly in the context of any
of the motivating examples alone, for example CAT(0) cube complexes or mapping class
groups.

Formal definitions and relevant properties of hierarchically hyperbolic spaces (HHSs) will
be given below in Section 1. For now, we recall that a hierarchically hyperbolic space consists
of: a quasigeodesic metric space, X ; an index set, S; a hyperbolic space CU for each U P S;
some relations between elements of the index set and maps between the associated hyperbolic
spaces. There are also projections X Ñ CU,U P S, and various axioms governing all of this
data.
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Before stating the main theorem, we informally recall a few geometric features of HHSs:

‚ Any HHS X contains certain standard product regions, in which each of the (boundedly
many) factors is itself an HHS.

In mapping class groups, these are products of mapping class groups of pairwise
disjoint subsurfaces (for example the subgroup generated by Dehn twists along disjoint
annuli). In CAT(0) cube complexes, these are certain convex subcomplexes that split
as products (for example in the Salvetti complex of a right-angled Artin group, they
are subcomplexes associated to subgraphs of the defining graph that decompose as
joins).

‚ Pairs of points in X can be joined by particularly well-behaved quasigeodesics called
hierarchy paths, and similarly we have well-behaved quasigeodesic rays called hierarchy
rays. Given a standard product region P , and a hierarchy ray in each of the k factors
of P , the product of the k hierarchy rays r0,8q Ñ X is a quasi-isometric embedding
r0,8qk Ñ X which we call a standard orthant.

‚ The rank ν of an HHS is the largest possible number of factors in a standard product
region, each of whose factors is unbounded. (Equivalently, it is the maximal integer so
that there exist pairwise orthogonal U1, . . . , Uν P S for which each CUi is unbounded.)

We will impose a mild technical assumption on our spaces, which we call being asymphoric;
this condition is satisfied by the motivating examples of HHSs, including all hierarchically
hyperbolic groups. Under this condition, Theorem 1.15 implies that the rank is a quasi-
isometry invariant.

Quasiflats. Understanding the structure of quasiflats in a given metric space or group is
often critical in understanding the geometry of that space.

An early version of a “quasiflats theorem” is Mostow’s result that in a rank-one symmetric
space, any quasi-geodesic lies within a uniformly bounded distance of a geodesic [Mos73].

A well known generalization of this is due to Schwartz, who proved that the image of any
quasi-isometric embedding of Rn, n ě 2 into a non-uniform lattice in a rank-one symmetric
space lies within a uniformly bounded distance of a horosphere [Sch95]. (Actually, Schwartz
proved a more general result, namely that the image of any quasi-isometric embedding from
a space whose asymptotic cone doesn’t have cut-points into a “neutered space” lies uniformly
close to a horosphere; he credits unpublished work of Gersten for the case of Euclidean space.)

Schwartz’s result was generalized by Druţu-Sapir, who replaced the target space by an
arbitrary relatively hyperbolic space and showed that the image of the quasi-isometric
embedding lies uniformly close to a peripheral subspace [DS05].

This result was in turn generalized by Behrstock–Druţu–Mosher, who weakened the
hypothesis on the domain to allow any space which is itself not relatively hyperbolic [BDM09].

As noted above, Eskin–Farb and Kleiner–Leeb proved that, in a higher-rank symmetric
space, an arbitrary quasiflat must lie within finite distance of a finite number of flats
[EF97, KL97b].

As discussed further below, there has been much work toward quasiflats theorems in other
contexts. We now state our main result in this direction, explain some consequences, and
describe interactions with related work. At the end of the introduction we sketch the proof.

Theorem A (Quasiflats Theorem for HHSs). Let X be an HHG of rank ν. Let f : Rν Ñ X
be a quasi-isometric embedding. Then there exist standard orthants Qi Ď X , i “ 1, . . . , k, so
that dhauspfpRνq,Yki“1Qiq ă 8. More generally, the same result holds for any space X which
is an asymphoric HHS of rank ν.

We now give a few immediate applications of this theorem and discuss related results.
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Mapping class groups have been studied for the past two decades using tools introduced
by Masur–Minsky [MM00]; these tools were then further developed in [Beh06, BKMM12]
and elsewhere. The results of [Beh06, BKMM12, MM00] together show that mapping class
groups are hierarchically hyperbolic; see [BHS19, Theorem 11.1] for details. Theorem A,
applied to mapping class groups, resolves a conjecture of Farb. Outside of the hyperbolic
cases, this question was completely open.

Corollary B (Farb Conjecture: Quasiflats theorem for mapping class groups). Any top-
dimensional quasiflat in the mapping class group lies within a uniformly bounded distance
from a finite union of standard flats.

Although the structure of quasiflats in the mapping class group was unsettled, numerous
prior results were obtained in pursuit of the resolution of this conjecture. One partial result
in this direction was Behrstock–Minsky’s theorem that Rn can only be quasi-isometrically
embedded in a given mapping class group if n is at most the complexity of the surface
[BM08a]. This established the dimension of the top-dimensional quasiflats in the mapping
class group.

Also significant are a number of results which give some local control of top-dimensional
quasiflats in the mapping class group. In particular, see results of Behrstock–Kleiner–Minsky–
Mosher [BKMM12], Bowditch [Bow18b], and Eskin–Masur–Rafi [EMR17]. Although those
prior results yield some control over quasiflats, Theorem A is the first to completely describe
the structure of quasiflats in the mapping class group. As we will describe in more detail later,
we use some of the tools developed by Bowditch in [Bow18b] in our proof of Theorem A.

Outside of the setting of groups, we apply Theorem A to the Weil-Petersson metric
on Teichmüller space, which is an asymphoric HHS by virtue of Brock’s theorem that
the pants graph is quasi-isometric to the Weil-Petersson metric [Bro03] and results of
[Beh06, BKMM12, MM00]; for details see [BHS17b, Theorem G].

Brock asked whether every top-dimensional quasiflat in the Weil-Petersson metric is a
bounded distance from a finite number of top-dimensional flats [Bro02, Question 5.3]. From
Theorem A we obtain the following, answering his question in the affirmative.

Corollary C (Affirmation of Brock’s Question: Quasiflats theorem for Weil-Petersson
metric). Any top-dimensional quasiflat in the Weil-Petersson metric on Teichmüller space
lies within a uniformly bounded distance from a finite union of standard flats.

The previously answered cases of Brock’s question were: in the rank one cases, a positive
answer comes from Brock–Farb’s result that the space is hyperbolic [BF06]; in the three
rank-two cases, Brock–Masur proved that the space is relatively hyperbolic and thus that each
quasiflat is contained in a single peripheral subset [BM08b, Theorem 3]. In the general case,
there were partial results providing coarse local control; in particular, there are theorems about
flats being locally contained in linear size neighborhoods of standard flats, e.g., [BKMM12,
Theorem 8.5] and [EMR17, Theorem A].

Fundamental groups of non-geometric 3–manifolds are HHSs of rank 2 [BHS19, Theorem
10.1]. For these groups, Theorem A allows us to recover the following quasiflats theorem,
which was first established by Kapovich–Leeb:

Corollary D (Quasiflats theorem for non-geometric 3–manifolds; [KL97a]). Any top-
dimensional quasiflat in a non-geometric 3–manifold is a uniformly bounded distance from a
finite union of standard flats.

Some quasiflat theorems have previously been obtained for CAT(0) spaces satisfying
particular conditions.

One such result is due to Bestvina–Kleiner–Sageev, who proved that, for two-dimensional,
proper, piecewise Euclidean CAT(0) complexes admitting cocompact group actions, every
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two-dimensional quasiflat lies within finite distance from a subset which is locally flat outside
a compact set [BKS16].

Generalizing that result, Huang proved that in an N–dimensional CAT(0) cube complex,
every N–dimensional quasiflat lies within finite distance from a finite union of standard
orthants [Hua14b]. The following corollary of Theorem A generalizes the above noted
theorems of [BKS16] and [Hua14b] in certain cocompact cases:

Corollary E (Quasiflats theorem for cubulated groups with factor systems). Let X be a
CAT(0) cube complex admitting a factor system in the sense of [BHS17b]. Let ν be the
maximum dimension of an `1–isometrically embedded cubical orthant in X . Let f : Rν Ñ X be
a quasi-isometric embedding. Then dhauspfpRνq,Yki“1Qiq ă 8, where each Qi can be chosen
to be:

‚ an `1–isometrically embedded copy of the standard cubical tiling of r0,8qν , or
‚ if X admits a cocompact group action, a CAT p0q–isometrically embedded copy of
r0,8qν with the Euclidean metric.

It was established in [BHS17b] that all CAT(0) cube complexes with proper, cocompact,
cospecial (in the sense of Haglund-Wise [HW08]) group actions admit factor systems. More
generally, it is shown in [HS18] that a CAT(0) cube complex X has a factor system whenever
it admits a proper cocompact action by a group G satisfying any one of a number of natural
algebraic conditions, e.g., finite height for hyperplane stabilizers or other weak versions of
virtual cospecialness of the G–action. In fact, that paper contains a characterization of actions
that give rise to a factor system. We are not aware of any proper CAT(0) cube complex that
admits a proper cocompact group action but does not contain a factor system (indeed, we
have conjectured that all cubical groups admit factor systems, see [BHS19, Conjecture A]).

Proof of Corollary E. As shown in [BHS17b], X p1q with the combinatorial metric admits an
HHS structure based on the construction in [BHS17b, Section 8]. In particular, the hierarchy

paths/rays in X p1q are combinatorial geodesics, so standard ν–orthants can be taken to be
`1–embedded copies of the standard cubical tiling of r0,8qν . By Theorem A we are done, if
we choose all our Qi to be of the first type listed above.

To conclude, it suffices to produce N so that for any `1–isometric embedding o :
śν
i“1 γi Ñ

X with γi a combinatorial geodesic ray, there is a CAT(0) orthant o1 with dhauspimpoq, o
1q ď N .

For each i, let Yi be the convex hull of γi, i.e., the intersection of all combinatorial half-
spaces containing γi. Then the hull of impoq decomposes as

śν
i“1 Yi. Since Yi contains a

CAT(0)–geodesic ray crossing all hyperplanes, it suffices to show that Yi lies uniformly close
to γi. But if there is no such bound, then for any m, we can choose o so that for some
i, we have an `1–isometric embedding r0,ms2 Ñ Yi, and thus an `1–isometric embedding
r0,ms2ˆr0,8qν´1 Ñ X . Cocompactness would then allow us to produce a pν`1q–dimensional
cubical orthant in X , which is impossible by our choice of ν. �

The quasiflats in Corollary E may have dimension strictly less than the dimension of X ,
since a cube complex may contain cubes of high dimension that are not contained in cubical
orthants. For instance, there exist hyperbolic (and hence rank one) cubulated groups, whose
associated CAT(0) cube complexes have arbitrarily large dimension.

In this sense, this corollary is stronger than the main result in [Hua14b]; our result applies
even if the dimension is larger than the rank. On the other hand, in practice, the construction
of a factor system relies on a geometric group action, a hypothesis not needed in the context
of [Hua14b].

Although our results, applied in the cubical case, generalize some of those of [Hua14b], our
proof is obtained by passing from the hierarchically hyperbolic space setting to a CAT(0) cube
complex where the dimension equals the rank and then using Huang’s theorem. Specifically,
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we use the cubical approximations, discussed immediately below, to construct a CAT(0) cube
complex to which we can apply Huang’s result, [Hua14b, Theorem 1.1]. So, Huang’s result is
a crucial ingredient in our work.

Approximating with cube complexes. A key insight in the geometry of hyperbolic
spaces is that in certain respects, they “coarsely look like trees”; Gromov, in his famous
treatise on the subject, introduced a number of ways in which this idea can be made precise
[Gro87a]. One such statement is: in a hyperbolic space, the coarse convex hull of any finite
set of points can be uniformly approximated by a geodesic tree [Gro87a, §6.2 Geodesic trees].

It is now well understood that CAT(0) cube complexes are a natural generalization of
trees. Two important aspects of this idea are:

‚ In a simplicial tree, the midpoint of any edge separates the tree into two complementary
components. In a CAT(0) cube complex, the midpoint of each edge is contained in a
hyperplane, a codimension–1 subspace with exactly two complementary components.
The revolutionary work of Sageev [Sag95], elaborated later in [CN05, Nic04, HW14],
shows that very general set-theoretic data — a wallspace, i.e. a set equipped with a
suitable collection of bipartitions — determines a CAT(0) cube complex in a canonical
way. We need this in Section 2.

‚ In a simplicial tree, any three vertices determine a unique geodesic tripod consisting
of three geodesics, each of which joins two of the given points. The intersection of the
three geodesics is a single vertex, the median of the three points. Generalizing this,
one obtains the class of median graphs, i.e. graphs where each triple of vertices spans
at least one metric tripod, all of which have the same center. Chepoi showed [Che00]
that there is a bijective correspondence between one-skeleta of CAT(0) cube complexes
and median graphs. The median viewpoint on CAT(0) cube complexes is very useful,
and we adopt it in various ways in this paper.

In Section 2, we generalize Gromov’s theorem about hyperbolic groups to the setting of
hierarchically hyperbolic spaces. Roughly, the theorem we prove establishes that the “convex
hull” of a finite set A, denoted HθpAq, is approximated by a finite CAT(0) cube complex.

This result provides a new tool for studying hierarchically hyperbolic spaces. Indeed, it is
one of the key innovations which allows us to apply Huang’s theorem about quasi-flats in
CAT(0) cube complexes [Hua14b] to prove Theorem A about quasiflats in HHSs. Further,
we expect that Theorem F will have a number of applications beyond those of this paper. A
sketch of the proof of this result is provided later in the introduction.

Theorem F (Approximation of convex hulls in HHSs by CAT(0) cube complexes). Let X be
an asymphoric HHS of rank ν. Then for any N there exists C so that the following holds. Let
A Ď X have cardinality at most N . Then there exists a CAT(0) cube complex Y of dimension
at most ν and a C–quasimedian pC,Cq–quasi-isometry pA : Y Ñ HθpAq.

A new proof of the preceding theorem, in a slightly more general context, was given by
Bowditch [Bow18a], motivated by an early version of this paper.

Any HHS is coarse median in the sense of Bowditch [Bow13], as shown in [BHS19, Section
7]. In the coarse median setting, there are several interesting precursors to our theorem. One
which was particularly inspirational to us was Bowditch’s result that in the asymptotic cone
of a finite rank coarse median metric space, any top-dimensional closed Euclidean flat is
cubulated, see [Bow18b, Proposition 1.2]. We will use Bowditch’s result about cubulating
top-rank Euclidean subsets in a complete median space in order to apply our result about
cubulating arbitrary finite sets in an HHS.

In the coarse median setting, one has, by definition, “cubical approximations of finite
sets,” and there is also a nice metric approximation result given by Zeidler [Zei16, Theorem
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6.2]. The approximation given by Theorem F has stronger properties, as it provides an
approximation of the entire convex hull, whereas the quasimedian map from a finite median
algebra provided by the coarse median property can be very far from having uniformly
(hierarchically) quasiconvex image. (To see the distinction, consider the case where X “ Z2

and A “ tp0, 0q, pn, nqu for some n ě 0. Then the Y provided by Theorem F is a n–by–n
square, while the 2–point median algebra tp0, 0q, pn, nqu satisfies the requirements of the
definition of a coarse median space, and is a “metric approximation” in the sense of [Zei16]
when endowed with the natural metric.)

Theorem F allows us to control the rank of X as a coarse median space more precisely than
we did in [BHS19]; see Corollary 2.15. This also leads to a characterization of hierarchically
hyperbolic spaces which are hyperbolic, which we establish as Corollary 2.16.

Induced quasi-isometries on factored spaces and quasi-isometric classification. In
[BHS17a, §2], we introduced the notion of factored spaces of an HHS. These are obtained
from a given HHS by “coning off” a collection of product regions. Factored spaces are HHSs
themselves, with respect to a substructure of the original HHS structure. Factored spaces
are central in the proof of finite asymptotic dimension [BHS17a].

A notable naturally-occurring example is that the Weil-Petersson metric on Teichmüller
space is quasi-isometric to a factored space of the corresponding mapping class group. In
any HHS, we proved in [BHS17a, Corollary 2.9] that there exists a factor space which is
quasi-isometric to CS for the Ď–maximal element S (e.g., for the mapping class group of a
surface S then CS is the curve graph of S).

In Theorem 6.2 we use the Quasiflats Theorem as a starting point to show that the image
of any quasiflat in a certain factored space is bounded. For now, we just state a new result
about mapping class groups which is a special case of Theorem 6.2:

Theorem G (Quasiflats have finite diameter CS projection). Let pX ,Sq be the mapping
class group of a non-sporadic surface S. Then for every K there exists L so that any
pK,Kq–quasi-isometric embedding f : Rν Ñ X satisfies diamCSpπSpfpRνqqq ď L.

In Corollary 6.3, we prove that any quasi-isometry between HHSs (satisfying a mild
condition) induces a quasi-isometry of the factored spaces obtained by coning off the standard
product regions containing top-dimensional quasiflats. This is very important because one can
extract further information about the original quasi-isometry from the induced quasi-isometry
on factored spaces, and even take further factored spaces for additional data. This is totally
unexplored territory, since, for example, it provides a way to study quasi-isometries of CAT(0)
cube complexes that requires leaving the world of cube complexes.

We expect this strategy to be crucial to prove quasi-isometric rigidity results for, say,
right-angled Artin and Coxeter groups. We discuss this in more detail below; for now we
just give an example of two right-angled Artin groups whose quasi-isometry classes can be
distinguished using this method, but not by any other known methods: see Figure 1.

The obstruction to their being quasi-isometric is that, despite having the same rank,
their factored spaces as in Corollary 6.3 have different rank (which is a quasi-isometry
invariant by Theorem 1.15). We note that the graphs we chose do not fit the hypotheses of
[Hua14a, Hua16], or that of any other class of right-angled Artin groups which have been
classified including those considered in [BN08, BJN10, BKS08].

Induced automorphisms of combinatorial data and quasi-isometric rigidity. The
Quasiflats Theorem provides a powerful tool for proving quasi-isometric rigidity results for
various HHSs, e.g. right-angled Artin and Coxeter groups. In fact, the set of quasiflats
and, more importantly, their intersection patterns, can be easily converted into purely
combinatorial data.
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Figure 1. The right-angled Artin groups associated to the two graphs both
have rank 4. However, the 4-dimensional flats get collapsed in the correspond-
ing factored spaces, leaving only 2-dimensional flats in the case of the first
RAAG, while there are 3-dimensional flats that persist in the case of the
second RAAG.

In good cases, one can extract from the output of the Quasiflats Theorem (and with
basically no further knowledge about the geometry of the HHS) an automorphism of a
combinatorial structure encoding the data, and therefore reduce proving quasi-isometric
rigidity to proving that a certain combinatorial structure is “rigid”. The kind of combinatorial
structure that the reader should keep in mind is S endowed with the partial order given by
nesting, Ď, and the symmetric relation of orthogonality, K.

Rather than a general but complicated statement, we give a template for this procedure.
In Theorem 5.7 we give an example of the combinatorial automorphism one can extract from
a quasi-isometry, under additional assumptions on the HHS. These additional assumptions
are satisfied by mapping class groups. Accordingly, in Section 5.2, we use Theorem 5.7 to
give a new proof of quasi-isometric rigidity of mapping class groups which, once we have
established Theorem A, requires simpler combinatorial considerations than previous proofs,
cf. [BKMM12, Bow18b, Ham07].

Theorem H (QI rigidity for mapping class groups; [BKMM12]). Let X be the the mapping
class group of a non-sporadic surface S. Then for any K there exists L so that: for each
pK,Kq–quasi-isometry f : X Ñ X there exists a mapping class g so that f L–coarsely
coincides with left-multiplication by g.

Theorem 5.7 applies to other spaces and groups as well, including, for example, right-angled
Artin groups with no triangles and no leaves in their presentation graph, and fundamental
groups of non-geometric graph manifolds. Variations of Theorem 5.7 can be tailored to treat
other families of groups as well.

In the case of mapping class groups, there is no need to pass to factored spaces, but in
other contexts (e.g., the right-angled Artin groups in Figure 1) the induced quasi-isometries
on factored spaces provide extra combinatorial data.

In the study of right-angled Artin and Coxeter groups our results allow one to reduce the
question of quasi-isometric rigidity to the following type of combinatorial problem, which we
believe is of independent interest.

Let Γ be a finite simplicial graph, and let BΓ be either the associated right-angled Artin
group or the associated right-angled Coxeter group. Recall from [BHS17b, Section 8] that
the standard hierarchically hyperbolic structure on such a group is obtained by setting
SΓ “ tgBΛu{„, where g P BΓ and Λ is an induced subgraph of Γ, where „ is the equivalence
relation defined by gBΛ „ hBΛ if g´1h P BstarpΛq, and where starpHq “ Γ (i.e., g´1h
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commutes with each b P BΛ). Declare rgBΛs Ď rgBΛ1s if Λ Ď Λ1 and rgBΛsKrgBΛ1s if
Λ Ď linkpΛ1q. Answers to the following can be used to obtain results on the problems of
quasi-isometric rigidity and classification:

Problem I. Study the automorphism group AutpSΓ,Ď,Kq of pSΓ,Ď,Kq. When is every
element of AutpSΓ,Ď,Kq induced by left multiplication by an element of BΓ? When is every
element of AutpSΓ,Ď,Kq “induced” by an automorphism of BΓ? (Not all automorphisms of
BΓ need to “induce” an automorphism of pSΓ,Ď,Kq; which ones do?)

Theorem 5.7 states that, under three natural assumptions, a quasi-isometry f : pX ,Sq Ñ
pY,Tq induces a bijection from the set of hinges of X to that of Y; a hinge in X is a pair
pU, pq with U P S and p P BCU , where U has the additional property that U P tUiu

ν
i“1 where

ν is the rank of X , each CUi is unbounded, and the Ui are pairwise-orthogonal.
Since it preserves orthogonality, this bijection determines a simplicial isomorphism from

the union of the top-dimensional simplices of the HHS boundary BX to BY (see [DHS17]
for more on the HHS boundary and its simplices). One should be able to articulate natural
conditions defining a subclass of HHSs for which one can use this map, perhaps in conjunction
with Section 6, to pass from a quasi-isometry to a map between HHS boundaries.

Sketch of the proof of the Cubulation of Hulls Theorem. We provide here a sketch of
the proof of Theorem F (Approximation of convex hulls in HHSs by CAT(0) cube complexes).
This is one of the main tools we develop in this paper, allowing one to use ideas from the
world of cube complexes to study HHSs. This result plays a crucial role in the proof of
Theorem A (Quasiflats Theorem for HHSs). The full proof is given in Section 2.

A hierarchically hyperbolic space can be roughly thought of as a subset of the product of
a (typically infinite) collection of hyperbolic spaces. This subset has the property that its
projection to any direct product of two factors is surjective if and only if those two factors
are “orthogonal.” This allows one to move back and forth between properties of the HHS,
X , and properties in the associated hyperbolic spaces, tCUu. Here is a construction from
[BHS19, §6] that exploits this point of view.

Given a set a points in X , one can build the “hull” of that set by looking at the projections
of that finite set of points to each of the associated hyperbolic spaces, CU , taking coarse
convex hulls in the CU , and then looking at the points in X that in each CU project close to
the hull.

The realization theorem [BHS19, Theorem 3.1] gives, roughly, a characterization of points
in the product of the hyperbolic spaces that lie in the image of X , in terms of consistency
conditions (in the mapping class group context, one such condition is given by [Beh06,
Theorem 4.3]). In this paper we rely on the construction of hulls and the realization theorem
in an essential way.

Following Sageev, the main method to cubulate a space is to explicitly build walls, that is,
“codimension-one” subspaces which separate the space. For hulls of a finite set of points in a
hierarchically hyperbolic space, this can be done in the following manner. Consider a finite
set of points and their projections to each hyperbolic space CU . By Gromov’s theorem, in a
hyperbolic space the convex hull of a finite set of points can be uniformly approximated by a
geodesic tree [Gro87a, §6.2 Geodesic trees].

Taking an appropriately dense collection of points in each such geodesic tree and considering
their inverse images in X , one obtains walls that can be used to construct a CAT(0) cube
complex. One needs to verify that this actually works as needed to prove Theorem F. In
particular, a key point is to show that any vertex in the CAT(0) cube complex “corresponds” to
a point in the hull in X of the finitely many points. Establishing this requires a careful analysis
of the “consistency conditions”, with the aim of invoking the aforementioned realization
theorem, [BHS19, Theorem 3.1].
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Sketch of the proof of the Quasiflats Theorem. An important ingredient in our proof
of Theorem A (Quasiflats Theorem for HHSs) is Huang’s result [Hua14b, Theorem 1.1] which
classifies n–dimensional quasiflats in n–dimensional CAT(0) cube complexes (for emphasis:
in Huang’s theorem the dimension of the quasiflats under consideration coincides with that
of the CAT(0) cube complex).

We prove Theorem A by constructing an appropriate CAT(0) cube complex to which we
can apply Huang’s theorem.

The first step is to use a result of Bowditch [Bow18b, Proposition 1.2] about “local
cubulations” of top-dimensional flats in median metric spaces. The median spaces in question
are (bilipschitz equivalent to) asymptotic cones of the HHS X . This allows us to show that
any finite ball in a quasiflat is coarsely contained in the hull of a uniformly bounded number
of points.

By our cubulation of hulls theorem discussed above, Theorem F, we know that any such
hull is uniformly quasi-isometric to a CAT(0) cube complex. Taking an ultralimit of these
CAT(0) cube complexes, we obtain a finite dimensional CAT(0) cube complex which quasi-
isometrically embeds in our HHS, and the quasiflat is contained in a bounded neighborhood
of the image of the quasi-isometric embedding.

By construction and Theorem F, the CAT(0) cube complex we build has the same dimension
as the quasiflat, thus allowing us to apply Huang’s result [Hua14b, Theorem 1.1]. This finishes
the proof since one can show that the orthants in the CAT(0) cube complex we construct
correspond to standard orthants in the original HHS.

As can be seen in this sketch, our theorem relies on Huang’s result [Hua14b, Theorem 1.1]
in an essential way. We also note that because the CAT(0) cube complex we construct is
built using Theorem F, this complex always has the same dimension as its top-dimensional
quasiflats. So, although our argument factors through Huang’s theorem, our result extends
Huang’s in the setting of cocompact CAT(0) cube complexes with factor systems. For
instance, our theorem applies to arbitrary right-angled Coxeter groups, even though the
dimension of the CAT(0) cube complex associated to a right-angled Coxeter is typically
(much) larger than the dimension of the quasiflats it contains.

Outline. Section 1 contains background on hierarchically hyperbolic spaces, wallspaces/cube
complexes, median and coarse median spaces, and asymptotic cones. In Section 2 we build
walls in hulls of finite sets, proving Theorem F. The main goal of Section 3 is to prove
Corollary 3.9, showing that balls in quasiflats in an HHS can be uniformly well-approximated
by hulls of uniformly finite sets of points. In Section 4, we develop background on standard
orthants in HHSs, and then prove Theorem A. We also prove stronger versions in which we
control both the number of standard orthants (using a volume growth argument) and the
distance from the quasiflat to the approximating orthants, in terms of the quasi-isometry
constants. In Section 5, we impose additional assumptions on an HHS enabling one to study
the effect of quasi-isometries on the underlying combinatorial structure; see Theorem 5.7. It is
in this section that we give a new proof of quasi-isometric rigidity of the mapping class group,
i.e., Theorem H. Finally, in Section 6, we discuss factored spaces. We first prove Theorem 6.2
and then deduce Corollary 6.3, which is about induced quasi-isometries of factored spaces.
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the word συµφoρά and roughly meaning “mishap averted.”

We thank Ela Behrstock for drawing two of the figures (Figure 2 and Figure 4). We thank
Jingyin Huang, for pointing out that the RAAGs appearing in Figure 1 in an earlier version
of this paper could be distinguished by using [Hua14a, Theorem 3.28] and a clever trick. We
thank Brian Bowditch, Harry Petyt, and Jacob Russell for several helpful comments. We



QUASIFLATS IN HIERARCHICALLY HYPERBOLIC SPACES 11

also thank the numerous referees for very useful comments; in particular, the 87 enumerated
comments of one of the referees helped us to significantly improve the exposition.

The authors were supported by the National Science Foundation under Grant No. DMS-
1440140 at the Mathematical Sciences Research Institute in Berkeley during Fall 2016 program
in Geometric Group Theory.

Behrstock was supported by NSF grant DMS-1710890. Hagen was supported by EPSRC
grant EP/L026481/1.

Sisto was partially supported by the Swiss National Science Foundation (grant #182186).
We thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support

and hospitality during the program Non-positive curvature group actions and cohomology
where work on this paper was done; this work was partly supported by EPSRC grant no.
EP/K032208/1.

1. Background

1.1. Hierarchically hyperbolic spaces. Throughout this paper, we work with a hierarchi-
cally hyperbolic space, which is a pair pX ,Sq with some additional extra structure described
in Definition 1.1 of [BHS19]. Roughly, an HHS consists of:

‚ a quasigeodesic metric space X ;
‚ a set of uniformly hyperbolic spaces tCU : U P Su;
‚ uniformly coarsely-Lipschitz coarsely-surjective maps πU : X Ñ CU ;
‚ three relations Ď (a partial order), K (an anti-reflexive symmetric relation), & (the

complement of Ď and K) on S;
‚ a unique Ď–maximal element of S, and a uniform bound on the length of Ď–chains

in S;
‚ for U Ĺ V or U&V , a uniformly bounded set ρUV ;
‚ for U Ĺ V , a coarse map ρVU : CV Ñ CU .

Definition 1.1 of [BHS19] consists of several axioms governing this data. The definition
and basic properties of HHSs were first laid out in [BHS17b]; below we list [BHS19] as the
primary reference since a few of the properties were first established there and this provides
for unified notation. The properties of HHSs which are central to this article are listed below.

Remark (QI invariance). As explained in [BHS19, Proposition 1.10], the property of being a
hierarchically hyperbolic space is preserved under quasi-isometries. If pX ,Sq is a hierarchically
hyperbolic space and f : X 1 Ñ X is a quasi-isometry, then pX 1,Sq is an HHS; where the
structure in X is obtained by replacing each projection πU , U P S by πU ˝ f .

The first property says that the “coordinates” pπU pxqqUPS for some x P X cannot be
arbitrary. In fact, for certain pairs U, V there are conditions that need to be satisfied by
πU pxq, πV pxq. There is no condition for UKV , which corresponds to the fact that in this case
U, V should be thought of as factors of a product region, as we will see later.

Axiom 1.1 (Consistency axioms). Let pX ,Sq be hierarchically hyperbolic. Then there is a
constant E “ EpX ,Sq so that the following hold for all x P X and U, V,W P S:

‚ if V&W , then

min
 

dW pπW pxq, ρ
V
W q, dV pπV pxq, ρ

W
V q

(

ď E;

‚ if V Ĺ W , then

min
 

dW pπW pxq, ρ
V
W q, diamCV pπV pxq Y ρ

W
V pπW pxqqq

(

ď E.

Finally, if U Ď V , then dW pρ
U
W , ρ

V
W q ď E whenever W P S satisfies either V Ĺ W or V&W

and W & U .
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Remark (Consistent tuples). The consistency axiom has a sort of converse, the realization
theorem stated below. The idea is that the projection maps πU , U P S allow us to think of
points in X as tuples in

ś

UPS CU . The consistency axiom imposes conditions on which tuples
can be in the image of the map X Ñ

ś

UPS CU given by the projections. The realization
theorem says that the consistency conditions actually (coarsely) characterize tuples in the
image of X . The precise statement is Theorem 1.2, which is formulated using the notion of a
consistent tuple, which we now define.

Fix a constant κ ě 0. Given a tuple pbU qU P
ś

UPS CU , we say that pbU qU is κ–consistent
if it satisfies the conditions from Axiom 1.1, except with each occurrence of πV pxq (resp.
πW pxq) replaced by bV (resp. bW ). So, the axiom says that tuples in the image of X are
E–consistent.

Now we can state the realization theorem:

Theorem 1.2 (Realization of consistent tuples; [BHS19]). For each κ ě 1 there exist

θe, θu ě 0 such that the following holds. Let ~b P
ś

WPS 2CW be κ–consistent ([BHS19,

Definition 1.17]); for each W , let bW denote the CW–coordinate of ~b.
Then there exists x P X so that dW pbW , πW pxqq ď θe for all CW P S. Moreover, x is

coarsely unique in the sense that the set of all x which satisfy dW pbW , πW pxqq ď θe in each
CW P S, has diameter at most θu.

The realization theorem is one of what we see as three foundational theorems about HHSs.
The other two are closely related: the distance formula and the existence of hierarchy paths.

The distance formula provides a way to compute distances in X in terms of distances in
the various CU , thereby reducing the study of the geometry of X to that of the family of
hyperbolic spaces tCUuUPS.

We write A —K,C B if A{K ´ C ď B ď KA ` C. Also, we let ttAuus “ A if A ě s, and
ttAuus “ 0 otherwise. Moreover, we denote dW px, yq “ dCW pπW pxq, πW pyqq (the distance
between x and y from the point of view of W ).

Theorem 1.3 (Distance Formula; [BHS19]). Let pX,Sq be hierarchically hyperbolic. Then
there exists s0 such that for all s ě s0 there exist constants K,C such that for all x, y P X ,

dX px, yq —K,C
ÿ

WPS

ttdW px, yquus .

Remark (Uniqueness axiom). Notice that a special case of the distance formula is that,
roughly speaking, if x, y P X are so that πU pxq, πU pyq are close for each U , then x, y are
close in X . This special case is the uniqueness axiom, which is part of the definition of
a hierarchically hyperbolic space [BHS19, Definition 1.1.(9)]. There are various places in
Section 2 where we apply the distance formula, but could probably get away with just using
the uniqueness axiom. In fact, since we initially posted this paper, Bowditch has given an
independent proof of Theorem F, not using the distance formula. One can then deduce the
distance formula from Theorem F, which Bowditch does in [Bow18a].

Hierarchy paths are quasi-geodesics in the HHS whose projections to each associated
hyperbolic space are (coarsely) monotone. Any two points can be joined by a hierarchy path:

Theorem 1.4 (Existence of Hierarchy Paths; [BHS19]). Let pX ,Sq be hierarchically hyper-
bolic. Then there exists D so that any x, y P X are joined by a D-hierarchy path, i.e., a
pD,Dq–quasi-geodesic projecting to an unparameterized pD,Dq–quasi-geodesic between πU pxq
and πU pyq in CU for each U P S.

The following says that when moving along a hierarchy path γ, in order to change projection
to CU , when U Ĺ V , one must pass close in CV to a specific point, namely ρUV . The first
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assertion is the bounded geodesic image axiom for an HHS [BHS19, Definition 1.1.(6)] and the
second assertion follows easily from the first, together with Axiom 1.1; for ease of reference
we record this here as:

Lemma 1.5. (Bounded geodesic image) Let X be a hierarchically hyperbolic space. There
exists B so that the following holds. Let W P S, V Ĺ W . Suppose that γ is a geodesic in
CW with γ XNBpρ

V
W qq “ H. Then diamCV pρ

W
V pγqq ď B.

Moreover, suppose x, y P X and that there exists a geodesic γ in CW from πW pxq to πW pyq
so that γ XNBpρ

V
W qq “ H. Then dV px, yq ď B.

Another part of the definition of a hierarchically hyperbolic space is the large links axiom
(Definition 1.1.(7) in [BHS19]). It says roughly that, if x, y P X and V P S, then the number
of U Ĺ V on which x, y have very different projections, and U is Ď–maximal with those
properties, can be bounded in terms of dV px, yq. Typically, one does not apply the large
links axiom directly. Instead, one uses a consequence, Lemma 2.5 of [BHS19], which we call
“passing up large projections.” We will use a variant of that lemma, which we state presently
(it is applied in an essential way in the proof of Lemma 2.10, which is part of the proof of
Theorem F).

For V P S, we denote SV “ tU P S : U Ď V u.

Lemma 1.6 (Passing large projections up the Ď–lattice). There exists E with the following
property. For every C ě 0 there exists N0 “ N0pCq with the following property. Let V P S,

let x, y P X , and let tViu
N0
i“1 Ď SV be distinct and satisfy dVipx, yq ě E. Then there exists

W P SV and i, j so that Vi, Vj Ĺ W and dW pρ
Vi
W , ρ

Vj
W q ě C.

Example 1.7. Since the statement of the preceding lemma is somewhat opaque, we now
give an example before proceeding to the proof. Let X be the Cayley graph of the free group
on generators a, b. We can make X an HHS by taking S to consist of all left cosets of all
subgroups generated by subsets of ta, bu. The space Cxay is just R, and similarly for Cxby.
The space Cxa, by is obtained from X by coning off each coset in S.

Consider the path w “ paEbEqN , for some E ě 1. Then there are N cosets of xay and xby
on which the endpoints of the above path have projections lying at distance E. For any C,
by making N sufficiently large, we see that the coset xay and the coset wb´Exby are at least
C–distant in Cxa, by and hence satisfy the conclusion of the lemma.

Proof of Lemma 1.6. First of all, we choose constants. Let B ě 1 be the constant from
Lemma 1.5, and suppose that B is also an upper bound on the diameter of ρUV for any U Ĺ V .
Moreover, supposed B ě D, for D as in Theorem 1.4, and moreover that pD,Dq–quasi-
geodesics in a δ–hyperbolic space stay B–close to geodesics with the same endpoints, where
δ is a hyperbolicity constant for all the CU .

If U P S is Ď–minimal, we say that its level is 1. Inductively, U P S has level k if it is
Ď–minimal among all V P S not of level ď k ´ 1. The proof is by induction on the level k
of a Ď-minimal V P S into which each Vi is nested, with E “ 100kB. The base case k “ 1
is empty. Suppose that the statement holds for a given N “ Npkq when the level of V as
above is at most k. Suppose instead that |tViu| ě Npk ` 1q (where Npk ` 1q is a constant
much larger than Npkq that will be determined shortly) and there exists a Ď-minimal V P S
of level k ` 1 into which each Vi is nested. There are two cases.

If maxi,jtdV pρ
Vi
V , ρ

Vj
V qu ě C, then we are done. Hence, suppose not. All the ρViV lie B–close

to a geodesic rπV pxq, πV pyqs by bounded geodesic image, and by the assumption they all lie
close to a sub-geodesic of length C ` 10B. Hence, we can replace x, y with suitable x1, y1 on
a hierarchy path from x to y chosen so that

‚ dV px
1, y1q ď C ` 100B,
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‚ πV px
1q, πV py

1q lie B–close to a geodesic rπV pxq, πV pyqs, and

‚ the geodesics rπV pxq, πV px
1qs, rπV pyq, πV py

1qs do not pass B–close to any ρViV .

By Lemma 1.5, dVipx
1, y1q ě 100kB, since dVipx

1, y1q is approximately equal to dVipx, yq.
The large link axiom ([BHS19, Definition 1.1.(6)]) implies that there exists K “ KpC `

100Bq and T1, . . . , TK , each properly nested in V (thus of level strictly less than k ` 1), so
that any Vi is nested in some Tj . In particular, if Npk ` 1q ě KNpkq, there exists j so that
ě Npkq elements of tViu are nested into Tj . By the induction hypothesis, we are done. �

1.1.1. A few more basic HHS notions. We now collect a few more basic notions about HHSs
that will be used throughout the paper.

First, each of the HHS axioms (and their variants stated above) involves some constants,
which are taken to be part of the HHS structure pX ,Sq. For the sake of sanity, where possible,
we can assume these constants are all the same:

Notation 1.8 (Naming constants). In the remainder of the paper, following [BHS19, Remark
1.6], we fix a constant E larger than each of the constants in [BHS19, Definition 1.1] and
also satisfying the conclusion of Lemma 1.6, Lemma 1.5, and Axiom 1.1.

Given x, y P X , it is convenient to consider the subset of S on whose associated hyperbolic
spaces x, y project far apart, where “far” is determined by some threshold, generally specified
in advance independently of x, y:

Definition 1.9 (Relevant). Given points x, y P X , we say that U P S is relevant (with
respect to x, y and a constant θ ą 0) if dU px, yq ą θ. Denote by Relθpx, yq the set of relevant
elements. Note that, for all sufficiently large θ, the distance formula implies that Relθpx, yq
is finite. In fact, using Lemma 2.5 of [BHS19], one can bound its cardinality in terms of θ,E,
and dX px, yq without using the distance formula.

The notion of the rank of pX ,Sq is easy to define, but it is of significant importance in
the present paper:

Definition 1.10 (Rank). The rank ν “ νpX ,Sq of the HHS pX ,Sq is the maximal n so
that there exist pairwise orthogonal U1, . . . , Un P S for which πUipX q is unbounded for all i.

The rank is closely related to standard product regions in X , which are a useful tool whose
construction we now review; see also [BHS17b, Section 13] and [BHS19, Section 5]. These
products are built out of the following two spaces, which we define abstractly, but often
implicitly identify with their images as subsets of X .

Definition 1.11 (Nested partial tuples). Recall that SU “ tV P S | V Ď Uu. Fix κ ě E
and let FU be the set of κ–consistent tuples in

ś

V PSU
2CV .

Definition 1.12 (Orthogonal partial tuples). Let SKU “ tV P S | V KUu. Fix κ ě E and let
EU be the set of κ–consistent tuples in

ś

V PSKU
2CV .

Definition 1.13 (Standard product regions in X ). Given X and U P S, there are coarsely
well-defined maps φĎ, φK : FU , EU Ñ X which extend to a coarsely well-defined map φU : FUˆ

EU Ñ X . Indeed, for each p~a,~bq P FU ˆ EU , and each V P S, the coordinate pφU p~a,~bqqV
is defined as follows. If V Ď U , then pφU p~a,~bqqV “ aV . If V KU , then pφU p~a,~bqqV “ bV . If

V&U , then pφU p~a,~bqqV “ ρUV . Finally, if U Ĺ V , let pφU p~a,~bqqV “ ρUV . We refer to FU ˆ EU
as a standard product region, whose image in X we also call a standard product region and
denote by PU .

The image of FU in X is again a hierarchically hyperbolic space, with index set SU and
hyperbolic spaces and projections inherited from those in S. The same is true for EU ,
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although one must replace SU with the set of V P S such that V KU , together with some
element A P S into which each such V is nested (such an A is provided by the HHS axioms).
We won’t have much need for this here, and refer the interested reader to [BHS19, Section 5]
for details.

1.1.2. Hierarchically hyperbolic groups. A finitely generated group G is a hierarchically
hyperbolic group (HHG) if some (hence any) Cayley graph of G is an HHS, and the HHS
structure is G–invariant. Specifically, an HHG is a finitely generated group G, equipped with
a specific word metric, so that there is an HHS pG,Sq where:

‚ G acts cofinitely on S, preserving each relation Ď,K,&;
‚ for each U P S and g P G, there is an isometry g : CU Ñ CgU , and if h P G, then the

isometry gh : CU Ñ CghU is the same as the composition CU h
ÝÑ ChU g

ÝÑ CghU ;
‚ for each U P S and g, x P G, the points g ˝ πU pxq and πgU pgxq uniformly coarsely

coincide;

‚ for each U, V P S such that U&V or U Ĺ V , and each g P G, we have ρgUgV “ gpρUV q.

Examples of hierarchically hyperbolic groups include mapping class groups of finite-
type orientable surfaces and fundamental groups of compact special cube complexes, see
[BHS17b, BHS19] for details and additional examples.

The only property of HHGs that we use in this paper is immediate from the definition, in
particular from the property that G acts cofinitely on S: there exists C ě 0 such that for all
U P S, either diampCUq ď C, or CU has unbounded diameter.

1.1.3. Rank as a quasi-isometry invariant. We now introduce a technical assumption on the
HHS that we will assume throughout the paper. This condition is satisfied by all HHGs;
it is also satisfied for all naturally occurring examples of HHSs. We impose it in order to
rule out product regions with bounded but arbitrarily large factors. Our results likely have
analogues that hold in the absence of this hypothesis, but would require custom-tailoring to
the situation at hand.

Definition 1.14 (Asymphoric). We say that the HHS pX ,Sq of rank ν is asymphoric if
there exists a constant C with the property that there does not exist a set of ν ` 1 pairwise
orthogonal elements U of S where each CU has diameter at least C. In this case, without
loss of generality, we assume that E is chosen to be at least as large as C.

For completeness, we remark that a result from [BHS17b] implies that the rank is a
quasi-isometry invariant of asymphoric HHSs:

Theorem 1.15 (Quasi-isometry invariance of rank). Let pX ,Sq be an asymphoric HHS.
Then the rank ν of X coincides with the maximal n for which there exists K and pK,Kq–
quasi-isometric embeddings f : pBRp0q Ď Rnq Ñ X for all R ě 0. In particular, the rank is a
quasi-isometry invariant of asymphoric HHS.

Proof. It is easy to construct a quasi-isometric embeddings of balls in Rn starting from n
pairwise orthogonal elements U of S with unbounded πU pX q. Hence, we have to show that if
there exist quasi-isometric embeddings as in the statement, then n is at most the rank. This
is because, by [BHS17b, Theorem 13.11.(2)], there exists an asymptotic cone X where a copy
of the unit ball in Rn is contained in an ultralimit of standard boxes. These are products of
intervals contained in a subspace coarsely decomposing as product whose factors are various
subspaces FU , so that any ultralimit of standard boxes in X is homeomorphic to a subset of
Rν because X is asymphoric. Hence, n ď ν, as required. �
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1.2. Hulls and gates. Sets in an HHS have hulls, built from coarse convex hulls in hyperbolic
spaces:

Definition 1.16 (Hull of a set; Section 6 of [BHS19]). For each A Ă X and θ ě 0, let the
hull, HθpAq, be the set of all p P X so that, for each W P S, the set πW ppq lies at distance at
most θ from hullCW pAq, the coarse convex hull of A in the hyperbolic space CW (that is to
say, the union of all geodesics in CW joining points of A). Note that A Ă HθpAq.

Hulls are examples of hierarchically quasiconvex subspaces of X . The other notable
examples are standard product regions. The idea behind hierarchical quasiconvexity is to
simultaneously capture (in our coarse setting) various notions of (coarse) convexity:

‚ First, hierarchical quasiconvexity directly generalizes the usual notion of quasicon-
vexity in a hyperbolic space: when X is a hyperbolic HHS, the two notions coincide.
More generally, hierarchical quasiconvexity of a subspace Y Ă X requires that Y has
uniformly quasiconvex projections to all hyperbolic spaces CU for U P S.

‚ Second, hierarchical quasiconvexity imitates, in the HHS setting, the notion of a
convex subcomplex A of a CAT(0) cube complex M . That notion has many equivalent
formulations; one of them says that M is convex provided that the median of x, y, z
lies in A whenever at least two of the vertices x, y, z lie in A. This generalizes naturally
to a notion of coarse median convexity in Bowditch’s coarse median spaces [Bow13],
which are discussed in more detail below. It was verified in [BHS19, Section 7] that
HHSs are coarse median spaces (we rely heavily on this fact in the rest of the paper)
and that hierarchically quasiconvex subspaces are coarsely median convex. Recently,
Russell-Spriano-Tran have proved the converse [RST18].

‚ From a point of view that emphasizes paths rather than coarse medians or projections,
hierarchically quasiconvex subspaces are “quasiconvex with respect to hierarchy paths”:
if Y is hierarchically quasiconvex, then any hierarchy path with endpoints in Y stays
close to Y.

A subset Y Ă X is hierarchically quasiconvex if it has quasiconvex projections to the various
hyperbolic spaces, and coarsely contains all realization points for tuples whose U–coordinate
lies in πU pYq for all U P S. More precisely:

Definition 1.17 (Hierarchical quasiconvexity, Definition 5.1 of [BHS19]). Let pX ,Sq be
a hierarchically hyperbolic space. Then Y Ď X is k–hierarchically quasiconvex, for some
k : r0,8q Ñ r0,8q, if the following hold:

(1) For all U P S, the projection πU pYq is a kp0q–quasiconvex subspace of the δ–hyperbolic
space CU .

(2) For all κ ě 0 and κ-consistent tuples ~b P
ś

UPS 2CU with bU Ď πU pYq for all U P S,
each point x P X for which dU pπU pxq, bU q ď θepκq (where θepκq is as in Theorem 1.2)
satisfies dpx,Yq ď kpκq.

As one might expect, hulls of arbitrary sets are hierarchically quasiconvex, although in
this paper we mainly consider hulls of finite sets:

Proposition 1.18. [BHS19, Lemma 6.2] There exists θ0 so that for each θ ě θ0 there exists
κ : R` Ñ R` so that for each A Ă X the set HθpAq is κ–hierarchically quasiconvex.

Remark 1.19. Whenever we are working with a fixed HHS pX ,Sq, the notation θ0 will
refer to the constant from Proposition 1.18, and we fix once and for all a constant θ ě θ0.

1.2.1. The gate map to a hierarchically quasiconvex subspace, and the bridge lemma. We now
recall a construction from Section 5 of [BHS19], namely the gate map to a hierarchically
quasiconvex subspace, and prove some additional facts about it. (The terminology is inspired
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by the similarity with the notion of a gate map to a convex subspace of a median space; see
Section 1.5.)

Fix a hierarchically hyperbolic space pX ,Sq.
Let A Ă X be κ–hierarchically quasiconvex. Recall, this implies that for each U P S,

the set πU pAq is κp0q–quasiconvex in CU and there is thus a coarse closest-point projection
pU,A : CU Ñ πU pAq. Define a gate map gA : X Ñ A as follows: given x P X , for each U P S let
bU “ pU,Apxq. In [BHS19, Section 5] we show that the tuple pbU qUPS is uniformly (depending
on κp0q) consistent, so Theorem 1.2 and hierarchical quasiconvexity of A produce a coarsely
unique point gApxq P A such that πU pgApxqq uniformly coarsely coincides with bU for all
U P S.

Intuitively, the gate map gA takes x to some realization point for the tuple whose U–
coordinate, for each U , is a closest point to πU pxq in the quasiconvex subspace πU pAq.

The following lemma, Lemma 1.20 (“the bridge lemma”), contains a lot of information
about the gates of a hierarchically quasiconvex sets A,B. It essentially describes a “bridge”
of the form gApBq ˆHθpta, buq, for suitable a P A, b P B, that connects the two. An efficient
way to go from a1 P A to b1 P B is to start at a1, get to the bridge, cross it, and then go to b1.

The lemma collects more information than we will need in this paper, for future reference.
The proof can be safely skipped on first reading. Before we state it, we give some intuition
coming from CAT(0) cube complexes:

Remark. The bridge lemma is well-illustrated by an analogy to CAT(0) cube complexes,
where the notion was introduced by Behrstock–Charney [BC11]. In the analogy, let P,Q be
convex subcomplexes of a CAT(0) cube complex M, and let gP , gQ : MÑ P,Q be cubical
closest-point projection; on the 0–skeleton, these are the usual gate maps in the median space
sense. (So, a hyperplane separates gP pxq from gP pyq if and only if it crosses P and separates
x, y.) Then gP pQq is a convex subcomplex of P crossed by exactly those hyperplanes that
cross P and Q, and gP pQq is a convex subcomplex of Q crossed by the same hyperplanes.
The convex hull of gP pQq Y gQpP q is crossed by the above hyperplanes, together with the
hyperplanes that separate P from Q. Hyperplanes of the latter type cross hyperplanes of
the former type, and so the convex hull decomposes as a product, which one can view as
a “bridge” between P and Q, in the sense that combinatorial geodesics from P to Q travel
through the bridge.

Lemma 1.20 is analogous, except we have replaced the CAT(0) cube complex with an HHS,
replaced convexity with hierarchical quasiconvexity, and replaced the cubical closest-point
projection with the gate map.

Lemma 1.20 will be important later on in the paper. We use it in Section 3 to study boxes
in asymptotic cones of an HHS; we use it in Section 4 to study coarse intersections between
standard orthants, the key point being that if A,B are hierarchically quasiconvex, then the
“coarse intersection” of A and B coarsely coincides with gApBq. Also, this lemma is useful
for obtaining simplifications of the distance formula in various instances, see for instance
Corollary 1.28 where we obtain a formula for the distance between a point and a product
region. We note that another inspiration for this lemma is its analogue in the mapping class
group, as developed in [BKMM12, Section 3].

Lemma 1.20 (Bridge lemma). For every κ : r0,8q Ñ r0,8q and all K0 ě 10κp0qE,
the following holds. There exists a function κ1 and constants K1 “ K1pκ,E,K0q and
K2 “ K2pκ,E,K0q and K3 “ K3pκ,E,K1q such that for all κ–hierarchically quasiconvex
sets A,B, we have:

(1) gApBq is κ1–hierarchically quasi-convex.
(2) The composition gA ˝ gB|gApBq is bounded distance from the identity gApBq Ñ gApBq.
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Figure 2. The bridge between quasi-convex sets A and B

(3) For any a P gApBq, b “ gBpaq, we have a pK1,K1q–quasi-isometric embedding
f : gApBq ˆHθpta, buq Ñ X with image HθpgApBq Y gBpAqq, so that fpgApBq ˆ tbuq
K1–coarsely coincides with gBpAq.

Let H “ tU P S : diampgApBqq ą K0u. Let a, b, f be as above.

(4) For each p, q P gApBq and t P Hθpta, buq, we have RelK2pfpp, tq, fpq, tqq Ď H.
(5) For each p P gApBq and t1, t2 P Hθpta, buq, we have RelK2pfpp, t1q, fpp, t2qq Ď HK.
(6) For each p P A, q P B we have

dpp, qq —K3,K3 dpp, gApBqq ` dpq, gBpAqq ` dpA,Bq ` dpggBpAqppq, ggBpAqpqqq.

The reader is referred to Figure 2 for a heuristic picture of the content of the lemma.

Proof of Lemma 1.20. We start with a definition and an observation.
The sets V,H: Let V be the set of V P S with dV pA,Bq ě 100Eκp0q. Fix K0 ě 10Eκp0q

and let HK0 be the set of H P S with dHpa, a
1q ą K0 for some a, a1 P gApBq, say a “

gApbq, a
1 “ gApb

1q for some b, b1 P B.
The following claim can be proved using standard thin quadrilateral arguments in the

hyperbolic space CV for each V P V:

Claim 1.21. πV pgApBqq and πV pgBpAqq have diameter ď 10Eκp0q for V P V.
For U P S´ V and x P gApBq, dU px, gBpxqq ď 10Eκp0q.

The next auxiliary claim is a sufficient condition for orthogonality between H P HK0 and
V P V:

Claim 1.22. Let C ě E and let a, b, a1, b1 P X and suppose that H,V P S satisfy

‚ dV pa, a
1q, dV pb, b

1q ď C;
‚ dV pa, bq ą 10C;
‚ dHpa, bq, dHpa

1, b1q ď C;
‚ dHpa, a

1q ą 10C;

Then HKV .

Proof of Claim 1.22. To establish that HKV we must show that H and V are not related
by either the transversality or the nesting relation. Our proof is by contradiction.

Suppose V&H. First, assume that we are in the case that dV pa, ρ
H
V q ď E. We then have

that dV pρ
H
V , bq ą 8C and thus dV pρ

H
V , b

1q ą 6C. Then, by consistency ρVH lies E–close to both
πHpbq, πHpb

1q, which is impossible since dHpb, b
1q ą 6C. It remains to consider the case where

dV pa, ρ
H
V q ą E. Here, by consistency, we have that dHpa, ρ

V
Hq ď E. Hence dHpa

1, ρVHq ě 5E,
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and so, by consistency, we have dV pa
1, ρHV q ď E. This case now reduces to the first case, with

a1 replacing a, again yielding a contradiction.
Suppose V Ĺ H. Since dHpa, a

1q ą 10C and dHpb, b
1q ą 6C, at least one of the pairs a, b or

a1, b1 has the property that geodesics in CH connecting the corresponding projection points
are E–far from ρVH . By the bounded geodesic image axiom, we have, say, dV pa, bq ď E, a
contradiction. The same argument rules out H Ĺ V .

Since we have ruled out nesting and transversality, we thus have HKV . �

The preceding two claims imply that V KH for all V P V and H P HK0 . We now proceed
to the proofs of the enumerated assertions.

Assertion (1) and Assertion (2): First we claim that πU pgApBqq is uniformly quasicon-
vex for all U P S. Observe that πU pgApBqq uniformly coarsely coincides with pU,ApπU pBqq.
On the other hand, (uniform) quasiconvexity of πU pBq and a thin quadrilateral argument
show that pU,ApπU pBqq is uniformly quasiconvex, as required.

We now verify that gApBq satisfies the second part of the definition of hierarchical
quasiconvexity. To that end, let ptU qUPS be a consistent tuple so that tU “ pU,ApbU q
for some bU P πU pBq for each U P S. Theorem 1.2 and hierarchical quasiconvexity of A
provide a realization point x P A for ptU q.

To complete the proof of hierarchical quasiconvexity, we must show that in fact x lies
uniformly close to gApBq. Let y “ gApgBpxqq. Since y P gApBq, it suffices to show that x
and y are uniformly close. To do so, we show that πU pxq, πU pyq are uniformly close for each
U P S, but this follows by considering the two possibilities for U covered by Claim 1.21. This
proves Assertion (1).

For b P B, Claim 1.21 can be applied as above to show that πU pgApgBpgApbqqqq uniformly
coarsely coincides with πU pgApbqq for each U P S, and hence gApgBpgApbqqq uniformly coarsely
coincides with gApbq for all b P B, thus proving Assertion (2).

Defining f : Fix a P gApBq. Choose b2 P B so that a “ gApb
2q, and let b “ gBpaq. Note

that 100Eκp0q ď dV pa, bq ď dV pA,Bq`20Eκp0q for V P V ; the second inequality here follows
from Claim 1.21. Since a P A and b P B we also have dV pA,Bq ď dV pa, bq.

Let a1 P gApBq. Assertion 2 implies that, up to uniformly bounded distance, a1 “ gApb
1q

for some b1 P gBpAq. For each U P S ´ V, set bU “ πU pa
1q. For each V P V, let γV be a

geodesic from πV paq to πV pbq and, for a fixed h P Hθpta, buq, set bV “ πV phq, which lies
θ–close to γV .

Claim 1.23. For each a1, h as above, the associated tuple pbW qWPS defined above is 20K0–
consistent.

Proof of Claim 1.23. If W,W 1 P S´V , or if W,W 1 P V , then bW , bW 1 satisfy any consistency
inequality involving W,W 1, since bW , bW 1 coincide with the projections to CW, CW 1 of a
common point in those cases.

If W P S´ V and V P V, then either

‚ W P HK0 , or
‚ diamW pπW pgApBqqq ď K0 and dW pa, bq ď 100Eκp0q.

In the first case, V KW by Claim 1.22, so there is no consistency inequality to check.
In the second case, if W & V , then a 200Eκp0q–consistency inequality holds, as we now

show. Indeed, if W&V , then πW pa
1q, πW pb

1q coarsely coincide, as do πV paq, πV pa
1q and

πV pbq, πV pb
1q. At least one of πV pa

1q or πV pb
1q is E–far from ρWV , so either πW pa

1q or πW pb
1q

is uniformly close to ρVW , but these two points coarsely coincide, so πW pa
1q “ bW is uniformly

close to ρVW . The nested cases are similar. �



QUASIFLATS IN HIERARCHICALLY HYPERBOLIC SPACES 20

Assertion (3): Given the consistent tuple provided by Claim 1.23, the realization theorem,
Theorem 1.2, then provides a coarsely unique x P X realizing pbW q, and we let fpa1, hq “ x.
This gives a map f : gApBq ˆHθpa, bq Ñ X , and one can see using the distance formula that
there exists K1 “ K1pκ,Eq so that f is a pK1,K1q–quasi-isometric embedding. In the next
claims, we check that f satisfies the remaining properties of Assertion (3).

Claim 1.24. fpgApBq ˆHθpta, buqq is coarsely contained in HθpgApBq Y gBpAqq.

Proof of Claim 1.24. Let h P Hθpta, buq. Let c P B and let x “ fpgApcq, hq. Let U P S. If
U P V , then πU pxq uniformly coarsely coincides with πU phq, which in turn lies θ–close to the
geodesic γU in CU from πU paq to πU pbq, by the definition of a θ–hull.

If U P S ´ V, then πU pxq lies uniformly close to πU pgApcqq. In either case, πU pxq lies
uniformly close to a geodesic starting and ending in πU pgApBq Y gBpAqq, so x lies uniformly
close to HθpgApBq Y gBpAqq. �

Claim 1.25. HθpgApBq Y gBpAqq is coarsely contained in the image of f .

Proof of Claim 1.25. Suppose that x P HθpgApBqYgBpAqq. Let y “ fpggApBqpxq, gHθpta,buqpxqq.
We claim that πU pyq coarsely coincides with πU pxq for all U P S, and hence x coarsely coin-
cides with y. Indeed, suppose that U P V . By Claim 1.21, we have that πU pgApBqq, πU pgBpAqq
are uniformly bounded; thus πU pHθpgApBq Y gBpAqqq coarsely coincides with πU pHθpta, buqq.
Hence, since x P HθpgApBqYgBpAqq, we have πU pxq coarsely coincides with πU pgHθpta,buqpxqq.
By definition, this coarsely coincides with πU pyq.

Suppose that U P S´ V. Then πU pgApBqq coarsely coincides with πU pgBpAqq and hence
πU pHθpgApBq Y gBpAqqq coarsely coincides with πU pgApBqq. Hence, since x P HθpgApBq Y
gBpAqq, we have πU pxq coarsely coincides with πU pggApBqpxqq, which coarsely coincides with
πU pyq by definition. �

Claim 1.26. gBpAq coarsely coincides with fpgApBq ˆ tbuq.

Proof of Claim 1.26. By Claim 1.25, gBpAq is coarsely contained in the image of f . Moreover,
if x P gBpAq, then πV pxq coarsely coincides with πV pbq for all V P V, since b P gBpAq and
πV pgBpAqq is bounded by Claim 1.21. Hence gBpAq is coarsely contained in fpgApBq ˆ tbuq.

Conversely, for any a1 P gApBq, fpa
1, bq coarsely coincides with gBpa

1q. Indeed, for V P V,
πV pfpa

1, bqq coarsely coincides with πV pbq by definition. But πV pbq P πV pgBpAqq, by the
choice of b. Since πV pgBpAqq is uniformly bounded, πV pgBpa

1qq coarsely coincides with πV pbq
and hence πV pfpa

1, bqq.
Let H P S´ V. Since dHpA,Bq ď 100Eκp0q, we have that πV pgBpa

1qq coarsely coincides
with πV pa

1q. By definition πV pfpa
1, bqq coarsely coincides with πV pa

1q. Hence fpgApBq ˆ tbuq
is coarsely contained in gBpAq. �

Assertions (4),(5): Let p, q P gApBq and t1, t2 P Hθpta, buq. Then there exists K2,
depending on κ,K1, E such that the following hold by the construction of f . First, if
H P RelK2pfpp, t1q, fpq, t1qq, then H P HK0 .

Second, if V P RelK2pfpp, t1q, fpp, t2qq, then V P V, so V P HKK0
by Lemma 1.22, as

explained above.

Assertion (6): Let F “ HθpgApBqY gBpAqq, and consider p P A and q P B. Assertion (3)
and Lemma 1.27 provides K4 “ K4pκ,X q so that

dpgF ppq, gF pqqq —K4,K4 dpA,Bq ` dpggBpAqppq, ggBpAqpqqq,
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so it suffices to compare dpp, qq with dpp, gF ppqq ` dpgF ppq, gF pqqq ` dpq, gF pqqq. The upper
bound is just the triangle inequality. For U P S, examining a thin quadrilateral shows

dU pp, qq ě dU pp, pU,F pπU ppqqq ` dU ppU,F pπU ppqq, pU,F pπU pqqqq ` dU pq, pU,F pπU pqqqq ´ T

ě dU pp, gF ppqq ` dU pgF ppq, gF pqqq ` dU pq, gF pqqq ´ 10T

for some uniform T . Given L ě 0, let σLpp, qq “
ř

UPS ttdU pp, qquuL.

By the distance formula (Theorem 1.3), dpp, qq ě K´1
3 σ10T pp, qq ´K3 for some K3. Since,

10σ10T pp, qq ě σ100T pp, gF ppqq`σ100T pgF ppq, gF pqqq`σ100T pgF ppq, qq, the claim follows from
another use of the distance formula (on the right, with threshold 100T ). �

The next lemma is used in the proof of the final assertion of Lemma 1.20, but it is also
interesting in its own right, since it says in particular that gApaq is the “coarsely closest point”
of the hierarchically quasiconvex set A to the (arbitrary) point a P X .

Lemma 1.27. Let A,B Ă X be κ–hierarchically quasiconvex sets. Then there exists K “

Kpκ,X ,Sq so that for all a P X we have dpa,Bq —K,K dpa, gBpaqq. Moreover, for any a P A:

dpA,Bq —K,K dpgBpaq, gApgBpaqqq.

Proof. First let a P X and b P B. Recall that for U P S, the map pU,B : CU Ñ πU pBq
is coarsely the closest-point projection. For any U P S, we have dU pa, pU,BpπU paqqq ď
dU pa, bq ` 1. By the definition of the gate, and the distance formula, we thus have K 1,
depending on κ, so that dpa, gBpaqq ď K 1dpa, bq `K 1. Since this holds for any b P B, this
proves the first assertion.

Now let a P A and let U P S. Then pU,AppU,BpπU paqqq lies uniformly close to any CU–
geodesic from πU paq to pU,BpπU paqq, so by the distance formula and the definition of the
gate, dpa, gBpaqq ě dpgBpaq, gApgBpaqqq{K

1 ´K 1 for K 1 depending only on X ,S, and κ.
Choose a P A so that dpA,Bq ě dpa,Bq´1. Then dpA,Bq ě K 1dpa, gBpaqq{K

1´K 1´1, by
the first assertion and the choice of a. As above, dpa, gBpaqq ě dpgBpaq, gApgBpaqqq{K

1 ´K 1.
Combining these facts shows that, up to uniform constants, dpA,Bq is bounded below by
dpgBpaq, gApgBpaqqq, as required. �

Although we will not use it in the rest of the paper, we note the following interesting
corollary, which is useful elsewhere:

Corollary 1.28. Let pX ,Sq be an HHS. Then for all sufficiently large s, there exists K such
that the following holds. Let U P S. Let PU be a corresponding standard product region and
let x P X . Let R be the set of V P S such that U Ĺ V or U&V and dV px, ρ

U
V q ą s. Then

dpx, PU q —K,K
ÿ

V PR
dV px, ρ

U
V q.

Proof. By construction, PU is κ–hierarchically quasiconvex, where κ depends only on E.
Lemma 1.27 provides K0 such that dpx, PU q —K0 dpx, gPU pxqq. Now, by the definition of gPU ,
the projections πV pxq and πV pgPU pxqq uniformly coarsely coincide unless U Ĺ V or U&V . In
the latter case, gPU pxq projects uniformly close to ρUV , by Definition 1.11 and Definition 1.12.
The claim now follows from the distance formula, Theorem 1.3. �

1.3. Wallspaces. Wallspaces were introduced by Haglund–Paulin [HP98] and then further
developed by Hruska–Wise in [HW14]; there are now numerous variants of the notion. Here,
we recall the relevant definitions for Section 2. See, e.g., [HW14] for more background on
CAT(0) cube complexes.

Definition 1.29 (Wallspace, coherent orientation). A wallspace pS,Wq consists of a set S
and a collection W “ tp

ÐÝ
W,
ÝÑ
W qu of partitions of S; each such partition is called a wall. The
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subsets
ÐÝ
W,
ÝÑ
W Ă S are the halfspaces associated to p

ÐÝ
W,
ÝÑ
W q. A orientation x of W is a map

W Q p
ÐÝ
W,
ÝÑ
W q ÞÑ xp

ÐÝ
W,
ÝÑ
W q P t

ÐÝ
W,
ÝÑ
W u. The orientation x is coherent if xp

ÐÝ
W,
ÝÑ
W qXxp

ÐÝ
W
1
,
ÝÑ
W
1
q ‰

H for all p
ÐÝ
W
1
,
ÝÑ
W
1
q, p
ÐÝ
W,
ÝÑ
W q PW. The orientation x is canonical if there exists s P S so that

s P xp
ÐÝ
W
1
,
ÝÑ
W
1
q for all but finitely many p

ÐÝ
W
1
,
ÝÑ
W
1
q PW . When W is finite, as it will always be

the case in this paper, any orientation is canonical.

Definition 1.30 (Dual cube complex). The dual cube complex C “ CpS,Wq associated to
the wallspace pS,Wq is the CAT(0) cube complex whose 0–cubes are the coherent, canonical
orientations of W, with two 0–cubes joined by a 1–cube if the corresponding orientations
differ on exactly one wall. The resulting graph is median, as was proven independently by
Chatterji-Niblo [CN05] and Nica [Nic04], building on work of Sageev [Sag95]. Thus this
graph is the 1–skeleton of a uniquely determined CAT(0) cube complex, by a theorem of
Chepoi [Che00]; we call this complex C. Note that, given a CAT(0) cube complex C, each

hyperplane W yields a wall in Cp0q by partitioning Cp0q into the vertex sets of the two
components of C ´W . The CAT(0) cube complex dual to the resulting wallspace is exactly
C.

Definition 1.31 (Hyperplane, crossing). A hyperplane in C is a connected subspace whose
intersection with each cube c “ r´1, 1sn is either H or a subspace obtained by restricting
exactly one coordinate to 0.

The hyperplanes in CpS,Wq correspond bijectively to the walls in W. Moreover, two
hyperplanes have nonempty intersection if and only if the corresponding walls cross in the
sense that all four possible intersections of associated halfspaces are nonempty. It follows
that the dimension of C is equal to the largest cardinality of a subset of W consisting of
pairwise-crossing walls.

We occasionally use the convex hull of a set A Ă CpS,Wq: this is the largest subcomplex
contained in the intersection of all halfspaces containing A.

Finally, we need the notion of a cubical orthant. Let C be a CAT(0) cube complex. Let
n ě 1 and let R be the standard tiling of r0,8q by 1–cubes. A cubical n–orthant is a copy
of the CAT(0) cube complex Rn with the obvious product cubical structure. A cubical
n–orthant in C is a subcomplex O of C that is isomorphic to Rn and has the property
that O ãÑ C is an isometric embedding (and in particular a median homomorphism) on the
0–skeleton.

1.4. Ultralimits and asymptotic cones. We now recall the definitions of ultralimits and
asymptotic cones of metric spaces. A more detailed discussion can be found, for example, in
the book [DK18] or in [Dru02]; we recall just the notions we need.

Let pM,dq be a metric space and let ω Ă 2N be a non-principal ultrafilter on N. Given a
sequence m “ pmn PMqnPN of observation points and a positive sequence s “ psnqnPN with

sn
n
ÝÑ 8, the asymptotic cone M is the ultralimit of the based metric spaces limωpM,mn,

d
sn
q:

define a pseudometric d on
ś

nM by dpy, zq “ limω
dpyn,znq

sn
, and consider the induced

pseudometric on the component containing m, i.e.,

xM “

#

pynqnPN P
ź

n

pM,
d

dn
q : dpy,mq ă 8

+

.

Then M is the associated quotient metric space, obtained from xM by identifying points y
and z for which dpy, zq “ 0.

More generally, given a sequence pMn, dnq of metric spaces, with a basepoint mn PMn for
each n, we define the ultralimit as follows. Given x “ pxnq, y “ pynq P

ś

nMn, let dpx, yq “
limω dnpxn, ynq. We identify pxnq, pynq when dpx, yq “ 0, and restrict ourselves to points pxnq
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for which limω dpxn,mnq ă 8. The resulting based space is the ultralimit limωpMn, dn,mnq.
Note that the asymptotic cone M defined above is just limωpMn, dn{sn,mnq. When taking
ultralimits of a sequence of spaces without rescaling, we will emphasize this by saying
“non-rescaled”.

We will adopt the following notational conventions for asymptotic cones. We let ω denote
a non-principal ultrafilter on N, fixed once and for all. Given a sequence pMiqiPN of based
metric spaces, we denote by M the corresponding ultralimit. Given m P M, a representative
of m is a sequence pmi P MiqiPN, and, when there is no possibility of confusion, we use a
boldface letter to denote this representative, viz. m “ pmiq.

We also denote by ωR` the ultrapower of the set R` of nonnegative reals. Given λ P ωR`,
we sometimes use the notation, e.g., r to denote a sequence prmqmPN representing λ.

1.5. Median, coarse median, quasimedian. We recall some background on median
spaces and coarse median spaces. The latter were introduced by Bowditch [Bow13] and we
refer the reader to [Bow13, Bow18b] for a more detailed discussion of both concepts.

The discussion of coarse median spaces in [Bow13] is given in terms of (finite) median
algebras. For concreteness, we first consider only the following example of a (finite) median
algebra: let Y be a CAT(0) cube complex (with finitely many 0–cubes). Recall that there

exists a median map µ : pYp0qq3 Ñ Yp0q with the property that, for all x1, x2, x3 P Yp0q, the
0–cube µpx1, x2, x3q lies on a combinatorial geodesic from xi to xj for all distinct i, j P t1, 2, 3u,
see e.g., [Che00]. This 0–cube with the given property is unique.

Remark 1.32 (Median and walls). Let Y be a CAT(0) cube complex and let x, y, z be
0–cubes. The median, µ “ µpx, y, zq, can be described in terms of orientations of walls as
follows. If W is a wall in Y so that some associated halfspace W` contains x, y, z, then µ
orients W toward W`. Otherwise, W has two associated halfspaces W˘ so that W` contains
exactly two of the points tx, y, zu and W´ contains exactly one of these points. Then µ
orients W toward W`. This choice of orientation of all walls is coherent and easily verified
to yield a 0–cube which is the median of x, y, z.

The above discussion provides the basis for the definition of a coarse median space.

Definition 1.33 (Coarse median space; [Bow13]). Let pL, dq be a metric space and let
µ : L3 Ñ L be a ternary operation. We say that L, equipped with µ, is a coarse median space
if there exists a constant k and a map h : NÑ r0,8q so that the following hold:

‚ For all x, y, z, x1, y1, z1 P L,

dpµpx, y, zq, µpx1, y1, z1qq ď kpdpx, x1q ` dpy, y1q ` dpz, z1qq ` hp0q.

‚ For all p P N and A Ď L with |A| ď p, there is a CAT(0) cube complex YA with finite

0–skeleton and median map µA, and maps f : AÑ Yp0qA and g : Yp0qA Ñ A so that the
following hold:

– dpµpgpxq, gpyq, gpzqq, gpµApx, y, zqqq ď hppq for all x, y, z P Yp0qA ;
– dpa, gpfpaqqq ď hppq for all a P A.

The coarse median rank ν of L is the smallest integer ν so that YA can be taken to have
dimension ď ν for all finite A.

It was shown in [BHS19] that every hierarchically hyperbolic space is a coarse median
space; we refer the reader there for details of the construction. The property of coarse medians
we need in this paper is that, given an HHS pX ,Sq, there exists a constant `, depending only
on the HHS constant E, so that the following holds. Given x, y, z P X and letting m P X be
their coarse median, then for all U P S, the point πU pmq lies `–close to any geodesic in CU
joining a, b, where a, b P tπU pxq, πU pyq, πU pzqu are distinct.
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Definition 1.34 (Quasimedian map). Let Y be a CAT(0) cube complex with median map
µY on its 0–skeleton. Let pL, µ, dq be a coarse median space. Let h ě 0. An h–quasimedian
map is a map q : Y Ñ L for which

dpµpqpxq, qpyq, qpzqq, qpµYpx, y, zqqq ď h

for all x, y, z P Y.

Note that quasimedian maps are referred to by [Bow13] as “quasimorphisms,” but we use
a different terminology to avoid any confusion with other uses of that word.

When studying asymptotic cones of HHSs, it isn’t sufficient to restrict oneself to finite
median algebras/CAT(0) cube complexes. So, we need a few more standard notions about
general median algebras and median metric spaces.

Recall that a set M equipped with a ternary operation µ : M3 ÑM is a median algebra
if for all finite A Ă M, there is a finite B Ă M so that A Ď B, and B is closed under µ,
and pB,µq is a finite median algebra in the above sense (i.e., we can identify its elements
with points in a finite CAT(0) cube complex in such a way that µ coincides with the cubical
median). The rank of a median algebra is defined as in Definition 1.33 in terms of the
dimensions of the cube complexes approximating finite sets.

Given a, b PM, the interval ra, bs is the set of c PM with µpa, b, cq “ c, and N ĂM is
median convex if ra, bs Ď N whenever a, b P N .

If M is also a Hausdorff topological space, and µ is continuous, then pM, µq is a topological
median algebra. We consider the following special case. Let pM, dq be a metric space. For
any a, b PM , let ra, bs be the set of c PM for which dpa, bq “ dpa, cq ` dpc, bq. If M has the
property that for all a, b, c PM , the intersection ra, bsX rb, csX rc, as consists of a single point
µpa, b, cq, then the map pa, b, cq ÞÑ µpa, b, cq makes pM, dq a topological median algebra. In
this situation, we say M is a median (metric) space. The metric notion of an interval agrees
with the median notion discussed above.

Bowditch showed, in [Bow13, Theorem 2.3], that any asymptotic cone of a coarse median
space of rank ν is a topological median algebra of rank ν, where the median of points
represented by sequences pxnq, pynq, pznq is represented by a sequence whose nth term is the
coarse median of xn, yn, zn. Moreover, Bowditch showed in [Bow18b, Proposition 2.4] (see
also Theorem 6.9 of the same paper) that any asymptotic cone of a coarse median space is
bilipschitz homeomorphic to a metric median space, where the median is as just described.
When we work with asymptotic cones of HHSs (recall that each HHS is coarse median of
finite rank), we will only be interested in the bilipschitz homeomorphism class, and will
therefore assume that the asymptotic cone, with the given median, is a median metric space.

We collect the above in the following proposition, which plays an important role throughout
Section 3:

Proposition 1.35 (Asymptotic cones of HHS are median metric spaces). Let pX ,Sq be a
hierarchically hyperbolic space. Let X be an asymptotic cone of X . Let µ : X 3 Ñ X be the
coarse median map, and let µ : X 3 Ñ X be the map sending x “ pxnq,y “ pynq, z “ pznq to
the point represented by pµpxn, yn, znqq. Then:

‚ µ makes X into a topological median space of finite rank. If pX ,Sq is asymphoric
and has rank ν, then the median space X has rank at most ν.

‚ X , equipped with the median µ, is bilipschitz equivalent to a median metric space.

Proof. It is shown in [BHS19, Section 7] that X is a coarse median space. From Theorem F
it follows that the rank of X as a coarse median space is bounded above by the maximal
cardinality m of collections tUiu Ă S of pairwise orthogonal elements. (So, in general, the
coarse median rank of X is bounded only by the complexity of S.)

The bound on the coarse median rank in the asymphoric case is Corollary 2.15 below.
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The first assertion now follows from [Bow13, Theorem 2.3] which provides the median
structure and implies that ν is an upper bound on the rank of the median space pX ,µq.

The second assertion follows from [Bow18b, Theorem 6.9]. More specifically, being an
asymptotic cone of a quasigeodesic space, X is a complete geodesic space (see e.g., [DK18,
Proposition 10.70]). The proof of [Bow13, Proposition 9.1] shows that X , with the given
median, satisfies the hypotheses of [Bow18b, Proposition 2.4], which then yields the second
assertion. �

Finally, we conclude with some background about the notion of gate maps in a median
space, and the notion of a block; these again are vital in Section 3.

Definition 1.36 (Block, median gate). Let pM,µ, dq be a median metric space. A n–block
in M is a median convex subspace isometric to the product of n nontrivial compact intervals
in R, endowed with the `1 metric.

Recall that the (median) interval in M between points m and n is the set rm,ns of all m1

such that µpm,m1, nq “ m1.
If N Ă M is a closed median convex subset, a median gate map gN : M Ñ N is a map

such that gN pmq P rm,ns for all m PM,n P N .
Closed convex subsets of a complete median space always admit a unique gate map (see

e.g. [DK18, Lemma 6.26]). If N,N 1 are median convex, then gN pN
1q is again median convex;

see [Bow18b].

1.6. Identifying hierarchy paths. We now prove a sufficient condition for a path in the
HHS pX ,Sq to be a hierarchy ray. It is straightforward, but it will play a role in Section 4.

In the lemma, “quasimedian” will mean with respect to the coarse median on X and the
usual median on R, i.e., γ : RÑ X is quasimedian if whenever r, s, t P R satisfy r ă s ă t,
then the coarse median of γprq, γpsq, γptq is λ–close to γpsq.

Lemma 1.37. Let pX ,Sq be an HHS. Then for all λ ě 1, there exists D “ Dpλq such that
the following holds. Let I Ă R be a (possibly unbounded) subinterval and let γ : I Ñ X be a
λ–quasimedian pλ, λq–quasi-isometric embedding. Then γ is a pD,Dq–hierarchy path.

Proof. The path γ is a pλ, λq–quasigeodesic by hypothesis, so to show that it is a hierarchy
path we only need to prove that there exists a constant D so that, for each U P S, the
composition of γ with πU is an unparameterized pD,Dq–quasigeodesic in CU . In order to do
so, it suffices to show that there exists a constant D1 so that for each r, s, t P I with r ă s ă t,
we have that πU pγpsqq lies D1–close to a geodesic from πU pγprqq to πU pγptqq.

Let r, s, t P I satisfy r ă s ă t. Let m be the coarse median of γprq, γpsq, γptq.
Since πU is E–coarsely Lipschitz and γ is λ–quasimedian, we have dU pπU pγpsqq, πU pmqq ď
Eλ ` E. By the definition of the coarse median, there exists λ1 “ λ1pE, λq such that
dU pγpsq,mU q ď λ1, where mU is the coarse median in the hyperbolic space CU of the three
points πU pγprqq, πU pγpsqq, πU pγptqq. The distance frommU to any geodesic rπU pγprqq, πU pγptqqs
is bounded in terms of the hyperbolicity constant of CU , so we are done. �

2. Cubulation of hulls

Fix a hierarchically hyperbolic space pX ,Sq. In this section, we prove that the hull of any
finite set A Ă X can be cubulated, i.e., approximated by a finite CAT(0) cube complex in
such a way that both distances and (coarse) medians are coarsely preserved.

We achieve the cubulation of HθpAq by constructing finitely many walls in HθpAq and
then passing to the dual cube complex, using the work of Chatterji–Niblo, Nica, and Sageev
mentioned in Definition 1.30.

In the case where pX ,Sq is a rank-one HHS — which, as we will see below, is equivalent to
being hyperbolic — the cubulation of the hull of A reduces to a classical fact about hyperbolic
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spaces: the coarse convex hull of any finite collection of points can be approximated by a
quasi-isometrically embedded 1–dimensional CAT(0) cube complex, i.e., a tree [Gro87b].

We exploit this special case to build walls in HθpAq, roughly as follows. We consider U P S
and consider a tree which approximates the coarse convex hull of πU pAq in the hyperbolic
space CU . We then find an appropriate separated net in this tree and, for each point in this
net, we use π´1

U of a connected component of the complement as one of our walls.
The fact that the quality of the tree approximation in CU depends on |A| is the most

obvious way in which the dependence of the quality of our cubical approximation on |A|
makes itself felt. However, there are also several other essentially different ways in which |A|
influences the quality of the approximation. First, it does so in our choice of separated nets
(roughly, the larger the total branching of a tree is, the harder it is to approximate the tree
with a separated net), and the other two are in Lemma 2.6 and Lemma 2.10.

We now turn to the formal statement of the cubulation of hulls theorem (which is Theorem F
of the introduction):

Theorem 2.1 (Cubulation of hulls). Let pX ,Sq be a hierarchically hyperbolic space and
let k P N. Then there exists M0 so that for all M ě M0 there is a constant C1 so that
for any A Ă X of cardinality ď k, there is a C1–quasimedian pC1, C1q–quasi-isometry
pA : Y Ñ HθpAq, where Y is a CAT(0) cube complex.

Moreover, let U be the set of U P S so that dU px, yq ěM for some x, y P A. Then dimY
is equal to the maximum cardinality of a set of pairwise-orthogonal elements of U .

Finally, there exist 0–cubes y1, . . . , yk1 P Y so that k1 ď k and Y is equal to the convex hull
in Y of ty1, . . . , yk1u.

Remark. Since we posted an earlier version of this paper, Bowditch has given a new proof
of this theorem under somewhat more general hypotheses (very similar to, but strictly weaker
than, the HHS axioms); see Theorem 1.3 in [Bow18a].

The proof is carried out over the next several subsections. We fix once and for all pX ,Sq,
some k P N, and a subset A “ tx1, . . . , xku Ď X .

2.1. The candidate finite CAT(0) cube complex. Fix U P S. For each xj P A, recall
that πU pxjq is a subset of the δ–hyperbolic space CU of diameter at most E; for each j,
choose `Uj P πU pxjq, to obtain k points `U1 , . . . , `

U
k P CU . As shown by Gromov, there exists

C “ Cpk, δq so that there is a finite tree TU and an embedding TU ãÑ CU , sending edges to
geodesics of CU , such that:

‚ dU pp, qq ď dTU pp, qq ď dU pp, qq ` C for all p, q P TU ;
‚ `Uj P TU for 1 ď j ď k;

‚ each leaf of TU lies in t`U1 , . . . , `
U
k u.

This is the usual spanning tree of a finite subset of a hyperbolic space; see [Gro87b]. The given
properties of TU ensure that, up to increasing C uniformly, dHauspTU ,hullCU pπU pAqqq ď C.

Our choice of TU ensures that, for each xj P A, every leaf of TU is contained in πU pxjq for
some xj P A and each πU pxjq contains a point of TU .

Let M be a (large) constant to be specified below. We will point out the conditions that
M must satisfy as we proceed.

Let U be the set of all U P S with diampπU pAqq ě 100Mk.
Let U1 Ď U be the set of Ď–minimal elements of U . Given Un´1, let Un Ď U be the set of

all Ď–minimal elements of U ´ Un´1. Finite complexity ensures that there is some s so that
Ťs
n“1 Us “ U . For each
U P U , let UĎ,U “ tV P U : V Ĺ Uu. For each V P UĎ,U , choose rVU P TU closest to

ρVU ; the set of choices is bounded diameter (moreover, in Lemma 2.4, we prove that rVU is
100EC–close to ρVU ).
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Remark (Finiteness of U). For sufficiently large M (in terms of the threshold constant in
the distance formula), Theorem 1.3 implies that U is finite. One could also deduce this from
the large link axiom (Definition 1.1.(7) in [BHS19]), avoiding use of the distance formula.
Finiteness of U is used below; it will ensure that the wallspace we construct has finitely
many walls, so that the 0–cubes of Y correspond bijectively to coherent orientations of the
walls (recall Definition 1.30); in other words, we don’t have to worry about the “canonical
orientation” condition from Definition 1.30, because we will be dealing with a finite wallspace.

We now proceed to the construction of the walls.
Starting with each U P U1 and then repeating for U2 up to Us, we choose a finite set of

elements pUi P TU satisfying the following conditions (which implies that the pUi together
with the rVU provide a 10Mk–net which is M–separated):

(1) dU pp
U
i , xjq ěM ,

(2) dU pp
U
i , p

U
j q ěM ,

(3) dU pp
U
i , r

V
U q ěM for each V P UĎ,U (when U P U1, there are no such V ), and

(4) each component of TU ´
´

tpUi u Y tr
V
U uV PUĎ,U q

¯

has diameter at most 10Mk (when

U P U1, there are no such V , so the criterion is only about complements of the tpUi u).

The existence of such a net is justified as follows. Fix U P U . For each xj P A, choose
yj P TU lying in πU pxjq.

For each j ď k, let T jU be the subtree of TU spanned by y1, . . . , yj . Consider the geodesic
T 2
U . Let a1, . . . , a` be the points as on T 2

U such that there is a (possibly trivial) geodesic in
TU that intersects T 2

U at as and joins as to a point in ty3, . . . , yku. Note that ` ď k ´ 2.
Note that TU is the union of T 2

U along with ` subtrees Cs, each of which intersects T 2
U at

a point as, s ď `. Choose a (possibly empty) M–separated set of points pUi in T 2
U so that

each pUi is M–far from each as, and M–far from y1, y2, and M–far from each ρVU , V P UĎ,U

belonging to T 2
U . Any collection that is maximal with these properties has the property that

tpUi u Y tρ
V
U P T

2
Uu is an Mp`` 2q–net in T 2

U . If k “ 2, then tasu “ H and we are done.
Otherwise, each tree Cs contains at most k ´ 2 of the points yj , and exactly one of the

points a1, . . . , a`, namely as. So, by induction, Cs contains an M–separated collection of
points tpUi psqui that are M far from any ρVU P Cs, and M–far from any yj P Cs, and M–far
from as, such that tpUi psqui Y tr

V
U P Csu is an Mpk ´ 1q–net in Cs. Observe that the set of

pUi , together with the union over s of the tpUi psqui, has the properties listed above.
(Since the points pUi are M–far from each yj , they are pM ´ Eq–far from πU pxjq, and so

we rename M ´E to M to see that the first property on the list holds for πU pxjq, not just yj .
With the renamed constant, we now have an pM ` Eqk–net, and in particular a 10Mk–net,
provided M ě E{9. We assume this just to simplify computations later.)

Definition 2.2 (Walls in HθpAq). Given U P U and tpUi u as above, for each i we define a

partition HθpAq “
ÐÝ
W

U
i \

ÝÑ
W

U
i of HθpAq as follows. Choose a component T 1U of TU ´ tp

U
i u

and let
ÐÝ
W

U
i “ β´1

U pT
1
U q XHθpAq, and set

ÝÑ
W

U
i “ HθpAq ´ p

ÐÝ
W

U
i q. Let LUi “ p

ÐÝ
W

U
i ,
ÝÑ
W

U
i q.

Observe that the (finite) set of walls in HθpAq specified in Definition 2.2 depends on our
choice of M (since that determines U) and on our choice of the pUi (which is also constrained
by the choice of M and the number of points xj). Let Y be the CAT(0) cube complex dual
to the wallspace just defined. Since the set of walls is finite, there is exactly one 0–cube in Y
for each coherent orientation of all the walls (recall that a coherent orientation is a choice of
halfspace for each wall such that, for any two walls, the chosen halfspaces have nonempty
intersection).
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The cubes in Y are closely related to the standard product regions in X . Specifically, each
cube corresponds to a collection of pairwise-crossing walls. Each wall was determined by some
U P U , namely the U for which the halfspaces in the wall are preimages of complementary
components of some pUi . We think of U as labeling the wall. Now, each edge of Y is labeled
by the same U that labels its dual wall. Below, we will map Y to X in such a way that an
edge e labeled U has the property that its endpoints are sent to points in X that project
uniformly close on CV to ρUV whenever U Ĺ V or U&V . In this sense, we will be mapping
cubes to standard product regions.

2.2. Lemmas supporting consistency of certain tuples. The map Y Ñ HθpAq will be
constructed roughly as follows. For each 0–cube p P Y , we will construct a tuple pbV q P

ś

V CV .
In Lemma 2.7, we will verify that this tuple is consistent, and this will require the following
technical lemmas, which are essentially just applications of consistency (Axiom 1.1) and
bounded geodesic image (Lemma 1.5).

The content of the lemmas is the following. Given distinct, non-orthogonal U P U , V P S,
there are three possibilities: we can have U&V,U Ĺ V , or V Ĺ U . In the first two cases, the
coarse point ρUV lies close to TV in CV . In the second case, for any x P TU far from ρVU , the
coarse point ρUV pxq lies close to TV .

Lemma 2.3 (ρUV close to TV , transverse case). For all M ą 10E, the following holds. Let
U P U and V P S. If U&V then ρUV is E–close to some πV pxiq, and hence 2E–close to TV .

Proof. Since U P U , we have diamCU pπU pAqq ě 100Mk ě 100M ą 103E. Hence we can
choose xi P A so that dU pxi, ρ

V
U q ą E. Consistency yields dV pxi, ρ

U
V q ď E. Since πV pxiq has

diameter ď E and contains a point of TV , we have dV pTV , ρ
U
V q ď 2E. �

Lemma 2.4 (ρUV close to TV , nested case). For any M ą 10E, the following holds. Let
U P U , V P S, with U Ĺ V . Then dV pρ

U
V , TV q ď 100EC.

Proof. Suppose that dV pρ
U
V , TV q ą 100EC. Then, since TV C–coarsely coincides with

hullCV pAq, and the latter is 5E–quasiconvex, we have that ρUV lies at distance greater than
E from any geodesic joining points in πV pAq. Hence, by consistency and bounded geodesic
image, any such geodesic projects to a geodesic in CU of diameter at most E, i.e., πU pAq has
diameter bounded by 10E. This contradicts U P U , provided M ą 10E. �

Lemma 2.5 (ρUV pxq close to TV ). For any M ą 10EC the following holds. Consider U P U
and any V P S with V Ĺ U . Then for each x P TU ´ NM pρ

V
U q there exists xj P A with

dV pρ
U
V pxq, xjq ď 2E (in particular, ρUV pxq is 10E–close to TV ).

Proof. There exists a leaf of TU , contained in πU pxjq for some xj P A, in the same connected
component of TU ´NM{2pρ

V
U q as x. Geodesics from x to πU pxjq thus stay E–far from ρVU , so

that the desired conclusion follows from bounded geodesic image (and consistency, which
says diamV pπV pxjq Y ρ

U
V pπU pxjqqq ď E). �

2.3. The proof of Theorem 2.1. We now prove Theorem 2.1. Some auxiliary lemmas
appear immediately below the proof, organized according to which part of the proof they
support.

Proof of Theorem 2.1. We break the proof into several parts.
Definition of pA: We first define pA : Y Ñ X , noting that it suffices to define pA on the

0–skeleton of Y. Let p P Yp0q; we view p as a coherent orientation of the walls LUi provided
by Definition 2.2.

For U P U , V P S and each pUi (which we recall gives a pair t
ÐÝ
W

U
i ,
ÝÑ
W

U
i u), we can

consider W ipUq P t
ÐÝ
W

U
i ,
ÝÑ
W

U
i u which is the halfspace given by the orientation p, namely



QUASIFLATS IN HIERARCHICALLY HYPERBOLIC SPACES 29

pp
ÐÝ
W ipUq,

ÝÑ
W ipUqq. We let SU,i,V ppq Ď TV be the convex hull in TV of βV pW ipUqq, where, as

above, βV is the composition of projection to CV and the closest point projection to TV .
By the definition of a coherent orientation, for any U, i, U 1, i1, we have βV pW ipUqq X

βV pW i1pU
1qq ‰ H, whence SU,i,V ppq X SU 1,i1,V ppq ‰ H. The Helly property for trees thus

ensures that
Ş

U,i SU,i,V ppq ‰ H for each V P S, and we let bV “ bV ppq “
Ş

U,i SU,i,V ppq.

Lemma 2.6, below, proves that diampbV q are uniformly bounded. Lemma 2.7, below, shows
the pbV q are η–consistent, where η “ ηpM,k,X q.

We can now define pAppq P X to be a realization point associated to pbU q via Theorem 1.2.
Specifically, there exists ξ “ ξpη,Eq so that for all U P S, we have dU pπU ppAppqq, bU q ď ξ.

The image of pA coarsely coincides with HθpAq: Let x P HθpAq.
For each wall in HθpAq (the walls are those from Definition 2.2), choose the halfspace

containing x; there is exactly one such halfspace since a wall is, by construction, a partition
of HθpAq into two halfspaces. Now, any two of the chosen halfspaces contain x, so by
Definition 1.29, this orientation is coherent, and it is a canonical orientation simply because
there are only finitely many walls.

So, this orientation of all walls determines a 0–cube p P Y, by Definition 1.30. Now, by
construction, the tuple pbV ppqq has the property that, for all U P U , we have βU pxq P bU ppq.
Since dU pπU pxq, βU pxqq ď θ, because x P HθpAq, we see that dU px, bU ppqq ď θ. Now,
dU pbU ppq, pAppqq ď ξ, so dU px, pAppqq ď ξ ` θ for all U P U . If U R U , then dU px, pAppqq ď
θ ` 100Mk. So, by the uniqueness axiom for HHS (Definition 1.1.(9) in [BHS19]), or simply
by Theorem 1.3, we have dX px, pAppqq ď C 11, where C 11 “ C 11pM,k,X , θq. Hence HθpAq lies
in a uniform neighborhood of im pA.

On the other hand, if p P Y, then πU ppAppqq lies uniformly close (in terms of ξ) to
hullpπU pAqq for all U P S. The definition of hierarchical quasiconvexity, together with the
fact that HθpAq is hierarchically quasiconvex, ensures that pAppq lies uniformly close to
HθpAq, i.e., im pA lies in a uniform neighborhood of HθpAq.

After enlarging C 11 if necessary, we thus see that there exists C 11 “ C 11pM,k,X , θq such
that HθpAq and im pA lie at Hausdorff distance at most C 11.

Distance estimates: For p P Y , we say pUi is a separator for p if pUi separates βU ppAppqq
from bU ppq. We call U the support of the separator. In Lemma 2.10 we produce a constant
T “ T pM,k, η, ξ,Sq, so that for each p P Y there are at most T separators for p.

We first relate the number of walls separating a pair of points in Y to the number of points
separating their images under pA.

Specifically, let p, q P Y . By the definition of distance in a CAT(0) cube complex, dYpp, qq
is the number of walls separating p and q. Let LVi be a wall separating p from q. Then,
by the construction of the tuples bV ppq ad bV pqq, the subtrees bV ppq and bV pqq of TV lie
on opposite sides of the wall in TV determined by pVi . Conversely, if bV ppq and bV pqq are
separated by the partition of TV determined by some pVi , then LVi corresponds to a wall in
Y separating p from q.

Hence dYpp, qq is the sum of the numbers of pVi separating bV ppq from bV pqq, as V varies.
Now, LVi separates bV ppq from bV pqq but fails to separate βV ppAppqq from βV ppApqqq only if
LVi is a separator for p or for q. Similarly, LVi separates βV ppAppqq from βV ppApqqq but fails
to separate bV ppq, bV pqq only if LVi is a separator for p or for q.

Lemma 2.10 shows that p has at most T separators and q has at most T separators. Let
Qpp, qq be the sum over all V of the number of pVi separating βV ppAppqq from βV ppApqqq.
The preceding discussion shows that |dYpp, qq ´Qpp, qq| ď 2T .

Observe that: if, for some V , there exist distinct pVi , p
V
i1 separating βV ppAppqq from

βV ppApqqq, then V contributes to the distance formula sum between pApqq and pAppq, at
some fixed threshold L chosen in terms of E and M . Moreover, V also contributes to the
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distance formula sum in the case where βV ppAppqq and βV ppApqqq are both M{2–close to
πV pAq and there exists at least one pVi separating βV ppAppqq from βV ppApqqq.

Applying Lemma 2.8 and Lemma 2.9, we have

dX ppAppq, pApqqq —
ÿ

UPS

ttdU ppAppq, pApqqquuL ě Qpp, qq ´ 100ECθN,

where N is the constant from Lemma 2.9. Hence there exists C21 “ C21 pM,X ,S, kq so that
dX ppAppq, pApqqq ě dYpp, qq{C

2
1 ´ C

2
1 for p, q P Y.

pA is coarsely Lipschitz: Crossing one hyperplane of Y corresponds to changing only
one coordinate pbU q as above by a bounded amount, so there exists C31 “ C31 pM,k,X q so
that pA is pC31 , C

3
1 q–coarsely Lipschitz.

Dimension: The assertion about dimension follows from Lemma 2.12 and the well-known
fact that any finite set of n pairwise crossing hyperplanes in a CAT(0) cube complex intersect
in the barycenter of some n–cube.

Convex hull: For each xj P A, let yj be the orientation of the walls in HθpAq obtained by

choosing, for each wall p
ÐÝ
W

U
i ,
ÝÑ
W

U
i q, the halfspace containing xj . This orientation is coherent

by definition, so it determines a 0–cube of Y, which we also denote yj . By construction,
each wall separates two elements of A, so every hyperplane of Y separates two of the chosen
0–cubes yi, yj . Thus no intersection of combinatorial halfspaces properly contained in Y
contains all of the yj , so Y is the convex hull in Y of the set of yj .

Conclusion: Lemma 2.13 provides C41 so that pA is C41 –quasimedian, so the proof is
complete once we take C1 “ maxtC 11, C

2
1 , C

3
1 , C

4
1 u. �

2.3.1. Lemmas supporting realization. The two lemmas below are used to construct a point
in X via realization, given the tuple pbV ppqq “ pbV q associated to a 0–cube p P Y (which we
fix for the purposes of the next two lemmas). The first lemma shows that bV is a uniformly
bounded set in each CV , and the second verifies that the tuple pbV q is η–consistent (and
bounds η).

The realization theorem (Theorem 1.2) then provides a point pAppq P X that projects
ξ–close to bV in each CV , where ξ just depends on E and η. This is how we defined the map
pA : Y Ñ X in the proof of Theorem 2.1.

Lemma 2.6. There exists τ “ τpM,kq ą 0 (independent of V ) so that diampbV ppqq ď τ for
all p P Y.

Proof. Fix p P Y and write bV “ bV ppq.
If V P S´ U , then diampbV q ď diampTV q ď 100M . Hence suppose that V P U .
There exists τ “ τpM,kq ě 50Mkpk ´ 2q such that the following holds. Suppose that

x, y P X satisfy dV px, yq ą τ . Then there exists α P tpVi ui Y tr
W
V uWPU1XV Ď,V so that α is

10M–far from βV pxq, βV pyq and from all points of TV of valence larger than 2, and separates
βV pxq from βV pyq. Indeed, there are at most k ´ 2 points of valence larger than 2, since
each leaf of TV belongs to πV pAq and |A| “ k. So the geodesic from βV pxq to βV pyq has
a sub-segment of length at least 50Mk avoiding the points of valence more than 2. This
subsegment contains a point α that necessarily separates βV pxq from βV pyq and either lies
in tpVi u or trWV uWPVĎ,V u, because such points form a 10Mk–net. The restriction to U1 is

justified by the fact that for W 1 Ĺ W Ĺ U , we have that ρW
1

V coarsely coincides with ρWV , so

we can assume each rWV as above coincides with rW
1

V for some W 1 P U1 nested in V .
Choose any x, y P X projecting M–close to bV , and suppose by contradiction that

dV pβV pxq, βV pyqq ą τ . Let α be as above.
If α “ pVi , then we clearly have a contradiction since bV is contained in one of the connected

components of TV ´ tp
V
i u. If α “ rWV , then we write AY tx, yu “ A1 \A2, where we group
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together all elements of A Y tx, yu corresponding to a point of TV in a given connected
component of TV ´ tr

W
V u. By bounded geodesic image and the fact that rWV is close to

ρWV (Lemma 2.4), πW pA
1q and πW pA

2q are uniformly bounded, so that TW consists of two
uniformly bounded sets, respectively containing πW pA

1q and πW pA
2q, that are joined by a

segment in TW which is a geodesic γ of CW containing no vertex of valence more than 2.
Moreover, this geodesic has βW pxq, βW pyq uniformly close to its endpoints.

Since W P U1, there exists some pWi in TW . Let us show that SW,i,V ppq is far from one of

βV pxq or βV pyq, which is a contradiction. If there is a pWi in TW , then since pWi was chosen
far from the leaves of TW , we have that pWi P γ, lying at distance M{2 from βW pxq and from
βW pyq.

Let T be one of the two connected components of TW ´tp
W
i u. Then β´1

W pT q cannot contain

points x1, y1 with βV px
1q, βV py

1q far from rWV and in different components of TV ´tr
W
V u, which

is the required property of SW,i,V ppq. Indeed, otherwise bounded geodesic image would imply

that x1, y1 project respectively close to πW pA
1q and πW pA

2q, thus on opposite sides of pWi . �

Lemma 2.7. There exists η “ ηpM,k,X q such that the following holds. Let p P Y. Then
the tuple pbV ppqq is η–consistent.

Proof. Let U&V . If U, V P S´U , we are done because the corresponding coordinates bU , bV
p100Mk ` Eq–coarsely coincide with those of, say, x1. If U P U and V P S ´ U , then any
point in TV , whence also any point in bV ppq, is p100Mk ` C ` 2Eq–close to ρUV by Lemma
2.3 and the definition of U , so we are done.

Now suppose that U, V P U . Let cU be a point in TU which is 10E–close to ρVU , and
define cV similarly (cU and cV are provided by Lemma 2.3). If both bU and bV are 100Mk–
far from ρVU and ρUV respectively, then there are SW,i,U ppq, SW 1,i1,V ppq containing bU , bV but
far from cU , cV . There cannot be q P X with βU pqq P SW,i,U ppq, βV pqq P SW 1,i1,V ppq by

consistency, implying that the intersection of the halfspaces chosen from LWi ,LW
1

i1 is empty.
This contradicts the coherence of the orientation defining p.

CU CV

bU

bV

ρUV

ρVU or ρVU pbV q

& or Ĺ

Figure 3. Proof of Lemma 2.7. SW,i,U ppq, SW 1,i1,V ppq are shown as oriented
halfspaces in the trees TU , TV .

Let U Ĺ V . If V P S ´ U , then by Lemma 2.4 we have that ρUV is 100EC–close to bV .
Hence, we can assume V P U . If U P S´ U , similarly, the corresponding coordinates bU , bV
coarsely coincide with those of a point in HθpAq that projects close to bV in CV .

Finally, suppose U, V P U . The argument is very similar to the final argument in the
transverse case above. Let cV “ rUV (which is 10E–close to ρUV by Lemma 2.4); and, as given by
Lemma 2.5, we let cU be a point in TU which is 100EC–close to ρVU pbV q. If both bU and bV are
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100Mk–far from the corresponding ρ, then there exist SW,i,U ppq, SW 1,i1,V ppq containing bU , bV
but far from cU , cV . By the bounded geodesic image axiom, ρVU pSW 1,i1,V ppqq has uniformly
bounded diameter. Hence, there cannot be q P X with βU pqq P SW,i,U ppq, βV pqq P SW 1,i1,V ppq

by consistency, implying that the intersection of the halfspaces chosen from LWi ,LW
1

i1 is empty.
This contradicts the coherence of the orientation defining p. �

2.3.2. Lemmas supporting the distance estimate. The next three lemmas support the distance
estimate in the proof of Theorem 2.1.

The first lemma bounds projection distances from below in terms of the walls; it was used
above to give a lower bound on dX ppAppq, pApqqq in terms of the distance in the cube complex
Y between p and q.

Lemma 2.8. Let U P U . For each x, y P HθpAq, we have dU px, yq ` 50ECθ ě |ti : pUi P
rβU pxq, βU pyqsu|. Moreover, if πU pxq, πU pyq are both C–close to πU pAq, then dU px, yq ě |ti :
pUi P rβU pxq, βU pyqsu|.

Proof. Let x, y P HθpAq. Recall that diampπU pxq Y βU pxqq ď 10pE ` C ` θq, so dU px, yq ě
dU pβU pxq, βU pyqq´ 20pE`C` θq. Hence dU px, yq ě dTU pβU pxq, βU pyqq´ 40ECθ. Therefore,
dU px, yq ě |ti : pUi P rβU pxq, βU pyqsu| ´ 40ECθ ´ 1, as required. The “moreover” statement
follows in a similar way using the fact that the piU are M–far from leaves of TU . �

The next lemma is a simple application of Ramsey theory and the consistency property of
an HHS. This lemma is used in tandem with the one above. It is also used below to control
the number of separators associated to p P Y . Recall that pUi is said to be a separator for p if
pUi separates bU ppq from βU ppAq in the tree TU .

Lemma 2.9. There exists N “ NpX q ě 0 so that for each x P HθpAq there are at most N
elements U P U so that dU pβU pxq, πU pAqq ą 100E.

Proof. One axiom of an HHS is that there is a bound, c, on the cardinality of subsets of
S whose elements are pairwise Ď–comparable. By [BHS19, Lemma 2.1], c also bounds the
maximum cardinality of a set of pairwise orthogonal elements. Given x P HθpAq, consider
the set of U P S such that dU px,Aq ą 100E. Ramsey’s theorem provides N (the Ramsey
number Rpc, cq) for which either there are at most N such U , or there exist U1, U2 with

U1&U2 and dUlpx,Aq ą 100E for l “ 1, 2. By Lemma 2.3, ρU1
U2

is 10E–close to an element of

πU2pAq and thus 90E–far from πU2pxq. The same holds with U1 and U2 reversed, contradicting
consistency. �

The next lemma bounds the number of separators in terms of M,k, and the constants
ξ, τ . Since the proof is somewhat technical, we first give a heuristic discussion. We first
show that if p P Y has, say, T 1 separators, then there are at least T 1M{ξ elements U P U
that support separators (this is achieved by bounding the maximal number of separators
supported on any given U P U). Lemma 2.9 shows that, for “most” such U , the point pAppq
projects in TU close to some πU pxjq. So, if T 1 is too large, there is a specific pair xj , xk such
that, in many U as above, pAppq projects close to πU pxjq and far from xk. Lemma 1.6 then

provides U1, U2 with these properties, both nested into some V P S, such that ρU1
V , ρU2

V are
very far in CV (in terms of M, ξ, τ). Applications of bounded geodesic image, consistency,
and coherence of the orientation of walls corresponding to the 0–cube p allow us to conclude
that dV pπV ppAppqq, bV q ą ξ, which contradicts how the point pAppq was chosen, namely as a
realization point with constant ξ. For the last part of the argument, the reader will find it
helpful to consult Figure 4.

Lemma 2.10. There exists T “ T pM,k, ξ, τ,X ,Sq such that for any p P Y there exist at
most T separators for p.
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Proof. We fix p P Y, after which, we can simplify our notation by writing bV to mean bV ppq.
Recall from Lemma 2.7 that pbV q is an η–consistent tuple, where η depends on M , k, and the
global HHS constants, but is independent of p. Recall that the realization point pAppq P X
provided by Theorem 1.2 is characterized by the property that dV pbV , pAppqq ď ξ for all
V P S, where ξ depends on η and the global HHS constants, but is independent of p.

First, for each V P U , we bound the number of separators pVi . Since each pVi separates bV
from βV ppAppqq, and the set of pVi in TV is M–separated by construction, there are at most
ξ{M separators with support V . Let Sep be the set of V P U that support a separator for p.

By the previous paragraph, it remains to bound the cardinality |Sep| of Sep. Now,
Lemma 2.9 provides a uniform constant N so that there are at most N elements of U where
pAppq projects 100E–far from every element of A.

Suppose that |Sep| ą N `N0kpk ´ 1q, where N0 “ N0pM, ξ,X ,Sq will be chosen momen-
tarily. (If the preceding inequality does not hold, then we have bounded |Sep| independently
of p, as required.) This lower bound implies that there are at least N0kpk ´ 1q elements
V P Sep where βV ppAppqq is 100E–close to πV pAq. Hence, there exists xj P A so that there
are at least N0pk ´ 1q elements V P Sep where βV ppAppqq is 100E–close to πV pxjq.

Now, for each such V , we have a separator pVi separating βV ppAppqq from bV , and necessarily
lying M–far from πV pxjq, because of how our net in TV was chosen. Hence bV separates
πV pxjq from some πV px`q. Hence there is a pair xj , x` and at least N0 elements U P U such
that:

‚ βU ppAppqq is 100E–close to πU pxjq;
‚ there exists a separator pUi for p, with support U , separating βU pxjq from βU px`q.

Now, let L “ 1000pM ` ξ ` τq. Suppose we chose N0 “ N0pLq, the constant from
Lemma 1.6. So, if |Sep| ą N0kpk ´ 1q `N , then Lemma 1.6 provides some V P S and two
elements U1, U2 P Sep with the above two listed properties, such that U1 Ĺ V , and U2 Ĺ V ,
and dV pr

U1
V , rU2

V q ą 10E ` ξ.

For t “ 1, 2, there exists pUtit separating βUtppAppqq (which is 100E–close to πUtpxjq) from
πUtpx`q, so dUtpxj , x`q ąM .

By bounded geodesic image, the geodesic in TV from βV pxjq to βV pxkq must pass E–close

to rU1
V and rU2

V . (So V is necessarily in U .)

For concreteness, suppose U1, U2 are labeled so that NEpρ
U1
V q separates πV pxjq from ρU2

V
and πV px`q.

Bounded geodesic image and consistency imply that βV ppAppqq lies E–close to the connected

component of TV ´ NEpr
Ut
V q containing πV pxjq for t “ 1, 2. Indeed, this holds because

βUtppAppqq is pM ´ 100Eq–far in TUt from πUtpx`q.
We now analyze two cases, according to how close bV lies to the component Π of TV ´

NEpρ
U2
V q containing πV pxkq.

Recall that bV is the intersection of various subtrees SW,s,V , each of which coarsely coincides
with the projection to CV of a halfspace belonging to the coherent orientation p.

The first case is where every such subtree lies E–close to Π. In this case, the intersection of
the subtrees — which is by definition bV — lies 10E–close to Π. Hence, by Lemma 2.6, bV is
contained in the p10E`τq–neighborhood of Π. This implies that dV pbV , ρ

U1
V q ě L´p10E`τq.

Since we saw that βV ppAppqq is E–close to the component of TV ´NEpr
U1
V q containing πV pxjq,

we have dV ppAppq, bV q ą L ´ p10E ` τq ´ E. By our choice of L, this quantity exceeds ξ,
which contradicts the definition of pAppq.

So we must be in the second case, where some halfspace H belonging to the coherent
orientation p projects to a tree S in TV — necessarily containing bV — that is E–far from Π.
Hence, S and πV pxjq lie in the same component of TV ´NEpρ

U2
V q. So, by the consistency
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and bounded geodesic image axioms, πU2pHq is contained in the E–neighborhood in TU2 of

πU2pxjq. But since pU2
i2

is M–far from πU2pxjq and separates βU2ppAppqq (which is 100E–close

to πU2pxjq) from bU2 , we see that pU2
i2

separates πU2pHq from bU2 . But the coherence of the
orientation p and the definition of bU2 requires bU2 to be contained in πU2pHq, which gives a
contradiction.

CV

CU1 CU2

xj x`

rU1
V rU2

V

βV ppAppqq bV

xj x` xj x`

βU1ppAppqq βU2ppAppqq

bU1 bU2

Figure 4. The proof of Lemma 2.10
.

We conclude that |Sep| ď N0pLqkpk ´ 1q `N , which is independent of p. Hence there are
at most ξpN0pLqkpk ´ 1q `Nq{M separators for p, which is again independent of p because
the realization constant ξ depends on p only to the extent that it depends on the consistency
constant η for pbV ppqq, which was shown in Lemma 2.7 to be independent of p. �

2.3.3. Walls cross if and only if orthogonal. We now check that the walls LUi ,LVj cross if and
only if UKV . One direction, done in the first lemma, is essentially just the partial realization
axiom for HHS. The other direction, which is the second lemma, relies on our specific choice
of walls.

Lemma 2.11. Suppose U, V P U and UKV , and fix any p P hullCU pAq, q P hullCV pAq. Then
there exists x P HθpAq that coarsely projects to p in CU and to q in CV .

Proof. By partial realization (Definition 1.1.(8) in [BHS19]), there exists x1 P X projecting
E–close to p in CU and q in CV . Up to replacing E with a uniform constant depending on θ,
the projection gHθpAqpx

1q to HθpAq has the same property, as required. �

Lemma 2.12 (Cross iff orthogonal). The walls LUi and LVj cross if and only if UKV .

Proof. If UKV , then LUi crosses LVj (recall that this means that each of the four possible

intersections of halfspaces, one associated to each wall, is nonempty) by Lemma 2.11.
Conversely, suppose U & V . We claim LUi and LVj do not cross. First, suppose U&V . Then,

by Lemma 2.3, ρVU and ρUV are uniformly close to the image of A in each of the corresponding
trees TU , TV and hence far from pVj , p

U
i . Thus, we can choose a halfspace from LUi (resp. LVj )

so that all its points project far from ρVU (resp. ρUV ). The chosen halfspaces are disjoint by
consistency.

Second, suppose U Ĺ V . By construction, pjV is M–far from ρUV , so we can choose a

halfspace H associated to LVj such that πV pHq contains a point πV px`q and is disjoint

from NEpρ
U
V q. Consistency and bounded geodesic image imply that πU pHq is E–close to

πU px`q and hence M–far from pUi . Thus we can choose a halfspace H 1 for LUi such that
πU pHq X πU pH

1q “ H, so H XH 1 “ H, and hence LUi and LVj do not cross. �
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2.3.4. The map pA is quasimedian. The next lemma is used to show that pA is quasimedian,
i.e., that it takes medians in the cube complex Y (whose 1–skeleton is necessarily a median
graph) close to coarse medians in X .

Lemma 2.13. There exists C41 “ C41 pX , k,Mq so that pA is C41 –quasimedian.

Proof. Let µ : X 3 Ñ X be the coarse median map. Recall from [BHS19] that µ is characterized
by the following property: for all a, b, c P X and all U P S, πU pµpa, b, cqq uniformly coarsely
coincides with a coarse median point in CU for πU paq, πU pbq, πU pcq.

Let x, y, z P Y , and let m be their median. By Remark 1.32, m corresponds to the following
orientation of the walls of Y : for each wall W , mpW q is the halfspace which contains at least
two of x, y, z. In other words, for each U P U and each pUi P TU , the orientation that m

assigns to t
ÐÝ
W ipUq,

ÝÑ
W ipUqu is the halfspace W ipUq assigned by at least two of the orientations

x, y, z.
By definition, for any V P S, we have bV pmq “

Ş

UPU ,i SU,i,V pmq, where, for each U, i, we

have that SU,i,V pmq coincides with at least two of SU,i,V pxq, SU,i,V pyq, SU,i,V pzq.
In particular, for each V R U , we have that bV pmq coarsely coincides with each of

βV pxq, βV pyq, βV pzq.
Also, for each U P U and each pUi , we have that bU pmq lies in the same pUi –halfspace of TU

as at least two of the points bU pxq, bU pyq, bU pzq. Hence bU pmq lies in the same pUi –halfspace
of TU as mU , where mU is the median of bU pxq, bU pyq, bU pzq in the tree TU . We have shown
that no pUi separates bU pmq from mU , for any U P U .

Our p1, Cq–quasi-isometrically embedded choice of TU ensures that mU is, up to uniformly
bounded error, a coarse median point for the images in CU of pApxq, pApyq, pApzq. In other
words, µppApxq, pApyq, pApzqq is a realization point for pmV qV PS. As shown earlier in the
proof of Theorem 2.1, the image of pA coarsely coincides with HθpAq, which is hierarchically
quasiconvex by Proposition 1.18. Hence µppApxq, pApyq, pApzqq uniformly coarsely coincides
with pApqq for some q P Y.

Hence there exists q P Y such that

dX ppApmq, µppApxq, pApyq, pApzqqq — dX ppApmq, pApqqq — dYpm, qq

and establishes that this distance can be bounded in terms of the number of walls separating
m, q. Up to additive error, this is just the sum over U P U of the number of pUi separating
bU pmq from mU , which we established above was 0, as required. �

At this point, we have proved all of the lemmas supporting Theorem 2.1.

2.4. Application to coarse median rank and hyperbolicity. In [BHS19, Theorem 7.3],
we showed that any HHS is a coarse median space (in the sense of [Bow13]) of rank bounded
by the complexity. In the asymphoric case, the following strengthens that result.

The following corollary bounds the median space rank of any asymptotic cone of X ; see
Proposition 1.35.

Corollary 2.14. Suppose that X is asymphoric. Then any CAT(0) cube complex Y from
Theorem 2.1 satisfies dimY ď ν, where ν is the rank of X .

Corollary 2.15. If X is an asymphoric HHS of rank ν, then X is coarse median of rank ν.

Proof of Corollary 2.14 and Corollary 2.15. Choose M as in the proof of Theorem 2.1; since
M ą E, in particular M exceeds the asymphoricity constant. For any finite A Ă X , let Y be
the cube complex and Y Ñ HθpAq be the C1–quasimedian pC1, C1q–quasi-isometry provided
by Theorem 2.1. By Lemma 2.12, dimY is equal to the maximal cardinality of sets of
pairwise-orthogonal elements of U . But since elements of U have associated hyperbolic spaces
of diameter ěM , such subsets have cardinality bounded by ν. This proves Corollary 2.14.
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Moreover, Yp0q Ñ HθpAq is a quasimedian map from a finite median algebra satisfying the
condition pC2q from the definition of a coarse median space in [Bow13, Section 8]. The rank
of this median algebra is, by definition, dimY ď ν. Hence X is coarse median of rank ν. �

We can also use the proof of Corollary 2.15 to characterize hyperbolic HHS. We say that a
quasi-geodesic metric space X is hyperbolic if there exist D and δ so that

‚ any pair of points of X is joined by a pD,Dq–quasi-geodesic, and
‚ pD,Dq–quasi-geodesic triangles are δ–thin.

For us, the distinction between hyperbolic geodesic spaces and hyperbolic quasi-geodesic
spaces does not matter. Indeed, any quasi-geodesic metric space X is quasi-isometric to
a geodesic metric space Y (in fact, a graph). If, in addition, X is hyperbolic then Y is
hyperbolic (in the usual sense). There is a number of ways to see this, one of which is the
“guessing geodesics” criterion for hyperbolicity from [MS13, Section 3.13][Bow14, Proposition
3.1]. It thus follows from [Bow13, Theorem 2.1] that a coarse median quasigeodesic space is
hyperbolic if and only if it has rank at most 1.

We thus get a characterization of HHSs which are hyperbolic, which we use below in the
proof of Lemma 4.6:

Corollary 2.16. Let pX ,Sq be an HHS. Then the following are equivalent:

‚ X is coarse median of rank ď 1, and is thus hyperbolic;
‚ (Bounded orthogonality) There exists q P R so that mintdiampCUq, diampCV qu ď q

for all U, V P S satisfying UKV .

Proof. The fact that hyperbolicity implies bounded orthogonality easily follows from the
construction of standard product regions. The reverse implication follows from Corollary
2.15, with ν “ 1, and the aforementioned [Bow13, Theorem 2.1]. �

Remark 2.17. One can prove that bounded orthogonality implies hyperbolicity using the
guessing geodesics criterion instead of the coarse median rank. More specifically, triangles of
hierarchy paths are thin because any such triangle is contained in the hull of the vertices,
which is quasi-isometric to a 1–dimensional CAT(0) cube complex, i.e., a tree.

3. Quasiflats and asymptotic cones

Fix an asymphoric hierarchically hyperbolic space pX ,Sq of rank ν and let X be an
asymptotic cone of X . According to Proposition 1.35, the coarse median map on X limits to
a median map on X making it into a topological median space of rank at most ν. By the
same proposition, after changing the metric on X within its bilipschitz equivalence class, we
can assume that X , with its given median, is a median metric space.

With this setup in mind, we now outline this section. First, the goal is to show that given
a quasiflat in X , there are arbitrarily large balls contained in a uniform neighborhood of the
hull of boundedly many points; this is made precise in Corollary 3.9, and this is what will
allow us to apply Huang’s quasiflat theorem for CAT(0) cube complexes [Hua14b] to describe
quasiflats in HHSs. Subsection 3.1 contains preliminary lemmas that relate ultralimits of
objects in X defined in terms of the HHS structure to objects in X defined in terms of the
median structure.

The content of Lemma 3.3 and Proposition 3.4 is best explained in reversed order: In
Proposition 3.4, we argue that there are balls of large radius R in quasiflats in X that stay
εR–close to hulls of finitely many points, for a fixed small ε ą 0. Taking ultralimits, this
gives a bilipschitz flat in an asymptotic cone that stays within bounded distance of a certain
median convex subspace, and Lemma 3.3 says that this means that, in fact, the flat is
contained in the convex subspace. This corresponds to an improvement from “εR” to “opRq”.
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We then need to further improve this to “Op1q”, which is performed in Proposition 3.5 by
shrinking the previously found balls. Further discussion of the various statements and the
corresponding proofs can be found below.

3.1. Ultralimits of hulls and some median preliminaries. Given m,m1 in a median
space M , we let hullpm,m1q denote the set of z P M for which the median of m,m1, z is z.
(Note that hullpm,m1q “ rm.m1s, where rm.m1s is the median interval, defined just as before.
The term “median interval” is more standard, but we think of median intervals as convex
hulls of pairs of points, which explains our choice of notation.)

Fix a hierarchically quasiconvex subspace A Ď X and points p, q P A, x P X . Note that the
coarse median of pp, q, xq lies uniformly close to A (see e.g., [BHS19, Section 7] or [RST18,
Section 5]) — this easily yields the first assertion of the following lemma, which we use freely
throughout this section.

Lemma 3.1. For any κ, the ultralimit of any sequence of κ–hierarchically quasiconvex
subspaces is median convex. Moreover, if pAnq is a sequence of κ–hierarchically quasiconvex
subspaces and A Ă X is their ultralimit, then the maps gAn : X Ñ An limit to the median
gate map g : X Ñ A.

Proof. We prove the assertion about gates, as the other facts are already established, as
noted above. Fix x P X , represented by a sequence pxnq in X . Fix a P A, represented by a
sequence panq. For each n, let bn “ gAnpxnq, and let b be represented by pbnq.

By the definition of the gate and the coarse median, the coarse median of an, bn, xn is
uniformly close to bn, so the median of a, b,x is b. Hence the median interval between
x and any point in A contains b; it follows immediately from the definition of gate that
b “ gpxq. �

We will also tacitly use the next lemma throughout this section. It states that the (median)
convex hull of a pair of points in an asymptotic cone of X arises as a limit of θ–hulls of pairs
of points in X .

Lemma 3.2. Let x,y P X . Then hullptx,yuq “ limωHθptxn, ynuq.

Proof. If zn P Hθpxn, ynq then mpxn, yn, znq coarsely coincides with zn, which yields

lim
ω
Hθpxn, ynq Ď hullpx,yq.

To prove the other containment, suppose z1 P hullpx,yq (and whence, by definition of the
hull, that z1 “ mpx,y, z1q), and let pz1nq be a representative for z1. Let zn “ mpxn, yn, z

1
nq P

Hθpxn, ynq and note that this implies z “ mpx,y, z1q, where z is the point represented by
pz1nq. Since X is a median space, the median of a triple is unique and thus z1 “ z; whence
z1 P limωHθpxn, ynq. �

3.2. Bilipschitz flats in asymptotic cones. The next lemma relies on results of Bowditch
about cubulated subsets of median metric spaces [Bow18b]. The import of the lemma is the
following. Consider a top-rank bilipschitz flat F in X and a median-convex subspace H
arising as an ultralimit of hierarchically quasiconvex subspaces of X . If F lies in a uniform
neighborhood of H, then it must actually be contained in H. This will be applied in the
proof of Proposition 3.5 in the case where H is a limit of θ–hulls of finite sets in X of bounded
cardinality.

Roughly, the idea of proof is as follows. If the bilipschitz flat F was median convex, we
would have gate maps on both F and H, and F could only stay close to H around gFpHq,
which then needs to be the whole of F. Since F is top-dimensional, and gFpHq is one of the
factors of a product subspace of X (in view of Lemma 1.20), the other factor has to be trivial.
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On the other hand, the other factor being trivial is the same as F being contained in H.
Now, F need not be median convex, and to deal with this we rely on results from [Bow18b]
that, roughly, give us a decomposition of (large portions of) the quasiflat into “blocks,” each
of which is median convex, and we then consider chains of such blocks.

Lemma 3.3 (Close to convex implies contained in convex). Let X be an asymptotic cone of
X and let F Ď X be a bilipschitz ν–flat. Let H be an ultralimit of uniformly hierarchically
quasiconvex subsets of X and suppose that F is contained in a neighborhood of H of finite
radius. Then F ĎH.

Proof. Suppose by contradiction that there exists some p P F´H.
By [Bow18b, Proposition 1.2], F is cubulated in the sense of [Bow18b], which means that

there are arbitrarily large balls in F each of which is contained in a finite union of blocks. By
[Bow18b, Proposition 3.3], this implies that there are arbitrarily large balls B in F with the
following property: B is contained in a subset of F which is a union of blocks whose pairwise
intersections are each either empty or a common face. We let F1 be such a union of blocks
which contains a ball around p P F of radius r much larger than supxPF dpx,Hq.

After possibly subdividing the cubulation of F1, there is a ν–block B0 of F1 containing
p and disjoint from H. After subdividing, we can assume that each side of B0 has length
bounded by some ` much smaller than r.

Being a block, B0 is the median interval between a pair of opposite corners of B0. So, by
Lemma 3.2, B0 is the ultralimit H0 of a sequence pHθpcn, dnqq of θ–hulls of pairs of points.

As noted in Definition 1.36, gH0pHq is a median convex subspace. So, gH0pHq is a
sub-block B1 of B0.

On the other hand, by hypothesis, H is the limit of uniformly hierarchically quasiconvex
subspaces Hn of X . By Lemma 3.2, gH0pHq is the limit of the subspaces gHθpcn,dnqpHnq.
By Lemma 1.20.(3), gHθpcn,dnqpHnq is coarsely contained in a quasi-isometrically embedded

copy of gHθpcn,dnqpHnq ˆ In, where In is a θ–hull. So, taking limits, we see that, if B1 has

dimension i, then there is an pi` 1q–dimensional topologically embedded copy of r0, 1si`1 in
X . This implies i ă ν.

For any codimension–1 face B2 of B0 not intersecting B1, there exists a block B11 whose
intersection with B0 is B2. So, B1 “ B0 YB

1
1 is a block by [Bow18b, Lemma 3.2]. We claim

gB1pHq “ gB0pHq, which implies that B1 is also disjoint from H.
To prove the claim, note that B1 “ gB0pHq “ gB0pgB1pHqq. (It is a general fact about

median metric spaces, following directly from the definition of a gate, that if A,C are
median-convex closed subspaces and A Ă C, then gA “ gA ˝ gC .)

Now, since B0 is a sub-block of the block B1, and B0 intersects the closure of its complement
in B1 along a common codimension–1 face, and B1 is median-isomorphic to a finite product of
intervals with the `1–metric (by the definition of a block), gB0 |B1 is just the natural retraction.
So, this map is one-to-one on B1, and the claim follows.

Now proceed inductively until we find a block Bm that we cannot extend to a block Bm`1

using the procedure above, implying that we reached the boundary of F1. By induction,
gBmpHq “ gB0pHq.

Hence gBmpHq “ B1, since we had B1 “ gB0pHq. Let q P Bm lie in the boundary of F1.
Then dX pq,B

1q is at least dX pq, pq ´ ν`, which exceeds supxPF dpx,Hq. Hence there exists
h PH with dX ph, qq ă dX pB

1, hq. This contradicts that gBmpHq “ B1. (Here we are using
the median metric dX , for which the notions of median gate and closest-point projection
coincide, by the definition of a median gate.) This is the required contradiction. �

3.3. Quasiflats and hulls. As mentioned above, we now argue that given a quasiflat in X
there are balls of large radius R that stay εR-close to hulls of finitely many points, for a fixed
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small ε ą 0. Once again we use [Bow18b, Proposition 1.2], which provides a subdivision of
(large portions) of the ultralimit of the quasiflat into blocks, and then use the fact that each
such block is the ultralimit of hulls of pairs of points.

Proposition 3.4. Let F : Rν Ñ X be a quasiflat. Then, there exists N (depending on F ) so
that the following holds. For any ε ą 0 and every R0 there exists a ball B “ BRp0q Ď Rν of
radius R ě R0 and a set A Ď X with |A| ď N so that F pBq Ď NεRpHθpAqq.

Proof. The proof has two parts.
Choosing N : Let X be a fixed asymptotic cone of X with observation points a constant

sequence pF p0qq. Let F : Rν Ñ X be the corresponding ultralimit of F . Let B be a ball of
radius 1 in Rν . By [Bow18b, Proposition 1.2], F pBq is contained in a finite union of blocks.
Notice that each block is the convex hull of a pair of opposite corners. The cardinality of
the number of corners provides the desired N . By Lemma 3.2, F pBq is contained in the
ultralimit of hulls of pairs of points. Thus, F pBq is contained in the ultralimit of a sequence
of hulls of sets of at most N points (the hull of a union contains the union of the hulls).

Remark on non-uniformity of N : We remark that, for the purposes of this proof, N
is allowed to depend on the particular quasiflat F , not just the quasi-isometry constants. We
are also allowing N to depend on our choice X of asymptotic cone. Bowditch’s proposition
(Proposition 1.2 in [Bow18b]) provides only that F pBq is contained in a finite union of blocks,
but does not bound the number; for our result we only need finiteness.

Conclusion: Now, suppose by contradiction that the conclusion of the proposition fails.
Then for each N , and in particular the N we found above, there is ε ą 0 so that, for all
balls Bp0, Rq of sufficiently large radius R, we have that F pBp0, Rqq cannot be contained in
NεRpHθpAqq for any A Ď X with |A| ď N . Let Bn “ Bp0, Rnq, where pRnq is the scaling
factor of the asymptotic cone X fixed above. Then B is the ultralimit of the Bn. The fact
that F pBq is contained in the ultralimit of a sequence of hulls HθpAnq of sets An of at most N
points implies that, for ω–a.e. n, F pBnq is contained in NεRnpHθpAnqq, a contradiction. �

The following is the most technical proposition of this section, and it says that by shrinking
the balls provided by Proposition 3.4, we obtain balls contained in a uniform neighborhood
of hulls of boundedly many points. The rough reason for this is the following. In view of
Lemma 3.3, in any asymptotic cone the ultralimit of the balls is contained in the ultralimit
of the hulls; this means that the distance from the flat to the hulls grows more slowly than
any superlinear function. From this we deduce the distance is bounded. To make this work,
we must consider only asymptotic cones where the ultralimit of the balls is a bilipschitz flat,
so the observation point must be deep in the balls; in the proof we deal with this by using
balls of half the radius to ensure this holds in the relevant asymptotic cones.

Proposition 3.5. For every K,N there exist ε ą 0, R0 and L with the following property.
Let B be a ball of radius R ě R0 in Rν, and let F : B Ñ X be a pK,Kq–quasi-isometric
embedding. Let A Ď X have |A| ď N , and suppose that F pBq Ď NεRpHθpAqq. Then
F pB1q Ď NLpHθpAqq, where B1 is the sub-ball of B with the same center and radius R{2.

Proof. If not, there exist constants K,N and:

‚ balls Bm “ Bmp0q of radius Rm in Rν , and pK,Kq–quasi-isometric embeddings
Fm : Bm Ñ X ,

‚ subsets Am Ď X with |Am| ď N and

lim
mÑ8

1

Rm
sup
xPBm

dpFmpxq, HθpAmqq “ 0,

but limmÑ8 supxPBRm{2p0q dpFmpxq, HθpAmqq “ 8.
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We define `mptq “ supxPFmpBmintt,Rmup0qq
dpx,HθpAmqq. The ultrapower ` of the `m can be

regarded as a function ` : ωR` Ñ ωR`. Note that ` is non-decreasing.
Let σ P ωR` be represented by R. For S,T P ωR` we write S ! T if limω Sm{Tm “ 0,

and we write S ă 8 if limω Sm ‰ 8, i.e., if S " 1 does not hold. We find a contradiction
(with the second bullet above) provided we show `pσ{2q “ limω,m `mpRm{2q ă 8.

The first part of the second bullet above implies that `pσq ! σ. We first need:

Claim 3.6. For λ P ωR`, if `pλq " 1, then for any α " 1 we have `pλ´ α`pλqq ! `pλq.

Proof of Claim 3.6. Suppose not. Consider an asymptotic cone X of X with the observation
point in F pBλ´α`pλqp0qq and scaling factor `pλ´α`pλqq. Then any point in the image of F has
distance from H bounded above by `pλq{`pλ´α`pλqq ă 8. In fact, any point of the image of
F which gives a point of X lies in a ball of radius λ´α`pλq`t`pλ´α`pλqq ď λ´α`pλq`t`pλq
for some finite t, and hence in particular in the image of the ball of radius λ.

By Lemma 3.3 we have F Ď H. But, we chose an arbitrary observation point in
F pBλ´α`pλqp0qq, and thus we get a contradiction by choosing a point that maximizes the

distance from HθpAq. �

We claim that there exists T0 P R` so that the following holds for ω–a.e. m: if `mptq ě T0

for some t, and α ě T0, then `mpt´ α`mptqq ď `mptq{2.

Remark 3.7. The proof follows from Claim 3.6 by an application of the principle from
nonstandard analysis called underspill, which says that if a predicate is true for all infinitesimal
positive non-standard reals, then it is also true for all sufficiently small standard reals.

Since we do not wish to require familiarity with non-standard analysis, rather than invoking
this principle we instead provide a self-contained argument in the language of ultrafilters.
Since our argument is a translation of the non-standard analysis argument, rather than
providing a convoluted heuristic explanation for how this argument works, we refer the
reader who would like to do more than check that the argument is formally correct to Tao’s
excellent blog post [Tao], which explains all the relevant concepts. We note, though, that this
argument is the usual one which is used to prove that ultrapowers are saturated models and
also in proving the nonstandard formulation of continuity, see [Tao, Proposition 11], which is
a typical application of underspill.

For each n P N, let Un be the set of m ě n for which there exists tm,n, αm,n P R` so that
`mptm,nq ě n and αm,n ě n and `mptm,n ´ αm,n`mptm,nqq ą `mptm,nq{2. Suppose that our
claim does not hold, i.e., suppose the desired T0 does not exist. Then, for arbitrarily large n,
we have that m P Un for ω–a.e. m. For each m, let npmq be the maximal n for which m P Un.
Our assumption, and the fact that m R Un for n ą m, ensures that npmq exists for ω–a.e. m.

Let λ Pω R` be the ultralimit of tm,npmq and let α be that of αm,npmq. Then `pλq " 1 and
α " 1, so Claim 3.6 implies that `pλ ´ α`pλqq ! `pλq. This contradicts that `mptm,npmq ´
αm,npmq`mptm,npmqqq ą `mptm,npmqq{2 for ω–a.e. m. Thus we have T0 with the claimed
property for ω–a.e. m.

Fix one such m, which furthermore satisfies `mpRmq ď Rm{p4α0q (which is satisfied by

ω–a.e. m by the second bullet). Let Rjm “ Rmp1` 2´jq{2. In particular, R0
m “ Rm.

Claim 3.8. Either `pRjmq ď `mpRmq{2
j or there exists i ď j with `mpR

i
mq ă T0.

Proof of Claim 3.8. We argue by induction on j. Suppose that Rjm satisfy `mpR
j
mq ď

`mpRmq{2
j and `mpR

j
mq ě T0. Note that Rj`1

m “ Rjm ´ 2´j´2Rm “ Rjm ´ αjm`mpR
j
mq for

some αjm ě T0. Hence, the claim gives `mpR
j`1
m q ď `mpR

j
mq{2 ď `pRmq{2

j`1, as required. �

In either of the two cases provided by Claim 3.8, there exists j with `mpR
j
mq ă T0. This

implies `mpRm{2q ă T0, and hence `pσ{2q ă T0, as required. �
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Combining Proposition 3.4 and Proposition 3.5, one gets:

Corollary 3.9. For every quasi-isometric embedding f : Rn Ñ X , there exist L,N so that
the following holds. Then there exist arbitrarily large R so that for the ball B of radius R
around 0, there is a set AR Ă X with |AR| ď N and fpB1q Ď NLpHθpARqq, where B1 is as
in Proposition 3.5.

4. Orthants and quasiflats

From now on, we fix an asymphoric HHS pX ,Sq of rank ν. The main goal of this section is
to prove the quasiflats theorem, Theorem A, which says that quasiflats in X are at bounded
Hausdorff distance from a finite union of standard orthants. After some preliminary work
on orthants, we complete the proof in Subsection 4.3. Then, we prove two further results
giving more quantitative control on quasiflats in X in terms of the number of orthants needed
(Theorem 4.14) and the Hausdorff distance between the quasiflat and not quite the union of
the orthants, but rather the hull of the union (Lemma 4.17).

4.1. Orthants in X . We fix once and for all a constant D so that, for any U P S, any
two points in FU are connected by a D–hierarchy path. (Such a constant is provided by
Theorem 1.4.)

We now discuss standard orthants in X , which are one of the basic objects in the statement
of Theorem A.

Definition 4.1 (Standard orthant, standard flat, standard partial flat). Let U1, . . . , Uk
be pairwise orthogonal elements of X . Recall that we have a quasimedian quasi-isometric
embedding FU1 ˆ ¨ ¨ ¨ ˆ FUk Ñ X , as described in Section 1.1.1, with constants independent
of the Ui.

For each i ď k and each x P
ś

j‰i FUj , the image of FUiˆtxu is a (uniformly) hierarchically

quasiconvex subset which, abusing notation slightly, we also denote FUi ˆ txu, or simply by
FUi when the choice of parallel copy is not important.

For each i, let γi be a D–hierarchy ray in FUi with the property that πUipγiq is unbounded.
We call the image of γ1ˆ¨ ¨ ¨ˆγk Ď FU1ˆ¨ ¨ ¨ˆFUk under the standard embedding a standard
k–orthant in X with support set tUiu.

A standard orthant is a standard ν–orthant, i.e., a standard k–orthant of maximum possible
dimension.

Similarly, given U1, . . . , Uk as above, suppose we have for each i ď k a path γi in FUi such
that γi is either a D–hierarchy ray or a bi-infinite D–hierarchy path such that πUipγiq is
unbounded. Then the image of γ1ˆ ¨ ¨ ¨ ˆ γk is a standard k–partial flat, or a standard partial
flat if k “ ν. If every γi is bi-infinite, then we use the term standard k–flat, or standard flat
if k “ ν.

Remark 4.2. Observe that if Q “ γ1 ˆ ¨ ¨ ¨ ˆ γk Ď FU1 ˆ ¨ ¨ ¨ ˆ FUk is a standard k–orthant,
then it has uniformly bounded projection to CU unless U Ď Ui for some i. More precisely,
each γi has uniformly bounded projection to CU unless U Ď Ui (in particular, πU pγiq is
uniformly bounded for U Ď Uj , j ‰ i). For each i and each U Ď Ui, we have that πU pQq
uniformly coarsely coincides with πU pγiq.

The next lemma says that top-dimensional standard orthants in an asymphoric HHS are
hierarchically quasiconvex (with uniform hierarchical quasiconvexity function). Here, an
analogy to the CAT(0) cube complex situation is again instructive. If Π is a CAT(0) cube
complex, and O Ă Π is a cubical orthant, then although O is `1–isometrically embedded
(i.e., its 0–skeleton is a 1–connected median subalgebra) by definition, it need not be convex:
picture the case where Π “ R2 and O is the ray with 0–skeleton consisting of points
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tpn, nq, pn, n ` 1q : n P Nu. On the other hand, if O has the property that dimO “ dim Π,
then O cannot contain the “corner” of any cube of Π that is “missing” in O, i.e., O is convex.
This cubical fact is important in Huang’s work [Hua14b]. The final assertion of the next
lemma is analogous.

Lemma 4.3 (Top dimensional orthants are hierarchically quasiconvex). Consider a stan-
dard k–orthant O whose support set tUiu has the property that, for some C, we have
mintdiamCU pπU pOqq, diamCV pπV pOqqu ď C whenever U, V Ď Ui are orthogonal and i ď k.
Then O is κ–hierarchically quasiconvex, where κ depends on C,D,X ,S.

In particular, there exists a function κ, depending on pX ,Sq, D, and the asymphoricity
constant, so that standard orthants are κ–hierarchically quasiconvex, and the same holds for
standard k–orthants contained in standard orthants.

Remark 4.4. Lemma 4.3 holds when the standard orthant O is replaced by a standard flat
or standard partial flat; the exact same proof works, except with some of the rays replaced
by bi-infinite paths. The main lemma being used is Lemma 4.5, which is stated for arbitrary
hierarchy paths.

Proof. Let O be a standard k–orthant which is the image of
śk
i“1 γi, where each γi is a

hierarchy path in FUi and tU1, . . . , Uku is a pairwise orthogonal set supporting O, and let C
be the given constant.

By Remark 4.2 and the fact that hierarchy paths project close to geodesics, πU pOq is
uniformly quasiconvex in CU , for U P S.

Suppose x P X has the property that πU pxq lies uniformly close to πU pOq for each U P S;
to verify hierarchical quasiconvexity of O, we must bound the distance from x to O.

By hierarchical quasiconvexity of
ś

j FUj , our x must lie uniformly close to
ś

j FUj , so it

suffices to show that gFj pxq lies uniformly close to γj for each j, where Fj denotes the parallel
copy of Fj containing the “corner” of O. Since πU pxq coarsely coincides with πU pgFj pxqq
when U Ď Ui, this follows from hierarchical quasiconvexity of γj , i.e., Lemma 4.5. �

The next lemma supports the preceding one. It gives a sufficient condition for a hierarchy
path to be hierarchically quasiconvex. The reader familiar with the work of Huang may find
it useful to compare this lemma with the notion of a “straight” geodesic in a CAT(0) cube
complex, defined in [Hua14b].

Lemma 4.5 (“Straight” hierarchy paths). Let γ : I Ñ X be a pD,Dq–hierarchy path, where
I Ď R is an interval. Suppose that there exists C so that, whenever UKV , either πU pγq
or πV pγq has diameter bounded by C. Then γ is κ–hierarchically quasiconvex, where κ “
κpD,X ,S, Cq.

Proof. Let i, j P I and let x “ γpiq, y “ γpjq. Choose M ě maxtC,M0u, where M0 is the
constant from Theorem 2.1. By Theorem 2.1, there exists C1, depending on M , S and X , so
that there is a CAT(0) cube complex Cpx, yq and a C1–quasimedian pC1, C1q–quasi-isometric
embedding Cpx, yq Ñ X whose image C1–coarsely coincides with Hθpx, yq. Since γ|ri,js is a
hierarchy path from x to y, γpri, jsq is coarsely (depending on D) contained in Hθpx, yq and
hence coarsely (depending on C1, D) contained in the image of Cpx, yq. On the other hand,
the dimension bound from Theorem 2.1, the hypothesized property of C, and our choice of
M ě C imply that dim Cpx, yq ď 1. Moreover, Theorem 2.1 implies that Cpx, yq is the convex
hull of a set of at most two 0–cubes in Cpx, yq, so Cpx, yq is a subdivided interval. Hence
γpri, jsq and Hθpx, yq uniformly coarsely coincide.

Now fix ε and suppose x P X has the property that πU pxq lies ε–close to the unparameterized
pD,Dq–quasigeodesic πU pγq for each U P S. Then there exists i ě 0 so that x lies ε–close to
the image of πU ˝ γ|r0,is for all U . Hence x lies κ–close to Hθpγp0q, γpiqq, where κ depends
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only on ε and the quasiconvexity function for hulls of pairs of points. But by the above
discussion, this implies that x lies uniformly close to γpr0, jsq, as required. �

In the proof of Theorem A, we will construct a quasimedian quasi-isometric embedding
of a CAT(0) cube complex into X . Huang’s theorem will provide cubical orthants in the
CAT(0) cube complex, so we need to prove that the image of each cubical orthant is coarsely
a standard orthant. For that, we will use the following lemma:

Lemma 4.6. Let O be an ν–dimensional cubical orthant with a quasimedian quasi-isometric
embedding q : O Ñ X . Then there is a standard orthant Q Ă X with dhauspqpOq, Qq ă 8.

Proof. Let λ be so that q is λ–quasimedian and a pλ, λq–quasi-isometric embedding.
Related points and pairs: We say that x, y P O are i–related, for 1 ď i ď ν, if they

only differ in the ith coordinate. The i–related pairs x, y and x1, y1 are j–related, for i ‰ j, if
the pairs x, x1 and y, y1 are j–related (i.e., if x, x1, y, y1 are the vertices of a rectangle in the
pi, jq–plane).

Relevant domains: Let M “Mpλ,X q be sufficiently large. For 1 ď i ď ν, let Ui be the
collection of all U P S so that there exist i–related x, y P O with dU pqpxq, qpyqq ě M . For
any K, we also let RelKpqpOqq “ tU P S : diamCU pπU pqpOqqq ě Ku.

We now prove two claims about i–related pairs and YiUi:

Claim 4.7. There exists C “ Cpλ,X q so that the following holds. Suppose that the i–related
pairs x, y and x1, y1 are j–related. Then for any U P S either

‚ dU px, yq ď C and dU px
1, y1q ď C, or

‚ dU px, x
1q ď C and dU py, y

1q ď C.

Proof of Claim 4.7. Let m : O3 Ñ O be the median on O coming from the cubical structure
(so each cube is an `1 ν–cube of unit side length). We have mpx1, x, yq “ x, so that in each
U P S we have that πU pxq lies uniformly close to geodesics rπU px

1q, πU pyqs. Similarly, πU py
1q

lies uniformly close to geodesics rπU px
1q, πU pyqs. Also, πU px

1q and πU pyq lie uniformly close
to geodesics rπU pxq, πU py

1qs, forcing the endpoints of rπU px
1q, πU pyqs and rπU pxq, πU py

1qs to
be uniformly close in pairs, as required. �

Claim 4.8. For M sufficiently large, UKV whenever U P Ui, V P Uj and i ‰ j.

Proof of Claim 4.8. Consider distinct i, j, an i–related pair x, y and some U with dU pqpxq, qpyqq ě
M , and a j–related pair w, z and some V so that dV pqpwq, qpzqq ěM .

Provided M ě 10pν ´ 1qC, applying Claim 4.7 at most ν ´ 1 times allows us to change
the coordinates of w, z (other than the jth) to find an i–related pair x1, y1 which is j–related
to x, y. Moreover, we have:

‚ dV pqpxq, qpx
1qq ěM{2 and dV pqpyq, qpy

1qq ěM{2;
‚ dU pqpxq, qpyqq ěM and dU pqpx

1q, qpy1qq ěM{2.

Claim 4.7 implies that dU pqpxq, qpx
1qq ď C, dU pqpyq, qpy

1qq ď C and dV pqpxq, qpyqq ď C,
dV pqpx

1q, qpy1qq ď C.
For M large enough, this implies that UKV . Indeed, if U “ V , then the triangle inequality

yields 4C ě M{2, a contradiction. If U&V , then there exists p P tx, x1, y, y1u with πU ppq
E–far from ρVU and πV ppq E–far from ρUV , contradicting consistency. A similar contradiction
arises if U, V are Ĺ–comparable. Hence UKV , as required. �

The candidate standard orthant: Let γ1i be the image of the axis along the ith

coordinate in O. Since q is quasimedian and a quasi-isometric embedding, γ1i is a quasi-
geodesic projecting to unparameterized quasi-geodesics in every CU , i.e., it is a D1 “ D1pλq–
hierarchy ray, by Lemma 1.37. By [DHS17, Lemma 3.3], there exist U i1, . . . , U

i
ki

so that
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πU ij
pγ1iq is unbounded. Moreover, by the same lemma, for 1 ď i ď ν, 1 ď j ă j1 ď ki, we

have U ji KU
j1

i .
Since each U ij P Ui, Claim 4.8 and the fact that X has rank ν implies that ki “ 1 for each

i. To streamline notation, let Ui “ U i1.
Since tU1, . . . , Uνu is a pairwise-orthogonal set, the following holds for all i ď ν: if U, V Ĺ Ui

have diampCUq, diampCV q ą E, then U & V , for otherwise tU1, . . . , Ui´1, U, V, Ui`1, . . . , Uνu
would contradict that X is asymphoric. It follows from Corollary 2.16 that each FUi is
hyperbolic. Hence there exists a D2–hierarchy ray γi in FUi so that the distance between
γiptq and γ1iptq is uniformly bounded for all t P r0,8q.

The γi define a standard orthant Q with support tUiu.
qpOq and Q lie within finite Hausdorff distance: We claim the following. For p P O

we denote by pi the point on the i–th coordinate axis with the same i–th coordinate as p.
Then there exists C 1 so that dCU pqppq, qppiqq ď C 1 whenever U R

Ť

j‰i Uj . This holds because
we can find a sequence of at most ν points, starting with p and ending with pi, so that
consecutive elements are j–related for j ‰ i. By definition, if consecutive elements have far
away projection to some CU , then U P Uj for j ‰ i.

Now let p P O. By the above claim, πU pqppqq coarsely coincides with πU pqppiqq if U P Ui,
and otherwise it coarsely coincides with πU pcq, where c is the image of the “corner” of O.
We can find points γiptiq uniformly close to qppiq P γ

1
i, and the γiptiq define a point p1 of Q.

It is readily checked that for every U , πU pqppqq coarsely coincides with πU pp
1q, so that qppq

and p1 are within uniformly bounded distance. This proves that qpOq is contained in a finite
radius neighborhood of Q. A very similar argument proves the other containment. �

4.2. Coarse intersections of orthants. In this subsection we study coarse intersections
of orthants. This is mostly needed for the next section, but we need Lemma 4.11 in the proof
of Theorem 4.14.

Definition 4.9 (Coarse intersection). Let A,B Ă X . Suppose that there exists R0 so that
for any R,R1 ě R0, we have dhauspNRpAq XNRpBq,NR1pAq XNR1pBqq ă 8. Then we refer
to any subspace at finite Hausdorff distance from NR0pAqXNR0pBq as the coarse intersection
of A and B, which we denote AX̃B.

In the next lemma, we show that, for pairs of hierarchically quasiconvex sets, an R0 as in
the definition above exists, and so the coarse intersection is well-defined. This is one of the
places where we use the bridge lemma (Lemma 1.20).

Lemma 4.10 (Coarse intersections coarsely coincide with gates). For all κ, r, there exists
R0 such that the following holds. Let A,B be κ–hierarchically quasiconvex and suppose
dpA,Bq ď r. Then for all R,R1 ě R0, we have dhauspNRpAqXNRpBq,NR1pAqXNR1pBqq ă 8,
so AX̃B is well-defined. Moreover, there exists K “ Kpκ, rq such that AX̃B is at Hausdorff
distance at most K from gApBq.

Proof. By Lemma 1.20.(3), there exists K1, depending only on κp0q and E, and a pK1,K1q–
quasi-isometric embedding f : gApBq ˆHθpta, bu Ñ X such that im f K1–coarsely coincides
with HθpgApBq Y gBpAqq, where a “ gApbq P gApBq and b “ gBpaq. By Lemma 1.27 (applied
exchanging the roles of A and B), dpa, bq is bounded in terms of κ and r. Hence, there exists
R1, depending on κ, K1, and r, such that any point in gApBq Ď A lies at distance at most R1

from gBpAq Ď B, and hence at distance at most R1 from B. So, gApBq Ă NR1pAq XNR1pBq.
On the other hand, if p P NRpAq XNRpBq for some R, then apply Lemma 1.27 to find

K “ Kpκq such that dpp,Aq —K,K dpp, gAppqq and dpA,Bq —K,K dpgAppq, gBpgAppqqq. So,
dpp, gBpgAppqqq ĺK,K R` r. In other words, dpp, gBpAqq is uniformly bounded (in terms of
κ,R and r) and dpp, gApBqq is bounded similarly. So NRpAq X NRpBq uniformly coarsely
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coincides with gApBq, proving the second claim. Since any two neighborhoods of gApBq
coarsely coincide, the first claim follows. �

The following lemma describes coarse intersections of orthants, which, as one might hope,
turn out to be sub-orthants.

Lemma 4.11 (Coarse intersections of orthants). Let O,O1 be standard orthants in X with
supports tUiuiďν , tU

1
iuiďν. Then OX̃O1 is well-defined, and coarsely coincides with gOpO

1q,
as well as with a standard k–orthant whose support is contained in tUiuiďν X tU

1
iuiďν .

Proof. By Lemma 4.10, we only need to show that gOpO
1q coarsely coincides with a standard

k–orthant whose support is contained in tUiu X tU
1
iu.

Let γi be the hierarchy ray in FUi participating in O, and similarly for γ1i and O1. Let
tVjuj“1,...,k be the set of all Vj “ Ui “ U 1i1 so that γi and γ1i1 lie within bounded Hausdorff
distance, in which case set αj “ γi. Let O2 be a standard k–orthant contained in O with
support set tVju defined by the αj . We claim that O2 represents OX̃O1.

By Lemma 4.3, O2 is hierarchically quasiconvex, and G “ gOpO
1q is hierarchically qua-

siconvex by Lemma 1.20.(1). We claim that O2 coarsely coincides with G. Since they are
hierarchically quasiconvex, we only need to argue that their projections to each CU coarsely
coincide.

By Remark 4.2, for each U , πU pO
2q coarsely coincides with some πU pαjq. In particular, if

U is not nested in some Uj , then πU pO
2q uniformly coarsely coincides with each πU pαjp0qq.

Also, πU pGq coarsely coincides with the projection of a single γi, if γi “ αj for some j.
Otherwise πU pGq coarsely coincides with πU pαjp0qq for each j. Hence πU pGq and πU pO

2q

coarsely coincide for all U . �

In the proof of Theorem 5.7 below, we will need the following version of the above lemma,
stated for coarse intersections of standard flats instead of standard orthants.

Lemma 4.12 (Coarse intersection of standard flats). Let F, F 1 be standard flats in X with
supports tUiu

ν
i“1 and tU 1iu

ν
i“1 respectively. Then F X̃F 1 is well-defined, and coarsely coincides

with gF pF
1q. Moreover, suppose that tUiu X tU

1
iu “ tUu for some U P S. Then F X̃F 1 is

either a bounded set or coarsely coincides with a standard 1–orthant or standard 1–flat with
support tUu.

Similarly, if tUiu X tU
1
iu “ tU, V u for some (necessarily orthogonal) U, V P S, then F X̃F 1

coarsely decomposes as the product of two hierarchically quasiconvex subspaces α, β, each of
which is either bounded or coarsely coincides with a standard 1–orthant or standard 1–flat.

Proof. The standard flats F, F 1 are uniformly hierarchically quasiconvex by Remark 4.4.
Lemma 4.10 implies that F X̃F 1 is well-defined and coarsely coincides with gF pF

1q. So, we
just need to show that gF pF

1q is a standard 1–orthant or 1–flat with support tUu, or gF pF
1q

is bounded. For each i ď ν, let γi be the hierarchy path in FUi which is the ith factor of F ,
and define γ1i analogously for F 1. Re-labeling if necessary, let U “ U1 “ U 11. Note that by
Lemma 4.5, each γi, γ

1
i is uniformly hierarchically quasiconvex. Indeed, πV pγiq has uniformly

bounded diameter unless V Ď Ui. But if V,W Ď Ui are orthogonal, then tV,W u Y tUjuj‰i is
a pairwise-orthogonal set of ν ` 1 elements, so by asymphoricity, CV (say) has diameter at
most E, so the same is true of πV pγiq. Hence Lemma 4.5 applies.

Let α “ gγ1pγ
1
1q. Arguing as in the proof of Lemma 4.11 shows that α, which coarsely

coincides with F X̃F 1, is either bounded or coarsely coincides with a 1–orthant or 1–flat. This
proves the first assertion.

The second assertion follows similarly. Again, F X̃F 1 coarsely coincides with gF pF
1q by

Lemma 4.10, so it suffices to show that gF pF
1q coarsely coincides with a product αˆ β as

in the statement. Label the supports of F, F 1 so that U “ U1 “ U 11 and V “ U2 “ U 12. Let
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α “ gγ1pγ
1
1q and let β “ gγ2pγ

1
2q. Then argue as in Lemma 4.11 to see that α ˆ β coarsely

coincides with gF pF
1q. �

4.3. Quasiflats theorem. We are now ready to prove Theorem A, which we restate as:

Theorem 4.13. Let X be an asymphoric HHS of rank ν and let f : Rν Ñ X be a quasi-
isometric embedding. Then there exists a finite set of standard orthants Qi Ď X for 1 ď i ď k,
for which:

dhauspfpRνq,Yki“1Qiq ă 8.

Proof. Let L,N be as in Corollary 3.9. Then there exists an increasing unbounded sequence
R1 ă R2 ă . . . and sets Ai Ď X of cardinality at most N for which the following holds. Let
Bi be the ball in Rν of radius Ri centered at a fixed basepoint, and let Hi “ HθpAiq. Then
fpBiq Ď NLpHiq. Let ci : Yi Ñ Hi be the C–quasimedian pC,Cq–quasi-isometry provided by
Theorem 2.1, so Yi is a CAT(0) cube complex of dimension ď ν and the constant C depends
on N .

Now we pass to (non-rescaled!) ultralimits1. More specifically, f has an ultralimit which

is a pK,Kq–quasi-isometric embedding f̂ : Rν Ñ pX , for some ultralimit pX of X . It is easily

deduced from Corollary 2.15 that pX is a coarse median space and we have the following:
there is a CAT(0) cube complex Ŷ, an ultralimit of the Yi, endowed with a C–quasimedian

pC,Cq–quasi-isometry ĉ : Ŷ Ñ pX so that the image of f̂ lies in the L–neighborhood of impĉq.
By a theorem of Huang — Theorem 1.1 of [Hua14b] — there exist n–dimensional cubical

orthants O1, . . . , Ok in Ŷ so that dhauspf̂pRνq, ĉpYkj“1Ojqq ă 8. Moreover, ĉpOjq lies within

finite Hausdorff distance of f̂pO1jq for some O1j Ď Rν . Hence, Qj “ fpO1jq is the image of

a C 1–quasimedian pC 1, C 1q–quasi-isometric embedding. Thus, by Lemma 4.6, it lies within
finite Hausdorff distance of a standard orthant. The Qi are as required. �

4.4. Controlled number of orthants. We now improve Theorem 4.13, by showing that
the number of standard orthants required can be bounded in terms of the quasi-isometry
constants:

Theorem 4.14 (Bounding the number of orthants). Let X be an asymphoric HHS of rank
ν. For every K there exists N so that the following holds. Let f : Rν Ñ X be a pK,Kq–
quasi-isometric embedding. Then there exist standard orthants Qi Ď X , i “ 1, . . . , N , so that
dhauspfpRνq,YNi“1Qiq ă 8.

The idea of the proof is as follows. First, by the above we have that fpRνq lies Hausdorff-
close to a finite union of standard orthants O1, . . . , Ok. Now, each Oi makes a definite
contribution to the volume growth in the quasiflat fpRνq, and this growth is in turn bounded by
the quasi-isometry constants. So, k must be bounded. This is formalized in Proposition 4.16.

First, we need the following lemma, which is a slightly stronger version of the well-known
fact that quasi-isometric embeddings of Rn into itself are coarsely surjective, see [KL97a,
Corollary 2.6].

Lemma 4.15. For every K,n ě 1 there exists C so that the following holds. Let f : Rn Ñ Rn
be a pK,Kq–coarsely Lipschitz proper map. Then dhauspfpRnq,Rnq ď C.

Proof. We actually show that if f : Rn Ñ Rn is continuous and proper, then f is surjective,
and the lemma follows from the fact that f can be approximated by a continuous map.

Since f is proper, it extends to a continuous map f : Rn Ñ Rn between two copies of
the 1–point compactification Rn of Rn, which is homeomorphic to the sphere Sn. Also, it

1If X is proper, one can take Hausdorff limits instead. To avoid that assumption, we use ultralimits instead.

If X is not proper then pX is (much) bigger than X .



QUASIFLATS IN HIERARCHICALLY HYPERBOLIC SPACES 47

is easily seen that we can identify the domain Rn with Sn in such a way that, since f is
coarsely Lipschitz, no pair of antipodal points have the same image. But then f must be
surjective, for otherwise the Borsuk-Ulam theorem would force the existence of such pair of
antipodal points. Since f is surjective, then so is f , as required. �

Proposition 4.16 (Volume growth). For every K there exists N so that the following holds.
Let F : Rν Ñ X be a pK,Kq–quasi-isometric embedding whose image lies at finite Hausdorff

distance from
Ťk
i“1Oi, where each Oi is a standard orthant. If dhauspOi, Ojq “ 8 when i ‰ j,

then k ď N .

Proof. The idea of the proof is that each of the k orthants contributes at least εRν volume
growth to F pRνq, but the volume growth of F pRνq is bounded above by Rν times a (large)
constant depending on K.

Let D “ dhauspF pRνq,
Ťk
i“1Oiq. By Lemma 4.11, since the Oi are pairwise at infinite

Hausdorff distance, for each i we can find a sub-orthant O1i Ă Oi so that for each i, j,
dpO1i, O

1
jq ě 2D ` 1. We will identify O1i with r0,8qν .

Let Ai Ď Rν be the set of points whose image under F is at distance at most D from O1i.
Note that the Ai are disjoint.

Let gi be the composition of F and the gate map to O1i; the map gi is pK 1,K 1q–coarsely
Lipschitz for some K 1 “ K 1pK,X q, and it is a quasi-isometric embedding with constant
depending on K,X , and D (this dependence on D is the reason why we need Lemma 4.15
dealing with proper maps). Up to increasing K 1, we can further assume that there is a
pK 1,K 1q–quasi-isometry from O1i to an orthant in Rν so that the composition of gi and the
quasi-isometry is also pK 1,K 1q–coarsely Lipschitz.

Notice that for each R and i, there exists a sub-orthant ORi Ă O1i so that if x P Ai has
gipxq P O

R
i , then BRpxq Ď Ai.

Let C be as in Lemma 4.15 for K 1, and set C1 “ K 1C ` pK 1q2. Since the orthants ORi are
quasi-geodesic spaces with constant depending on X only, up to increasing C we can assume
the following. Suppose that we have a subset A Ď ORi , for some R, i, with the property that
ORi Ę NC1pAq. Then there exists x P ORi so that dpx,Aq ď 2C1 ´ 1 but dpx,Aq ą C1.

A further sub-orthant: We claim that for each i, there is a sub-orthant O2i Ă O1i with
the property that O2i Ă NC1pgipAiqq XO

1
i.

Let n P N. Let Oni be the sub-orthant of O1i defined above, which has the property that
for all x P Ai with gipxq P O

n
i , we have Bnpxq Ă Ai. If the sub-orthant O2i with the claimed

property does not exist, then, for each n, there exist pn P Ai and xn P O
n
i such that the

following hold:

‚ gippnq P O
n
i ;

‚ dpxn, gippnqq ď 2C1;
‚ dpxn, gipAiqq ą C1.

In fact, we can choose any xn P O
n
i with dpxn, gipAiqq ď 2C1 ´ 1 but dpxn, gipAiqq ą

C1, and then pick pn P Ai “nearly witnessing” the first inequality, meaning pn so that
dpxn, gippnqq ď 2C1.

Now, consider the (non-rescaled!) ultralimit R of Rν with observation point ppnq, which is
isometric to Rν . The process of taking ultralimits induces a pK 1,K 1q–coarsely Lipschitz map
f from R to an ultralimit of O1i with observation point pxnq. Moreover, f is proper since
gi is a quasi-isometric embedding. Being an ultralimit of orthants, this ultralimit admits a
quasi-isometry, h, to a subspace of Rν , with constants depending only on X (actually, the
ultralimit of the orthants is quasi-isometric to Rν , but we do not need this). In fact, by the
choice of K 1, we can choose a pK 1,K 1q–quasi-isometry h as above in such a way that h ˝ f is
pK 1,K 1q–coarsely Lipschitz, and notice that h˝f is still proper. However, by construction the
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map f is not C1–coarsely surjective, and thus h ˝ f is not C–coarsely surjective, contradicting
Lemma 4.15 and thus verifying the claim.

Conclusion: We now bound from below βR “ |tx P Zν : F pxq P BRpF p0qqu|. There exists
t “ tpKq so that βR ď tRν . Let C 1 “ C 1pC, ν,Kq satisfy O2i Ă NC1pgipAiXZνqqXO1i. Consider
a maximal p2C 1 ` 1q–net Ni in O2i and, for any point p of the net, choose some q P Ai X Zν
with dpp, F pqqq ď C 1. Distinct p yield distinct q. Moreover, |Ni XBRpF p0qq| ě t1Rν for all
sufficiently large R and some t1 “ t1pC 1,X q. Since the Ai are disjoint, we have βR ě kt1Rν

for all sufficiently large R. Hence k ď t{t1, and we are done. �

Proof of Theorem 4.14. By Theorem 4.13, the image of F lies at finite Hausdorff distance

from a union of orthants
Ťk
i“1Oi. We can assume that dhauspOi, Ojq “ 8 when i ‰ j; indeed,

if not, then we can drop Oi or Oj from the collection without affecting the conclusion. Hence,
k ď N , for N as in Proposition 4.16. �

4.5. Controlled distance. As in the cubical case, it is not possible in general to give an
effective bound on the Hausdorff distance between a quasiflat and the corresponding union
of orthants. However, we have the following:

Lemma 4.17. For every K,N there exists L so that the following holds. Let F : Rν Ñ X
be a pK,Kq–quasi-isometric embedding whose image lies at finite Hausdorff distance from
ŤN
i“1Oi, where each Oi is a standard orthant. Then F Ă NLpHθp

ŤN
i“1Oiqq.

Proof. Let F and Oi be as in the statement. Any bounded set in Oi lies in a uniform
neighborhood of the hull of the “corner point” of Oi and some point along the diagonal.
Hence, there exists D so that any ball B in Rn has the property that F pBq is contained in the
D–neighborhood of HθpAq for some A Ď

Ť

iOi with |A| ď 2N . For L as in Proposition 3.5,

there exist arbitrarily large balls B1 in Rν so that F pB1q Ď NLpHθpAqq Ď NLpHθp
ŤN
i“1Oiqq

for some A Ď
Ť

iOi. Hence, the same holds for Rν , as required. �

Corollary 4.18. For each K there exists L,N so that the following holds. Let F : Rν Ñ X
be a pK,Kq–quasi-isometric embedding. Then there exist standard orthants O1, . . . , ON so

that F Ă NLpHθp
ŤN
i“1Oiqq.

Proof. Follows immediately from Theorem 4.14 and Lemma 4.17. �

5. Induced maps on hinges: mapping class group rigidity

Let pX ,Sq be an HHS. We have in mind the case where X is the Cayley graph of the
mapping class group of a finite-type surface, equipped with the HHS structure from [BHS19,
Section 11].

In this section, we provide a new proof of quasi-isometric rigidity of mapping class groups.
More generally, we study intersection patterns of quasiflats in X and, under favorable
conditions, extract suitable “combinatorial data” from it.

In the rest of this section, we will abstract from the mapping class group to the greatest
extent permitted by our methods. We will need pX ,Sq to be asymphoric, which, as previously
noted, is a weak assumption. We will also impose three additional, more restrictive, assump-
tions on pX ,Sq, which are satisfied by the standard HHS structure on the mapping class
group. First, we introduce a few relevant definitions and state the additional assumptions.
Then, we discuss the generality in which these assumptions hold.

The next definition describes those subsets of S which give rise to standard flats (as
defined in Definition 4.1).

Definition 5.1 (Complete support set). A complete support set is a subset tUiu
ν
i“1 Ă S

whose elements are pairwise orthogonal and satisfy diampCUiq “ 8 for all i ď ν.
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For each U P S, we let BCU denote the Gromov boundary of CU .
Note that a complete support set tUiu and a pair of distinct points tp˘i u P BCUi for each

i, allows one to construct a standard flat, F
tpUi,p

˘
i qu

associated to some choice of bi-infinite

hierarchy paths in each FUi whose projection to CUi has limit points tp˘i u in CUi.
Accordingly, it is easy to verify that a complete support set is the support set of some

standard flat if and only if each BCUi contains at least two points.

Definition 5.2 (Hinge, orthogonal hinges). A hinge is a pair pU, pq with:

‚ U P S;
‚ U belongs to some complete support set; and,
‚ p P BCU .

Let HingepSq be the set of hinges. We say pU, pq, pV, qq P HingepSq are orthogonal if UKV .

Definition 5.3 (Ray associated to a hinge). For any µ ě 0, a µ–ray associated to a hinge
σ “ pU, pq is a µ–hierarchy path hσ so that πU phσq is a quasigeodesic ray representing p and
so that diampπV phσqq ď µ for V ‰ U .

Remark 5.4. Any two candidates for hσ lie at finite Hausdorff distance, so for our purposes
an arbitrary choice is fine. If σ ‰ σ1 P HingepSq, then dhausphσ, hσ1q “ 8.

Remark 5.5. Each hinge corresponds to a 0–simplex in the HHS boundary BX ; see [DHS17].

The first additional assumption holds, for example, in any hierarchically hyperbolic group
for which the product regions PU can be taken to be subgroups. This is the case for all
naturally occurring hierarchically hyperbolic structures on groups of which we are aware.
However, there are some pathological structures, even on a free group, where the assumption
fails.

Assumption 1. For every U P S, either diampCUq ď E or |BCU | ě 2 has at least two points
at infinity.

Remark 5.6. In what follows, we could replace Assumption 1 with: for each U P S which
is the first coordinate of some hinge, |BCU | ě 2. Equivalently, each U P S which is the first
coordinate of some hinge is the first coordinate of at least two hinges.

The second assumption roughly says that, if a standard 1–flat is contained in some standard
flat, then it can be realized as the intersection of a pair of standard flats.

Assumption 2. For every U contained in a complete support set there exist complete support
sets U1,U2 with tUu “ U1 X U2.

The third assumption is a two-dimensional version of the second one; this assumption
says that if a standard 2–flat is contained in a standard flat, then it can be obtained as the
intersection of some pair of standard flats.

Assumption 3. If ν ą 2, then for every U, V , with each contained in a complete support
set and with UKV , there exist complete support sets U1,U2 with tU, V u “ U1 X U2.

Remark. The three preceding assumptions are, taken together, fairly restrictive. The first,
as we said, is very general and holds for all “interesting” HHGs, including: mapping class
groups, 3–manifolds groups which are HHG, all groups acting geometrically on CAT(0) cube
complexes with factor systems (see [BHS17b, HS18]) (a class which includes all compact
special groups in the sense of Haglund–Wise [HW08], and in particular all right-angled Artin
and Coxeter groups), etc. More generally, this first assumption also holds for a number of
interesting HHSs as well. These include Teichmüller spaces with the Weil-Petersson metric.
On the other hand, this condition fails to hold for the HHS structure on a Teichmüller space
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endowed with the Teichmüller metric, since in such structure certain CU are (isometric to)
horoballs in the hyperbolic plane, and thus have a single point as their boundary.

To see why the second condition is more restrictive, consider a right-angled Artin group
AΓ presented by a finite simplicial graph Γ. There are two “standard” HHS structures
(see [BHS17b, Section 8] for more details), but for our purposes, we take the one described in
the introduction. The second condition implies that for each vertex v P Γ that is contained in
a maximal clique, there are two maximal cliques whose intersection is v. One can articulate
a similar combinatorial condition on right-angled Coxeter groups. So, for example, the
results in this section do not immediately improve upon, or even recover, Huang’s results on
quasi-isometric rigidity for right-angled Artin groups.

The third condition in the right angled Artin group case can similarly be interpreted as a
combinatorial constraint on the intersection pattern of cliques in the presentation graph.

In the following theorem we show that, under the additional assumptions stated above,
quasi-isometries between HHSs naturally induce (orthogonality-preserving) bijections between
corresponding sets of hinges. We think of such bijections as “combinatorial data” that we
extract from the quasi-isometry. The proof relies on studying coarse-intersection patterns of
orthants.

Theorem 5.7. Let pX ,Sq, pY,Tq be asymphoric HHS satisfying assumptions (1), (2) and
(3). For any quasi-isometry f : X Ñ Y, there exists a bijection f 7 : HingepSq Ñ HingepTq
satisfying:

‚ f 7 preserves orthogonality of hinges;
‚ for all σ P HingepSq, we have dhausphf 7pσq, fphσqq ă 8.

Remark 5.8. Under suitable conditions, we expect that there exists an analogue of The-
orem 5.7 in which hinges are replaced by sets of pairs tpUi, piqu, where tUiui is a pairwise
orthogonal set and pi P BCUi. In particular, one should be able to show in this way that
isolated flats are taken close to isolated flats. More strongly, one could consider the situation
where flats coarsely intersect in subspaces of codimension ě 2, as in [FLS15].

Proof of Theorem 5.7. Let σ “ pU, pq P HingepSq.
How we will define f 7: We will produce a hinge σ1 so that dhausphσ1 , fphσqq ă 8.

Remark 5.4 implies that σ1 is uniquely determined by this property, so we can set f 7pσq “ σ1.
To see that this is a bijection, let f̄ : Y Ñ X be a quasi-inverse of f . Then dhauspf̄phσ1q, hσq ă
8, so we can define an inverse for f 7 in the same way.

Choosing σ1: Since pU, pq is a hinge, U is in a complete support set.
Notice that, by Assumption 1, for any complete support set tUiui we have |BCUi| ě 2 for

each i, and hence there exists a standard flat F with support tUiui.
In view of this, Assumption 2 provides two standard flats F1,F2, the intersection of whose

support sets is tUu. Furthermore, we claim that we can arrange that F1X̃F2 is coarsely a
line and coarsely contains hσ. This can done as follows. Consider any hinge pU, qq with q ‰ p
(which exists by Assumption 1). Assumption 2 provides complete support sets tVju, tV

1
j u

whose intersection is tUu. Label so that V1 “ V 11 “ U . So, by choosing distinct points
aj , bj P BCVj and a1j , b

1
j P BCV 1j in such a way that a1 “ a11 “ p and b1 “ b11 “ q, we obtain

standard flats F1,F2 with the given support sets and, by Lemma 4.12, coarse intersection
which is either bounded, a standard 1–orthant, or a standard 1–flat supported on U . Both
flats coarsely contain a standard 1–flat (with “limit points” p and q), so the last case must
hold. Moreover, the aforementioned standard 1–flat coarsely contains hσ by Remark 5.4.

By Theorem 4.13 (Quasiflats Theorem), fpF1q and fpF2q are coarsely equal to unions of
finitely many standard orthants. Hence fpF1qX̃fpF2q has the following three properties:
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‚ fpF1qX̃fpF2q is coarsely a finite union of coarse intersections of pairs of standard
orthants. Indeed, fpF1q coarsely coincides with

Ť

sOs and fpF2q coarsely coincides
with

Ť

tO
1
t, where Os, O

1
t are standard orthants provided by Theorem 4.13. Hence

fpF1qX̃fpF2q coarsely coincides with
Ť

s,tOsX̃O
1
t.

‚ fpF1qX̃fpF2q is coarsely R, because F1X̃F2 was coarsely R.
‚ fpF1qX̃fpF2q coarsely contains fphσq, because F1X̃F2 coarsely contained hσ.

By Lemma 4.11 and the first of the above properties, fpF1qX̃fpF2q is coarsely the finite
union of standard k–orthants, which arise as coarse intersections of pairs of standard orthants.
Hence, one of these pairs gives a 1–orthant (in particular, a copy of R`) which coarsely
coincides with fphσq.

Let σ1 be the hinge pV, qq, where V is the domain of the orthant just determined and q is
the unique point in BV determined by the fact that fphσq projects to a quasi-geodesic ray in
CV . Then σ1 is the hinge uniquely determined by fphσq, as required.

Preservation of orthogonality: Let σ, σ1 be orthogonal hinges. Assumption 3 and
Lemma 4.12 provide a standard 2–flat, F , coarsely containing hσ and hσ1 . Moreover, F
coarsely coincides with F1X̃F2, for standard flats F1,F2.

Hence fpF1qX̃fpF2q is a 2–dimensional quasiflat. On the other hand, by Theorem 4.13,
fpF1qX̃fpF2q is coarsely the union of finitely many coarse intersections of pairs of standard
orthants. Lemma 4.11 shows that each of these intersections is coarsely a standard k–orthant
for k ě 2. Since fpF1qX̃fpF2q is a 2–dimensional quasiflat, we can discard any of the above
intersections which is coarsely a 0–orthant or 1–orthant. In other words, fpF1qX̃fpF2q is
coarsely the union of disjoint standard 2–orthants O0, . . . , Ot´1. Moreover, hf 7pσq and hf 7pσ1q
coarsely coincide with coordinate rays of some Oi, Oj .

O0

O1

O2

O3O4

r`0
r`1

r`2

r`3

r`4

Figure 5. The 2–orthants O0, . . . , Ot and the cyclic ordering of their coordi-
nate rays (up to coarse coincidence).

Now, as shown in Figure 5, we can cyclically order the coordinate rays in O0, . . . , Ot´1.
First, label the orthants so that for each s P Zt, the 2–orthant Os has the property that one
of its coordinate rays r´s coarsely coincides with a coordinate ray in Os´1 and the other, r`s ,
coarsely coincides with a coordinate ray in Os`1. Now cyclically order the coarse equivalence
classes of rays: r`0 , r

`
1 , . . . , r

`
t´1.

We claim that hf 7pσq, hf 7pσ1q must be adjacent in this order. This will imply that they are

coarsely contained in a common 2–orthant, and hence f 7pσqKf 7pσ1q, as required.
Indeed, if there was a coordinate ray r between hf 7pσq and hf 7pσ1q, then r is coarsely hf 7pσ2q,

so that by definition f´1prq is coarsely hσ2 . (Here we used Assumption 2, which guarantees
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that r is the ray associated to some hinge, and bijectivity of f 7.) But then hσ, hσ1 , hσ2 pairwise
have infinite Hausdorff distance, are contained in the same standard 2–orthant, and they
each arise as the coarse intersection with some other orthant, contradicting Lemma 4.11. �

5.1. Sharpening of f 7. The hinge f 7pσq prescribes a hierarchy ray which lies within finite
distance of fphσq, but it does not (and cannot) provide a uniform bound on the distance;
which is what one typically needs to show that two given quasi-isometries coarsely coincide.
Under many circumstances, finiteness can actually be promoted to a uniform bound, with
little extra work. As an illustration of this, we give an example tailored to the mapping class
group case in the following lemma. The content of the lemma is that if a quasi-isometry
matches the “combinatorial data” of a standard flat to the data of another standard flat,
then it maps the former flat within uniform distance of the latter.

Lemma 5.9 (Flats go to flats). Let pX ,Sq, pY,Tq be asymphoric HHS satisfying Assumptions
(1), (2) and (3). There exists C with the following property. Let tUiu

n
i“1 Ď S be a complete

support set, and let p˘i be distinct points in BCUi. Suppose that there exists a complete
support set tViu

n
i“1 Ď T and distinct points q˘i P BCVi so that for each k “ 1, . . . , n we have

f 7pUk, p
˘
k q “ pVk, q

˘
k q. Then, dhauspfpFtpUi,p˘i uuq,FtpVj ,q˘j quq ď C.

Proof. Hierarchical quasiconvexity of F
tpVj ,q

˘
j qu

implies it uniformly coarsely coincides with

HθpFtpVj ,q˘j quq. Containment of fpF
tpUi,p

˘
i qu
q in a uniform neighborhood of F

tpVj ,q
˘
j qu

then

follows from Lemma 4.17. The other containment follows by applying the same argument to
a quasi-inverse of f . �

5.2. Mapping class groups. We now use Theorem 5.7 to provide a new proof of quasi-
isometric rigidity of mapping class groups. Like all proofs of quasi-isometric rigidity for
mapping class groups, the goal of our proof is to prove that any quasi-isometry of the mapping
class group induces a simplicial automorphism of CS, at which point we can apply Ivanov’s
theorem [Iva97] to conclude that the automorphism is induced by an element of the mapping
class group. Using our quasiflats theorem we can readily convert the geometric information
of a quasi-isometry to combinatorial information about the structure of standard flats. Then,
via Theorem 5.7, from the combinatorial structure of quasiflats we can extract an induced
map on certain coordinate directions in the standard flats. In the mapping class group setting,
these directions correspond to Dehn twist directions, thus giving us the automorphism of the
curve graph which is needed to apply Ivanov’s theorem.

Theorem 5.10. [BKMM12] Let X be the the mapping class group of a non-sporadic surface
S. Then for any K there exists L so that: for each pK,Kq–quasi-isometry f : X Ñ X there
exists a mapping class g so that f L–coarsely coincides with left-multiplication by g.

Proof. Consider the standard HHS structure on X , so that S is the collection of all essential
subsurfaces, and the CY are curve complexes. (For details on the structure, see [BHS19,
Section 11].)

A subsurface Y lies in a complete support set if and only if it is an annulus, a once-punctured
torus or a 4-holed sphere. The assumptions of Theorem 5.7 are clearly satisfied.

Consider any quasi-isometry f : X Ñ X . A hinge pU, pq is annular if U is an annulus. We
now show that if a hinge σ is annular, then so is f 7pσq. Indeed, a hinge σ being annular is
characterized by the following property: σ is contained in a maximal collection H of pairwise
orthogonal hinges, and there exists a unique hinge σ1 so that pH´ tσuq Y tσ1u is a maximal
pairwise orthogonal set of hinges. This property is illustrated in Figure 6, where, if σ is
pU, p`q, then σ1 is pU, p´q, where BCU “ tp˘u.
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U

Figure 6. This figure shows a complete support set, consisting of five annuli
and one once-punctured torus. This is the only complete support set containing
all the subsurfaces except the annulus about the boundary of the once-
punctured torus, denoted U in the figure. In this sense, U is non-replaceable.

Since the bijection f 7 preserves orthogonality and non-orthogonality, it preserves the above
property, so f 7 preserves being annular.

Note that for any annulus U , the set BCU has exactly two points. We now claim that
for each annulus U there exists an annulus V so that, denoting tp˘u “ BCU , we have
f 7pU, p˘q “ pV, q˘q for q˘ P BCV . This holds as above, since for some maximal set H of
pairwise orthogonal hinges containing pU, p`q, the hinge pU, p´q is the only hinge such that
H´ tpU, p`qu Y tpU, p´qu is a maximal set of pairwise orthogonal hinges. In this sense, the
annulus U is “non-replaceable”. We write V “ f˚pUq. Notice that Lemma 5.9 now applies
to show that any Dehn twist flat of X is mapped within uniformly bounded distance of a
Dehn twist flat.

Moreover, we have a well defined simplicial automorphism φ of the curve graph CS, where
φpαq “ β if B “ f˚pAq, where the annuli A,B have core curves α, β respectively. By a
theorem of Ivanov [Iva97], any simplicial automorphism of CS is induced by an element of
the mapping class group; we denote by g the element corresponding to φ.

Suppose we are given a Dehn twist flat F with complete support set U . Then, as noted
above, fpFq is coarsely a Dehn twist flat with complete support set tf˚pUquUPU “ tgUuUPU .

We can now conclude that for any Dehn twist flat F , we have that fpFq and gF are
within bounded Hausdorff distance. For any point x P X , we can find Dehn twist flats Fx

1 ,Fx
2

that have neighborhoods of uniformly bounded radius whose intersection contains x and has
uniformly bounded diameter. Since gFx

i , fpFx
i q coarsely coincide for i “ 1, 2, we see that

gx and fpxq must coarsely coincide. Hence we get that the automorphism of X given by
left-multiplication by g is uniformly close to the quasi-isometry f , as desired. �

6. Factored spaces

In this section we show that, under certain circumstances, quasi-isometries between HHSs
descend to quasi-isometries between some of their “factored” spaces, which are spaces obtained
by coning off a collection of standard product regions. These factored spaces are HHSs
themselves and their complexity is lower than the complexity of the original HHS. Hence,
studying induced quasi-isometries on factored spaces can be part of an inductive procedure
for studying quasi-isometries of the original space (see also the introduction).

Notation 6.1. Given U Ď S, let UĎ be the collection of all V P S so that there exists U P U
with V Ď U . We let U “ UX Ă S denote the union of all cardinality–ν pairwise-orthogonal

subsets of S. Let pX be the factored space associated to UĎ, which is the space obtained
from X by coning off all FU for U P UĎ (as described in [BHS17a, Definition 2.1]). There

exists a Lipschitz factor map q “ qX : X Ñ pX by [BHS17a, Proposition 2.2].

By [BHS17a, Proposition 2.4], pX has a natural HHS structure with index set S´ UĎ.
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Theorem 6.2 (Quasiflats collapse in factored spaces). Let X be an asymphoric HHS of rank
ν. For any K, there exists ∆ so that for all pK,Kq–quasi-isometric embeddings f : Rν Ñ X ,
we have diampq ˝ fpRνqq ď ∆.

Proof. Observe that if A Ă X is an arbitrary subset, then qpHθpAqq lies at uniformly bounded

Hausdorff distance from HθpqpAqq (where we take hulls in pX in the second expression). In
particular, if diam

pX pqpAqq ď C for some C, then there exists C 1 “ C 1pC,E, θq so that for
any B Ă HθpAq we have diam

pX pqpBqq ď C 1.

Hence, by Corollary 4.18, it suffices to prove that diam
pX qp

ŤN
i“1Oiq ď C, where the

orthants Oi are as in the Corollary and C “ CpN,E,K, µ0q. By the construction of q, it
follows easily that there exists C 1 “ C 1pµ0, Eq such that diam

pX pqpOiqq ď C 1 for each i. By
Proposition 6.6, it suffices to bound the diameter of qpOi YOjq in the case where OiX̃Oj is a
codimension-1 sub-orthant; this is done in Lemma 6.5. �

Before proceeding to the technical Lemmas and Propositions we needed to prove the above
theorem, we state the following corollary which we consider the main result of this section.

Corollary 6.3 (Quasi-isometries descend to factored spaces). Let X ,Y be asymphoric HHSs.
Suppose that there exists D so that for each U P UX or U P UY , for any x, y P FU there exists
a bi-infinite pD,Dq–quasi-geodesic containing x, y. Then for every quasi-isometry f : X Ñ Y
there exists a quasi-isometry f̂ : pX Ñ pY so that the diagram

X Y

pX pY

//
f

��
qX ��

qY

//

f̂
commutes.

Proof. Since pX , pY are just re-metrized copies of X , Y (see [BHS17a]), we can take f̂ “ f .

We now show that f̂ is coarsely Lipschitz, and observe that the corresponding map for a
quasi-inverse of f gives a coarsely Lipschitz inverse of f̂ .

By the definition of the metric on pX , pY ([BHS17a, Definition 2.1]), we just have to verify

that if x, y lie in some FU for U P UĎ
X , then their images are uniformly close in pY. By

assumption, x, y lie close to a quasiflat with uniform constant, so that the conclusion follows
from Theorem 6.2. �

We can also now prove Theorem G from the introduction.

Proof of Theorem G. In the case where X is a mapping class group, we have seen that the
standard HHS structure pX ,Sq is asymphoric of finite rank ν equal to the complexity. Let

U be as in Notation 6.1 and let q : X Ñ pX be the factor map described above. Then any

ν–dimensional quasiflat in X has uniformly bounded image in pX by Theorem 6.2. Now,

letting S P S be the unique Ď–maximal element, we have that πU : pX Ñ CS is a Lipschitz
map, and the theorem follows. �

Now we turn to the lemmas.
The following lemma identifies possible distance formula terms for pairs of points each in

a given orthant. Roughly, they can be of two types, each corresponding to one of the factors
of the bridge as in Lemma 1.20 between the orthants.

Lemma 6.4. There exists τ with the following property. Let O,O1 be standard orthants in
X with supports U1,U2. Suppose that OX̃O1 is a k–orthant whose support is U . Then for
each x, y P O Y O1 we have that any U P S with dU px, yq ě τ is either nested into some
U 1 P U1 X U2 or orthogonal to all U 1 P U .
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Proof. Recall that OX̃O1 coarsely coincides with gOpO
1q by Lemma 4.11 (and also with a

standard orthant whose support is contained in U1 X U2, thereby describing U).
Let x, y, U be as in the statement. If x, y P O, then by the definition of a standard orthant,

either dU px, yq is uniformly bounded or U Ď U 1 for some U 1 P U1. If U 1 P U1 X U2, we are
done; otherwise, U 1KV for all V P U by the definition of a standard orthant. An identical
argument works if x, y P O1.

So, assume that x P O1, y P O. If U is nested in some element of Ui, for some i P t1, 2u,
then either U is nested into some element of U1 X U2, or U is orthogonal to every element
of U by the definition of a standard orthant. Hence, suppose that U is not nested into any
element of U1 or U2. In particular, πU pOq and πU pO

1q have uniformly bounded diameter, so
dU px, yq — dU pO,O

1q. Therefore, provided τ is sufficiently large, dU px, yq ą τ implies that
dU pO,O

1q is large compared to the constant K2 from Lemma 1.20, so that conclusion (5) of
the same lemma (applied with any p P gOpO

1q, t1 “ a, and t2 “ b) shows that U is orthogonal
to each element of U . �

If the coarse intersection OX̃O1 is a codimension-1 sub-orthant, then qpOYO1q is uniformly
bounded:

Lemma 6.5. There exists C “ CpE,µ0q so that the following holds. Let O,O1 be standard
orthants with OX̃O1 a codimension-1 sub-orthant. Then diam

pX pqpO YO
1qq ď C.

Proof. Let x P O, y P O1. Let M “ tU P S : dU px, yq ě τu. By Lemma 6.4, each U P M
belongs to a set of pairwise-orthogonal elements of size ν (note that in the case that U
is orthogonal to the intersection, this has maximal rank because of the fact that we are
assuming the intersection has co-dimension-1). Hence dU pqpxq, qpyqq ď τ for all U P S´ U,
so qpxq is uniformly close to qpyq by the uniqueness axiom. �

Proposition 6.6. Suppose that the quasiflat F lies within finite Hausdorff distance of
Ťm
i“1Oi, where the Oi are standard orthants with dhauspOi, Ojq “ 8 for i ‰ j. Then for

each pair of distinct orthants Oj , Ok there exists a sequence j “ j0, . . . , jl “ k so that the
coarse intersection of Oji and Oji`1 is an pν ´ 1q–orthant.

Proof. Passing to an asymptotic cone, we get a bilipschitz copy F of Rν filled by bilipschitz
copies Oi of r0,8qν . The intersections of the Oi have some basic properties:

Lemma 6.7.
(1) The intersection of Oi and Oj is bilipschitz equivalent to r0,8qt for some t “ tpi, jq.
(2) tpi, jq “ ν ´ 1 if and only if Oi and Oj coarsely intersect in an pν ´ 1q–orthant.

Proof. Recall that the coarse intersection of two standard orthants coarsely coincides with
a standard k–orthant, as well as with the gate of one in the other (Lemma 4.11). We now
show the following, which implies both statements: if the ultralimits A, B of uniformly
hierarchically quasiconvex sets have non-empty intersection, then their intersection is the
ultralimit gApBq of the gates. By Lemma 1.20.(3), gApBq is contained in AXB (this uses
dpA,Bq “ 0). Lemma 1.20.(6) implies that the other containment holds. �

Now, consider the subspace X Ă F consisting of the union of all Oi XOj for i, j with
tpi, jq “ ν´1. Let Y be the set of all OiXOj with i ‰ j and tpi, jq ă ν´1. Let Y “

Ť

OPY O.

Lemma 6.8. F ´ Y is path-connected.

Proof. In this proof, when referring to homology, we always mean singular homology with
rational coefficients. The goal is to show H0pF ´ Y q “ Q.

If dimF ď 2, then Y is a finite set (which is empty when dimF ď 1) and the claim is
clear. Hence suppose that dimF ě 3. We argue by induction on |Y|.
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We first claim that for any O P Y and any closed O1 Ă O, F ´O1 is path-connected and
H1pF ´O1q “ 0. We use the fact that, for A,B closed homeomorphic subsets of Rν , we have
H˚pRν ´Aq “ H˚pRν ´Bq, see e.g. [Dol93]. Hence, we can regard O as a coordinate orthant
in Rν – F . Hence the claim holds for O1 “ O. The fact that H1pF ´O1q “ 0 follows from
the fact that H1pF ´Oq “ 0, since a 1–cycle in F ´O1 is homologous to one in F ´O by,
for example, a transversality argument. The same holds for H0pF ´O1q.

For the inductive step, let A be the union of all but one element of Y, and let B be the
remaining one. We have a Mayer-Vietoris sequence:

H1pF ´pAXBqq Ñ H0pF ´pAYBqq Ñ H0pF ´Aq‘H0pF ´Bq Ñ H0pF ´pAXBqq Ñ 0.

By the claim above, the first term is 0, the last term is Q, and H0pF ´Bq “ Q. By induction,
H0pF ´Aq “ Q. Hence F ´ pAYBq is connected. �

We now finish the proof of Proposition 6.6.
Let Oj ,Ok be orthants. We will now produce a sequence Oj “ Oj0 , . . . ,Ojl “ Ok of

orthants so that tpji, ji`1q “ ν ´ 1 for 0 ď i ď l´ 1. Choose x P IntpOiq,y P IntpOjq and let
σ : r0, 1s Ñ F ´ Y be a path joining them, which is provided by Lemma 6.8. Let t0 be the
maximal t so that σptq P Oj . If t0 “ 1, then we take l “ 0. Otherwise, there exists Oj1 ‰ Oj

so that Oj XOj1 has dimension ν ´ 1 and contains σpt0q. Now apply the same argument to
σ|rt0,1s and induct.

The sequence in the cone yields a sequence of orthants in the space with the desired
property. �
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