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ABSTRACT. The rank of a hierarchically hyperbolic space is the maximal number of un-
bounded factors in a standard product region. For hierarchically hyperbolic groups, this
coincides with the maximal dimension of a quasiflat. Several noteworthy examples for which
the rank coincides with familiar quantities include: the dimension of maximal Dehn twist
flats for mapping class groups, the maximal rank of a free abelian subgroup for right-angled
Coxeter groups and right-angled Artin groups (in the latter this can also be observed as the
clique number of the defining graph), and, for the Weil-Petersson metric, the rank is the
integer part of half the complex dimension of Teichmiiller space.

We prove that, in a hierarchically hyperbolic space, any quasiflat of dimension equal to the
rank lies within finite distance of a union of standard orthants (under a very mild condition
on the HHS satisfied by all natural examples). This resolves outstanding conjectures when
applied to a number of different groups and spaces.

In the case of the mapping class group, we verify a conjecture of Farb; for Teichmiiller
space we answer a question of Brock; in the context of certain CAT(0) cubical groups, our
result handles novel special cases, including right-angled Coxeter groups.

An important ingredient in the proof, which we expect will have other applications, is
that the hull of any finite set in an HHS is quasi-isometric to a CAT(0) cube complex of
dimension bounded by the rank (if the HHS is a CAT(0) cube complex, the rank can be
lower than the dimension of the space).

We deduce a number of applications of these results. For instance, we show that any
quasi-isometry between HHSs induces a quasi-isometry between certain factored spaces,
which are simpler HHSs. This allows one, for example, to distinguish quasi-isometry classes
of right-angled Artin/Coxeter groups.

Another application of our results is to quasi-isometric rigidity. Our tools in many
cases allow one to reduce the problem of quasi-isometric rigidity for a given hierarchically
hyperbolic group to a combinatorial problem. As a template, we give a new proof of
quasi-isometric rigidity of mapping class groups, which, once we’ve established our general
quasiflats theorem, uses simpler combinatorial arguments than in previous proofs.
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INTRODUCTION

A classical result of Morse shows that, in a hyperbolic space, quasigeodesics lie close to
geodesics [Mor24]. This raises the question of what constraints exist on the geometry of
quasiflats in more general coarsely non-positively curved spaces.

A key step in proving Mostow Rigidity is proving that an equivariant quasi-isometry
of a symmetric space sends each flat to within a bounded neighborhood of a flat [Mos73].
Unlike a quasigeodesic in a hyperbolic space, a quasiflat need not lie close to any one flat.
However, generalizing Mostow’s result, Eskin—Farb and Kleiner—Leeb each proved that, in a
higher-rank symmetric space, an arbitrary quasiflat must lie close to a finite number of flats
[EF97, IKLI97b|. This result can be used to prove quasi-isometric rigidity for uniform lattices
in higher-rank symmetric spaces [KLI7h]; see also [EF97].

In this paper, we explain the structure of quasiflats in a broad class of spaces and groups
with a property called hierarchical hyperbolicity [BHS17b, BHS19, BHS17a]. Hierarchical
hyperbolicity captures the coarse nonpositive curvature visible in many important groups
and spaces, including mapping class groups, right-angled Artin groups, many CAT(0) cube
complexes, most 3—manifold groups, Teichmiiller space (in any of the standard metrics), etc.

Hierarchical hyperbolicity generalizes, and was inspired by, theorems about the mapping
class group established by Masur—Minsky [MMO00], Behrstock [Beh06], and others. Motivation
also comes from Kim—Koberda’s work towards obtaining an analogue of some of those mapping
class group results in the setting of right angled Artin groups [KK14]. To approach other
problems, some features of the mapping class group were axiomatized by Bestvina—Bromberg—
Fujiwara to great effect [BBF15, BBET9).

The class of hierarchically hyperbolic spaces is preserved by quasi-isometries, and also
includes many examples not on the preceding list: one can readily produce new hierarchically
hyperbolic spaces from old. In particular, trees of hierarchically hyperbolic spaces satisfying
natural constraints (and thus many graphs of hierarchically hyperbolic groups) are again
hierarchically hyperbolic [BHS19, BR17]. Groups that are hyperbolic relative to hierarchically
hyperbolic groups are again hierarchically hyperbolic [BHS19]. It is shown in [BHS174]
that suitable small-cancellation quotients of hierarchically hyperbolic groups are again
hierarchically hyperbolic.

This article establishes a relationship between some of these examples: in particular, we
show that these spaces all admit a very strong local approximation by CAT(0) cube complexes
(Theorem . This allows us to use cubical techniques in new settings. For example, it enables
application of cubical geometry to mapping class groups.

Even for CAT(0) cube complexes our approximation provides new information. The reason
is that Theorem [F] allows one to approximate convex hulls of finite sets in an HHS by finite
CAT(0) cube complexes, and if the ambient HHS is a CAT(0) cube complex, the dimension
of the approximating complex — which is bounded by the rank — can be much lower than
the dimension of the ambient complex. This is essential for our applications to quasiflats.

Our techniques are intrinsic to the category of hierarchically hyperbolic spaces, in the
sense that the arguments in this paper couldn’t be carried out strictly in the context of any
of the motivating examples alone, for example CAT(0) cube complexes or mapping class
groups.

Formal definitions and relevant properties of hierarchically hyperbolic spaces (HHSs) will
be given below in Section [l For now, we recall that a hierarchically hyperbolic space consists
of: a quasigeodesic metric space, X'; an index set, G; a hyperbolic space CU for each U € G;
some relations between elements of the index set and maps between the associated hyperbolic
spaces. There are also projections X — CU,U € &, and various axioms governing all of this
data.
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Before stating the main theorem, we informally recall a few geometric features of HHSs:

e Any HHS X contains certain standard product regions, in which each of the (boundedly
many) factors is itself an HHS.

In mapping class groups, these are products of mapping class groups of pairwise
disjoint subsurfaces (for example the subgroup generated by Dehn twists along disjoint
annuli). In CAT(0) cube complexes, these are certain convex subcomplexes that split
as products (for example in the Salvetti complex of a right-angled Artin group, they
are subcomplexes associated to subgraphs of the defining graph that decompose as
joins).

e Pairs of points in X can be joined by particularly well-behaved quasigeodesics called
hierarchy paths, and similarly we have well-behaved quasigeodesic rays called hierarchy
rays. Given a standard product region P, and a hierarchy ray in each of the k factors
of P, the product of the k hierarchy rays [0,00) — X is a quasi-isometric embedding
[0,00)* — X which we call a standard orthant.

e The rank v of an HHS is the largest possible number of factors in a standard product
region, each of whose factors is unbounded. (Equivalently, it is the maximal integer so
that there exist pairwise orthogonal Uy, ...,U, € & for which each CU; is unbounded.)

We will impose a mild technical assumption on our spaces, which we call being asymphoric;
this condition is satisfied by the motivating examples of HHSs, including all hierarchically
hyperbolic groups. Under this condition, Theorem [1.15 implies that the rank is a quasi-
isometry invariant.

Quasiflats. Understanding the structure of quasiflats in a given metric space or group is
often critical in understanding the geometry of that space.

An early version of a “quasiflats theorem” is Mostow’s result that in a rank-one symmetric
space, any quasi-geodesic lies within a uniformly bounded distance of a geodesic [Mos73].

A well known generalization of this is due to Schwartz, who proved that the image of any
quasi-isometric embedding of R™ n > 2 into a non-uniform lattice in a rank-one symmetric
space lies within a uniformly bounded distance of a horosphere [Sch95]. (Actually, Schwartz
proved a more general result, namely that the image of any quasi-isometric embedding from
a space whose asymptotic cone doesn’t have cut-points into a “neutered space” lies uniformly
close to a horosphere; he credits unpublished work of Gersten for the case of Euclidean space.)

Schwartz’s result was generalized by Drutu-Sapir, who replaced the target space by an
arbitrary relatively hyperbolic space and showed that the image of the quasi-isometric
embedding lies uniformly close to a peripheral subspace [DS05].

This result was in turn generalized by Behrstock—Drutu—Mosher, who weakened the
hypothesis on the domain to allow any space which is itself not relatively hyperbolic [BDM09].

As noted above, Eskin—Farb and Kleiner—Leeb proved that, in a higher-rank symmetric
space, an arbitrary quasiflat must lie within finite distance of a finite number of flats
[EF97, KLITh].

As discussed further below, there has been much work toward quasiflats theorems in other
contexts. We now state our main result in this direction, explain some consequences, and
describe interactions with related work. At the end of the introduction we sketch the proof.

Theorem A (Quasiflats Theorem for HHSs). Let X be an HHG of rank v. Let f: RY — X
be a quasi-isometric embedding. Then there exist standard orthants Q; < X, i=1,...,k, so
that dpaus(f(RY), U¥_Q;) < 0. More generally, the same result holds for any space X which
is an asymphoric HHS of rank v.

We now give a few immediate applications of this theorem and discuss related results.
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Mapping class groups have been studied for the past two decades using tools introduced
by Masur-Minsky [MMO00]; these tools were then further developed in [Beh06, BKMM12]
and elsewhere. The results of [Beh06, BKMM12, MMO00] together show that mapping class
groups are hierarchically hyperbolic; see [BHS19, Theorem 11.1] for details. Theorem
applied to mapping class groups, resolves a conjecture of Farb. Outside of the hyperbolic
cases, this question was completely open.

Corollary B (Farb Conjecture: Quasiflats theorem for mapping class groups). Any top-
dimensional quasiflat in the mapping class group lies within a uniformly bounded distance
from a finite union of standard flats.

Although the structure of quasiflats in the mapping class group was unsettled, numerous
prior results were obtained in pursuit of the resolution of this conjecture. One partial result
in this direction was Behrstock—Minsky’s theorem that R™ can only be quasi-isometrically
embedded in a given mapping class group if n is at most the complexity of the surface
[BMOS8a]. This established the dimension of the top-dimensional quasiflats in the mapping
class group.

Also significant are a number of results which give some local control of top-dimensional
quasiflats in the mapping class group. In particular, see results of Behrstock—Kleiner—-Minsky—
Mosher [BKMM12], Bowditch [Bow18b], and Eskin-Masur-Rafi [EMRI17]. Although those
prior results yield some control over quasiflats, Theorem [A]is the first to completely describe
the structure of quasiflats in the mapping class group. As we will describe in more detail later,
we use some of the tools developed by Bowditch in [Bow18b] in our proof of Theorem

Outside of the setting of groups, we apply Theorem [A] to the Weil-Petersson metric
on Teichmiiller space, which is an asymphoric HHS by virtue of Brock’s theorem that
the pants graph is quasi-isometric to the Weil-Petersson metric [Bro03| and results of
[Beh06, BKMM12, IMMOQ]; for details see [BHS17bl Theorem GJ.

Brock asked whether every top-dimensional quasiflat in the Weil-Petersson metric is a
bounded distance from a finite number of top-dimensional flats [Bro02, Question 5.3]. From
Theorem [A] we obtain the following, answering his question in the affirmative.

Corollary C (Affirmation of Brock’s Question: Quasiflats theorem for Weil-Petersson
metric). Any top-dimensional quasiflat in the Weil-Petersson metric on Teichmdiiller space
lies within a uniformly bounded distance from a finite union of standard flats.

The previously answered cases of Brock’s question were: in the rank one cases, a positive
answer comes from Brock-Farb’s result that the space is hyperbolic [BEO6]; in the three
rank-two cases, Brock—Masur proved that the space is relatively hyperbolic and thus that each
quasiflat is contained in a single peripheral subset [BMO8b, Theorem 3]. In the general case,
there were partial results providing coarse local control; in particular, there are theorems about
flats being locally contained in linear size neighborhoods of standard flats, e.g., [BKMMI12,
Theorem 8.5] and [EMRI7, Theorem A].

Fundamental groups of non-geometric 3-manifolds are HHSs of rank 2 [BHS19, Theorem
10.1]. For these groups, Theorem |A| allows us to recover the following quasiflats theorem,
which was first established by Kapovich—Leeb:

Corollary D (Quasiflats theorem for non-geometric 3—manifolds; [KL97a]). Any top-
dimensional quasifiat in a non-geometric 3—manifold is a uniformly bounded distance from a
finite union of standard flats.

Some quasiflat theorems have previously been obtained for CAT(0) spaces satisfying
particular conditions.

One such result is due to Bestvina—Kleiner-Sageev, who proved that, for two-dimensional,
proper, piecewise Euclidean CAT(0) complexes admitting cocompact group actions, every
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two-dimensional quasiflat lies within finite distance from a subset which is locally flat outside
a compact set [BKS16].

Generalizing that result, Huang proved that in an N—dimensional CAT(0) cube complex,
every N—dimensional quasiflat lies within finite distance from a finite union of standard
orthants [Hual4b]. The following corollary of Theorem |A]| generalizes the above noted
theorems of [BKS16] and [Hual4b| in certain cocompact cases:

Corollary E (Quasiflats theorem for cubulated groups with factor systems). Let X be a
CAT(0) cube complex admitting a factor system in the sense of [BHSITb|. Let v be the
mazximum dimension of an f1—isometrically embedded cubical orthant in X. Let f: RY — X be
a quasi-isometric embedding. Then dpaus(f(RY), UF Qi) < o0, where each Q; can be chosen
to be:

e an (' —isometrically embedded copy of the standard cubical tiling of [0,0)Y, or
e if X admits a cocompact group action, a CAT(0)—isometrically embedded copy of
[0,00)" with the Euclidean metric.

It was established in [BHS17b] that all CAT(0) cube complexes with proper, cocompact,
cospecial (in the sense of Haglund-Wise [HWO08]) group actions admit factor systems. More
generally, it is shown in [HS18] that a CAT(0) cube complex X has a factor system whenever
it admits a proper cocompact action by a group G satisfying any one of a number of natural
algebraic conditions, e.g., finite height for hyperplane stabilizers or other weak versions of
virtual cospecialness of the G—action. In fact, that paper contains a characterization of actions
that give rise to a factor system. We are not aware of any proper CAT(0) cube complex that
admits a proper cocompact group action but does not contain a factor system (indeed, we
have conjectured that all cubical groups admit factor systems, see [BHS19, Conjecture A]).

Proof of Corollary[E]l As shown in [BHS17b], X (1) with the combinatorial metric admits an
HHS structure based on the construction in [BHS17b| Section 8|. In particular, the hierarchy
paths/rays in X (1) are combinatorial geodesics, so standard v—orthants can be taken to be
¢1—embedded copies of the standard cubical tiling of [0, 00)”. By Theorem [A| we are done, if
we choose all our @Q); to be of the first type listed above.

To conclude, it suffices to produce N so that for any ¢;—isometric embedding o: [[_; v —
X with ~; a combinatorial geodesic ray, there is a CAT(0) orthant o’ with djqys(im(0),0") < N.
For each i, let ); be the convex hull of ~;, i.e., the intersection of all combinatorial half-
spaces containing 7;. Then the hull of im(o) decomposes as [ [;_; ;. Since ); contains a
CAT(0)-geodesic ray crossing all hyperplanes, it suffices to show that ); lies uniformly close
to ;. But if there is no such bound, then for any m, we can choose o so that for some
i, we have an f1-isometric embedding [0,m]?> — ), and thus an ¢;—isometric embedding
[0,m]?x[0,0)""! — X. Cocompactness would then allow us to produce a (v+1)-dimensional
cubical orthant in X', which is impossible by our choice of v. ]

The quasiflats in Corollary [E] may have dimension strictly less than the dimension of X,
since a cube complex may contain cubes of high dimension that are not contained in cubical
orthants. For instance, there exist hyperbolic (and hence rank one) cubulated groups, whose
associated CAT(0) cube complexes have arbitrarily large dimension.

In this sense, this corollary is stronger than the main result in [Hual4bl; our result applies
even if the dimension is larger than the rank. On the other hand, in practice, the construction
of a factor system relies on a geometric group action, a hypothesis not needed in the context
of [Hual4b).

Although our results, applied in the cubical case, generalize some of those of [Hual4b|, our
proof is obtained by passing from the hierarchically hyperbolic space setting to a CAT(0) cube
complex where the dimension equals the rank and then using Huang’s theorem. Specifically,



QUASIFLATS IN HIERARCHICALLY HYPERBOLIC SPACES 6

we use the cubical approximations, discussed immediately below, to construct a CAT(0) cube
complex to which we can apply Huang’s result, [Hual4bl Theorem 1.1]. So, Huang’s result is
a crucial ingredient in our work.

Approximating with cube complexes. A key insight in the geometry of hyperbolic
spaces is that in certain respects, they “coarsely look like trees”; Gromov, in his famous
treatise on the subject, introduced a number of ways in which this idea can be made precise
[Gro8T7a]. One such statement is: in a hyperbolic space, the coarse convex hull of any finite
set of points can be uniformly approximated by a geodesic tree [Gro87al §6.2 Geodesic trees].

It is now well understood that CAT(0) cube complexes are a natural generalization of
trees. Two important aspects of this idea are:

e In a simplicial tree, the midpoint of any edge separates the tree into two complementary
components. In a CAT(0) cube complex, the midpoint of each edge is contained in a
hyperplane, a codimension—1 subspace with exactly two complementary components.
The revolutionary work of Sageev [Sag95], elaborated later in [CNO5, NicO4, [HW14],
shows that very general set-theoretic data — a wallspace, i.e. a set equipped with a
suitable collection of bipartitions — determines a CAT(0) cube complex in a canonical
way. We need this in Section

e In a simplicial tree, any three vertices determine a unique geodesic tripod consisting
of three geodesics, each of which joins two of the given points. The intersection of the
three geodesics is a single vertex, the median of the three points. Generalizing this,
one obtains the class of median graphs, i.e. graphs where each triple of vertices spans
at least one metric tripod, all of which have the same center. Chepoi showed [Che00]
that there is a bijective correspondence between one-skeleta of CAT(0) cube complexes
and median graphs. The median viewpoint on CAT(0) cube complexes is very useful,
and we adopt it in various ways in this paper.

In Section [2| we generalize Gromov’s theorem about hyperbolic groups to the setting of
hierarchically hyperbolic spaces. Roughly, the theorem we prove establishes that the “convex
hull” of a finite set A, denoted Hy(A), is approximated by a finite CAT(0) cube complex.

This result provides a new tool for studying hierarchically hyperbolic spaces. Indeed, it is
one of the key innovations which allows us to apply Huang’s theorem about quasi-flats in
CAT(0) cube complexes [Hual4b| to prove Theorem |A] about quasiflats in HHSs. Further,
we expect that Theorem [F] will have a number of applications beyond those of this paper. A
sketch of the proof of this result is provided later in the introduction.

Theorem F (Approximation of convex hulls in HHSs by CAT(0) cube complexes). Let X be
an asymphoric HHS of rank v. Then for any N there exists C' so that the following holds. Let
A € X have cardinality at most N. Then there exists a CAT(0) cube complex Y of dimension
at most v and a C—quasimedian (C,C)-quasi-isometry pa: Y — Hy(A).

A new proof of the preceding theorem, in a slightly more general context, was given by
Bowditch [Bowl18al, motivated by an early version of this paper.

Any HHS is coarse median in the sense of Bowditch [Bow13], as shown in [BHS19, Section
7]. In the coarse median setting, there are several interesting precursors to our theorem. One
which was particularly inspirational to us was Bowditch’s result that in the asymptotic cone
of a finite rank coarse median metric space, any top-dimensional closed Euclidean flat is
cubulated, see [Bowl8bl, Proposition 1.2]. We will use Bowditch’s result about cubulating
top-rank Euclidean subsets in a complete median space in order to apply our result about
cubulating arbitrary finite sets in an HHS.

In the coarse median setting, one has, by definition, “cubical approximations of finite
sets,” and there is also a nice metric approximation result given by Zeidler [Zeil6, Theorem
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6.2]. The approximation given by Theorem [F| has stronger properties, as it provides an
approximation of the entire convex hull, whereas the quasimedian map from a finite median
algebra provided by the coarse median property can be very far from having uniformly
(hierarchically) quasiconvex image. (To see the distinction, consider the case where X = Z2
and A = {(0,0), (n,n)} for some n = 0. Then the Y provided by Theorem [F|is a n—by—n
square, while the 2-point median algebra {(0,0), (n,n)} satisfies the requirements of the
definition of a coarse median space, and is a “metric approximation” in the sense of [Zeil6]
when endowed with the natural metric.)

Theorem [F] allows us to control the rank of X" as a coarse median space more precisely than
we did in [BHS19]; see Corollary This also leads to a characterization of hierarchically
hyperbolic spaces which are hyperbolic, which we establish as Corollary [2.16]

Induced quasi-isometries on factored spaces and quasi-isometric classification. In
[BHSI7al, §2], we introduced the notion of factored spaces of an HHS. These are obtained
from a given HHS by “coning off” a collection of product regions. Factored spaces are HHSs
themselves, with respect to a substructure of the original HHS structure. Factored spaces
are central in the proof of finite asymptotic dimension [BHS17a].

A notable naturally-occurring example is that the Weil-Petersson metric on Teichmiiller
space is quasi-isometric to a factored space of the corresponding mapping class group. In
any HHS, we proved in [BHS17a, Corollary 2.9] that there exists a factor space which is
quasi-isometric to CS for the T—maximal element S (e.g., for the mapping class group of a
surface S then CS is the curve graph of S).

In Theorem we use the Quasiflats Theorem as a starting point to show that the image
of any quasiflat in a certain factored space is bounded. For now, we just state a new result
about mapping class groups which is a special case of Theorem [6.2}

Theorem G (Quasiflats have finite diameter CS projection). Let (X, &) be the mapping
class group of a non-sporadic surface S. Then for every K there exists L so that any
(K, K)-quasi-isometric embedding f: R — X satisfies diameg(ms(f(RY))) < L.

In Corollary we prove that any quasi-isometry between HHSs (satisfying a mild
condition) induces a quasi-isometry of the factored spaces obtained by coning off the standard
product regions containing top-dimensional quasiflats. This is very important because one can
extract further information about the original quasi-isometry from the induced quasi-isometry
on factored spaces, and even take further factored spaces for additional data. This is totally
unexplored territory, since, for example, it provides a way to study quasi-isometries of CAT(0)
cube complexes that requires leaving the world of cube complexes.

We expect this strategy to be crucial to prove quasi-isometric rigidity results for, say,
right-angled Artin and Coxeter groups. We discuss this in more detail below; for now we
just give an example of two right-angled Artin groups whose quasi-isometry classes can be
distinguished using this method, but not by any other known methods: see Figure

The obstruction to their being quasi-isometric is that, despite having the same rank,
their factored spaces as in Corollary have different rank (which is a quasi-isometry
invariant by Theorem . We note that the graphs we chose do not fit the hypotheses of
[Hual4al [Hual6], or that of any other class of right-angled Artin groups which have been
classified including those considered in [BNOS| BJNT0, BKS0§].

Induced automorphisms of combinatorial data and quasi-isometric rigidity. The
Quasiflats Theorem provides a powerful tool for proving quasi-isometric rigidity results for
various HHSs, e.g. right-angled Artin and Coxeter groups. In fact, the set of quasiflats
and, more importantly, their intersection patterns, can be easily converted into purely
combinatorial data.
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FIGURE 1. The right-angled Artin groups associated to the two graphs both
have rank 4. However, the 4-dimensional flats get collapsed in the correspond-
ing factored spaces, leaving only 2-dimensional flats in the case of the first
RAAG, while there are 3-dimensional flats that persist in the case of the
second RAAG.

In good cases, one can extract from the output of the Quasiflats Theorem (and with
basically no further knowledge about the geometry of the HHS) an automorphism of a
combinatorial structure encoding the data, and therefore reduce proving quasi-isometric
rigidity to proving that a certain combinatorial structure is “rigid”. The kind of combinatorial
structure that the reader should keep in mind is & endowed with the partial order given by
nesting, =, and the symmetric relation of orthogonality, L.

Rather than a general but complicated statement, we give a template for this procedure.
In Theorem we give an example of the combinatorial automorphism one can extract from
a quasi-isometry, under additional assumptions on the HHS. These additional assumptions
are satisfied by mapping class groups. Accordingly, in Section [5.2], we use Theorem to
give a new proof of quasi-isometric rigidity of mapping class groups which, once we have
established Theorem [A] requires simpler combinatorial considerations than previous proofs,
cf. [BKMM12, Bow18bl [Ham07].

Theorem H (QI rigidity for mapping class groups; [BKMM12]). Let X' be the the mapping
class group of a non-sporadic surface S. Then for any K there exists L so that: for each
(K, K)—quasi-isometry f: X — X there exists a mapping class g so that f L—coarsely
coincides with left-multiplication by g.

Theorem applies to other spaces and groups as well, including, for example, right-angled
Artin groups with no triangles and no leaves in their presentation graph, and fundamental
groups of non-geometric graph manifolds. Variations of Theorem can be tailored to treat
other families of groups as well.

In the case of mapping class groups, there is no need to pass to factored spaces, but in
other contexts (e.g., the right-angled Artin groups in Figure (1)) the induced quasi-isometries
on factored spaces provide extra combinatorial data.

In the study of right-angled Artin and Coxeter groups our results allow one to reduce the
question of quasi-isometric rigidity to the following type of combinatorial problem, which we
believe is of independent interest.

Let I' be a finite simplicial graph, and let Br be either the associated right-angled Artin
group or the associated right-angled Coxeter group. Recall from [BHS17h, Section 8] that
the standard hierarchically hyperbolic structure on such a group is obtained by setting
Sr = {gBa}/~, where g € Br and A is an induced subgraph of ', where ~ is the equivalence
relation defined by gBx ~ hBy if g7 'h € Bitar(n), and where star() = T' (i.e., g 'h
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commutes with each b € By). Declare [gBp] € [¢gBa/] if A € A’ and [¢gBa]L[¢gBa/] if
A < link(A"). Answers to the following can be used to obtain results on the problems of
quasi-isometric rigidity and classification:

Problem I. Study the automorphism group Aut(Sr,=, 1) of (6p,=,1). When is every
element of Aut(Gr, £, L) induced by left multiplication by an element of Br? When is every
element of Aut(Sp, =, L) “induced” by an automorphism of Br? (Not all automorphisms of
Br need to “induce” an automorphism of (&p, =, L); which ones do?)

Theorem states that, under three natural assumptions, a quasi-isometry f: (X, &) —
(Y, %) induces a bijection from the set of hinges of X' to that of ); a hinge in X is a pair
(U,p) with U € & and p € 0CU, where U has the additional property that U € {U;}?_; where
v is the rank of X, each CU; is unbounded, and the U; are pairwise-orthogonal.

Since it preserves orthogonality, this bijection determines a simplicial isomorphism from
the union of the top-dimensional simplices of the HHS boundary X to 0) (see [DHS17]
for more on the HHS boundary and its simplices). One should be able to articulate natural
conditions defining a subclass of HHSs for which one can use this map, perhaps in conjunction
with Section [6] to pass from a quasi-isometry to a map between HHS boundaries.

Sketch of the proof of the Cubulation of Hulls Theorem. We provide here a sketch of
the proof of Theorem [F| (Approximation of convex hulls in HHSs by CAT(0) cube complexes).
This is one of the main tools we develop in this paper, allowing one to use ideas from the
world of cube complexes to study HHSs. This result plays a crucial role in the proof of
Theorem [A| (Quasiflats Theorem for HHSs). The full proof is given in Section

A hierarchically hyperbolic space can be roughly thought of as a subset of the product of
a (typically infinite) collection of hyperbolic spaces. This subset has the property that its
projection to any direct product of two factors is surjective if and only if those two factors
are “orthogonal.” This allows one to move back and forth between properties of the HHS,
X, and properties in the associated hyperbolic spaces, {CU}. Here is a construction from
[BHS19, §6] that exploits this point of view.

Given a set a points in X', one can build the “hull” of that set by looking at the projections
of that finite set of points to each of the associated hyperbolic spaces, CU, taking coarse
convex hulls in the CU, and then looking at the points in X’ that in each CU project close to
the hull.

The realization theorem [BHS19, Theorem 3.1] gives, roughly, a characterization of points
in the product of the hyperbolic spaces that lie in the image of X', in terms of consistency
conditions (in the mapping class group context, one such condition is given by [Beh0G,
Theorem 4.3]). In this paper we rely on the construction of hulls and the realization theorem
in an essential way.

Following Sageev, the main method to cubulate a space is to explicitly build walls, that is,
“codimension-one” subspaces which separate the space. For hulls of a finite set of points in a
hierarchically hyperbolic space, this can be done in the following manner. Consider a finite
set of points and their projections to each hyperbolic space CU. By Gromov’s theorem, in a
hyperbolic space the convex hull of a finite set of points can be uniformly approximated by a
geodesic tree [Gro87al, §6.2 Geodesic trees|.

Taking an appropriately dense collection of points in each such geodesic tree and considering
their inverse images in X', one obtains walls that can be used to construct a CAT(0) cube
complex. One needs to verify that this actually works as needed to prove Theorem [F} In
particular, a key point is to show that any vertex in the CAT(0) cube complex “corresponds” to
a point in the hull in X of the finitely many points. Establishing this requires a careful analysis
of the “consistency conditions”, with the aim of invoking the aforementioned realization
theorem, [BHS19, Theorem 3.1].
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Sketch of the proof of the Quasiflats Theorem. An important ingredient in our proof
of Theorem [A| (Quasiflats Theorem for HHSs) is Huang’s result [Hual4bl Theorem 1.1] which
classifies n—dimensional quasiflats in n—dimensional CAT(0) cube complexes (for emphasis:
in Huang’s theorem the dimension of the quasiflats under consideration coincides with that
of the CAT(0) cube complex).

We prove Theorem [A| by constructing an appropriate CAT(0) cube complex to which we
can apply Huang’s theorem.

The first step is to use a result of Bowditch [Bowl8b, Proposition 1.2] about “local
cubulations” of top-dimensional flats in median metric spaces. The median spaces in question
are (bilipschitz equivalent to) asymptotic cones of the HHS X. This allows us to show that
any finite ball in a quasiflat is coarsely contained in the hull of a uniformly bounded number
of points.

By our cubulation of hulls theorem discussed above, Theorem |F| we know that any such
hull is uniformly quasi-isometric to a CAT(0) cube complex. Taking an ultralimit of these
CAT(0) cube complexes, we obtain a finite dimensional CAT(0) cube complex which quasi-
isometrically embeds in our HHS, and the quasiflat is contained in a bounded neighborhood
of the image of the quasi-isometric embedding.

By construction and Theorem the CAT(0) cube complex we build has the same dimension
as the quasiflat, thus allowing us to apply Huang’s result [Hual4bl Theorem 1.1]. This finishes
the proof since one can show that the orthants in the CAT(0) cube complex we construct
correspond to standard orthants in the original HHS.

As can be seen in this sketch, our theorem relies on Huang’s result [Hual4b, Theorem 1.1]
in an essential way. We also note that because the CAT(0) cube complex we construct is
built using Theorem [F} this complex always has the same dimension as its top-dimensional
quasiflats. So, although our argument factors through Huang’s theorem, our result extends
Huang’s in the setting of cocompact CAT(0) cube complexes with factor systems. For
instance, our theorem applies to arbitrary right-angled Coxeter groups, even though the
dimension of the CAT(0) cube complex associated to a right-angled Coxeter is typically
(much) larger than the dimension of the quasiflats it contains.

Outline. Section |l|contains background on hierarchically hyperbolic spaces, wallspaces/cube
complexes, median and coarse median spaces, and asymptotic cones. In Section [2| we build
walls in hulls of finite sets, proving Theorem [F] The main goal of Section [3] is to prove
Corollary showing that balls in quasiflats in an HHS can be uniformly well-approximated
by hulls of uniformly finite sets of points. In Section [d we develop background on standard
orthants in HHSs, and then prove Theorem [A] We also prove stronger versions in which we
control both the number of standard orthants (using a volume growth argument) and the
distance from the quasiflat to the approximating orthants, in terms of the quasi-isometry
constants. In Section 5 we impose additional assumptions on an HHS enabling one to study
the effect of quasi-isometries on the underlying combinatorial structure; see Theorem It is
in this section that we give a new proof of quasi-isometric rigidity of the mapping class group,
i.e., Theorem [H] Finally, in Section [6] we discuss factored spaces. We first prove Theorem [6.2]
and then deduce Corollary [6.3] which is about induced quasi-isometries of factored spaces.
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1. BACKGROUND

1.1. Hierarchically hyperbolic spaces. Throughout this paper, we work with a hierarchi-
cally hyperbolic space, which is a pair (X, &) with some additional extra structure described
in Definition 1.1 of [BHS19]. Roughly, an HHS consists of:

a quasigeodesic metric space X’;

a set of uniformly hyperbolic spaces {CU : U € &};

uniformly coarsely-Lipschitz coarsely-surjective maps 7y : X — CU;

three relations = (a partial order), L (an anti-reflexive symmetric relation), A (the

complement of = and 1) on &;

e a unique E—maximal element of &, and a uniform bound on the length of E—chains
in G;

e for U = V or UV, a uniformly bounded set pg;

e for U = V, a coarse map pg :CV — CU.

Definition 1.1 of [BHS19] consists of several axioms governing this data. The definition
and basic properties of HHSs were first laid out in [BHS17b|; below we list [BHS19] as the
primary reference since a few of the properties were first established there and this provides
for unified notation. The properties of HHSs which are central to this article are listed below.

Remark (QI invariance). As explained in [BHS19, Proposition 1.10], the property of being a
hierarchically hyperbolic space is preserved under quasi-isometries. If (X, &) is a hierarchically
hyperbolic space and f : X’ — X is a quasi-isometry, then (X’, &) is an HHS; where the
structure in X is obtained by replacing each projection 77, U € & by my o f.

The first property says that the “coordinates” (7 (z))yes for some z € X cannot be
arbitrary. In fact, for certain pairs U,V there are conditions that need to be satisfied by
7y (x), my (x). There is no condition for U LV, which corresponds to the fact that in this case
U,V should be thought of as factors of a product region, as we will see later.

Axiom 1.1 (Consistency axioms). Let (X,&) be hierarchically hyperbolic. Then there is a
constant B = E(X, &) so that the following hold for all x € X and U,V,W € &:
o if VAW, then
min {dW(WW(:U)? p%)v dv(ﬂ'v(lﬂ), p‘l/}/)} < E;
o if VW, then
min {dw (mw (2), pyyy), diamey (my (z) U pV (mw (2)))} < E.

Finally, if U &V, then dW(p%, p%) < E whenever W € & satisfies either V.2 W or VAW
and W xU.
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Remark (Consistent tuples). The consistency axiom has a sort of converse, the realization
theorem stated below. The idea is that the projection maps 7y, U € G allow us to think of
points in X as tuples in [ [;;cg CU. The consistency axiom imposes conditions on which tuples
can be in the image of the map X — [[;.s CU given by the projections. The realization
theorem says that the consistency conditions actually (coarsely) characterize tuples in the
image of X'. The precise statement is Theorem which is formulated using the notion of a
consistent tuple, which we now define.

Fix a constant £ > 0. Given a tuple (by)u € [ [jeg CU, we say that (by)y is k—consistent
if it satisfies the conditions from Axiom except with each occurrence of my (x) (resp.
mw (x)) replaced by by (resp. by). So, the axiom says that tuples in the image of X are
E—consistent.

Now we can state the realization theorem:

Theorem 1.2 (Realization of consistent tuples; [BHS19]). For each k > 1 there exist
Oc, 0, = 0 such that the following holds. Let b € [[yyes 2" be r—consistent (IBHSI9,

Definition 1.17]); for each W, let byy denote the CW —coordinate of b.

Then there exists x € X so that dy (by, mw (x)) < b for all CW € &. Moreover, x is
coarsely unique in the sense that the set of all x which satisfy dy (bw, mw (z)) < 0 in each
CW € G, has diameter at most 6,,.

The realization theorem is one of what we see as three foundational theorems about HHSs.
The other two are closely related: the distance formula and the existence of hierarchy paths.

The distance formula provides a way to compute distances in X in terms of distances in
the various CU, thereby reducing the study of the geometry of X to that of the family of
hyperbolic spaces {CU }yes.-

We write A =g ¢ Bif A/IK —C < B< KA+ C. Also, we let {A}, = Aif A > s, and
{A}, = 0 otherwise. Moreover, we denote dw (x,y) = dew (7w (x), mw(y)) (the distance
between x and y from the point of view of W).

Theorem 1.3 (Distance Formula; [BHS19]). Let (X, &) be hierarchically hyperbolic. Then
there exists so such that for all s = sg there exist constants K,C such that for all x,y € X,

dx(%y) =K,C Z {{dW(J:?y)}}s

We&

Remark (Uniqueness axiom). Notice that a special case of the distance formula is that,
roughly speaking, if z,y € X are so that ny(z), 7y (y) are close for each U, then x,y are
close in X'. This special case is the uniqueness axiom, which is part of the definition of
a hierarchically hyperbolic space [BHS19, Definition 1.1.(9)]. There are various places in
Section [2| where we apply the distance formula, but could probably get away with just using
the uniqueness axiom. In fact, since we initially posted this paper, Bowditch has given an
independent proof of Theorem [F], not using the distance formula. One can then deduce the
distance formula from Theorem [F| which Bowditch does in [Bow18al.

Hierarchy paths are quasi-geodesics in the HHS whose projections to each associated
hyperbolic space are (coarsely) monotone. Any two points can be joined by a hierarchy path:

Theorem 1.4 (Existence of Hierarchy Paths; [BHS19]). Let (X, &) be hierarchically hyper-
bolic. Then there exists D so that any x,y € X are joined by a D-hierarchy path, i.e., a
(D, D)—quasi-geodesic projecting to an unparameterized (D, D)—quasi-geodesic between 7y ()
and 7y (y) in CU for each U € &.

The following says that when moving along a hierarchy path -y, in order to change projection
to CU, when U & V, one must pass close in CV to a specific point, namely pg. The first
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assertion is the bounded geodesic image axiom for an HHS [BHS19, Definition 1.1.(6)] and the
second assertion follows easily from the first, together with Axiom for ease of reference
we record this here as:

Lemma 1.5. (Bounded geodesic image) Let X be a hierarchically hyperbolic space. There
exists B so that the following holds. Let W € &, V. &= W. Suppose that v is a geodesic in
CW with v n N(pYy)) = &. Then diamey (p¥ (7)) < B.

Moreover, suppose x,y € X and that there exists a geodesic v in CW from my (z) to mw (y)
so that v " Ng(p}y)) = &. Then dy(z,y) < B.

Another part of the definition of a hierarchically hyperbolic space is the large links aziom
(Definition 1.1.(7) in [BHS19]). It says roughly that, if z,y € X and V € &, then the number
of U = V on which x,y have very different projections, and U is E—maximal with those
properties, can be bounded in terms of dy (x,y). Typically, one does not apply the large
links axiom directly. Instead, one uses a consequence, Lemma 2.5 of [BHS19], which we call
“passing up large projections.” We will use a variant of that lemma, which we state presently
(it is applied in an essential way in the proof of Lemma which is part of the proof of
Theorem .

For V € &, we denote 6y ={Ue &:U c V}.

Lemma 1.6 (Passing large projections up the =—lattice). There exists E with the following
property. For every C = 0 there exists Nog = No(C') with the following property. Let V € &,
let z,y € X, and let {Vl}fvzol C By be distinct and satisfy dy,(x,y) = E. Then there exists

W e &y andi,j so that V;,V; = W and dW(pK@,pKJ}) = C.

Example 1.7. Since the statement of the preceding lemma is somewhat opaque, we now
give an example before proceeding to the proof. Let X be the Cayley graph of the free group
on generators a,b. We can make X an HHS by taking & to consist of all left cosets of all
subgroups generated by subsets of {a,b}. The space C{a) is just R, and similarly for C{b).
The space C{a, b) is obtained from X by coning off each coset in &.

Consider the path w = (a®b®)", for some E > 1. Then there are N cosets of (a) and (b)
on which the endpoints of the above path have projections lying at distance E. For any C,
by making N sufficiently large, we see that the coset {(a) and the coset wb=F(b) are at least
C—distant in C{a, b) and hence satisfy the conclusion of the lemma.

Proof of Lemmal[I.6. First of all, we choose constants. Let B > 1 be the constant from
Lemma and suppose that B is also an upper bound on the diameter of p‘[i for any U = V.
Moreover, supposed B > D, for D as in Theorem and moreover that (D, D)-quasi-
geodesics in a d—hyperbolic space stay B—close to geodesics with the same endpoints, where
0 is a hyperbolicity constant for all the CU.

If U € © is E—minimal, we say that its level is 1. Inductively, U € & has level k if it is
E-—minimal among all V' € & not of level < k — 1. The proof is by induction on the level k
of a E-minimal V € & into which each V; is nested, with £ = 100kB. The base case k = 1
is empty. Suppose that the statement holds for a given N = N (k) when the level of V' as
above is at most k. Suppose instead that |{V;}| = N(k + 1) (where N(k + 1) is a constant
much larger than N (k) that will be determined shortly) and there exists a E-minimal V € &
of level k 4+ 1 into which each Vj; is nested. There are two cases.

If maxm{dy(p“f, p“?)} > (), then we are done. Hence, suppose not. All the p“;" lie B—close
to a geodesic [y (z), my (y)] by bounded geodesic image, and by the assumption they all lie
close to a sub-geodesic of length C' + 10B. Hence, we can replace x,y with suitable 2/, v’ on
a hierarchy path from x to y chosen so that

o dy(2',y') < C + 1008,
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o my(2'), 7y (y') lie B—close to a geodesic [my (z), 7y (y)], and
e the geodesics [my (x), 7y (2')], [7v (v), v (y')] do not pass B—close to any p
By Lemma [1.5] dy,(2,y') = 100k B, since dy,(z/,y) is approximately equal to dy, (J: ).
The large link axiom ([BHSI9l Definition 1.1.(6)]) implies that there exists K = K(C +
100B) and T1,...,Tk, each properly nested in V' (thus of level strictly less than k + 1), so
that any V; is nested in some T}. In particular, if N(k + 1) > KN (k), there exists j so that
> N (k) elements of {V;} are nested into 7). By the induction hypothesis, we are done. [

1.1.1. A few more basic HHS notions. We now collect a few more basic notions about HHSs
that will be used throughout the paper.

First, each of the HHS axioms (and their variants stated above) involves some constants,
which are taken to be part of the HHS structure (X', &). For the sake of sanity, where possible,
we can assume these constants are all the same:

Notation 1.8 (Naming constants). In the remainder of the paper, following [BHS19, Remark
1.6], we fix a constant E larger than each of the constants in [BHS19, Definition 1.1] and
also satisfying the conclusion of Lemma [I.6] Lemma [I.5 and Axiom [I.1}

Given z,y € X, it is convenient to consider the subset of & on whose associated hyperbolic
spaces x,y project far apart, where “far” is determined by some threshold, generally specified
in advance independently of x, y:

Definition 1.9 (Relevant). Given points z,y € X, we say that U € & is relevant (with
respect to z,y and a constant > 0) if dy(z,y) > 6. Denote by Rely(z,y) the set of relevant
elements. Note that, for all sufficiently large 6, the distance formula implies that Rely(z, y)
is finite. In fact, using Lemma 2.5 of [BHSI9], one can bound its cardinality in terms of 6, E,
and dy(z,y) without using the distance formula.

The notion of the rank of (X, &) is easy to define, but it is of significant importance in
the present paper:

Definition 1.10 (Rank). The rank v = v(X,S) of the HHS (X, &) is the maximal n so
that there exist pairwise orthogonal Uy, ...,U, € & for which 7y, (&) is unbounded for all .

The rank is closely related to standard product regions in X, which are a useful tool whose
construction we now review; see also [BHS17bh, Section 13] and [BHS19, Section 5]. These
products are built out of the following two spaces, which we define abstractly, but often
implicitly identify with their images as subsets of X.

Definition 1.11 (Nested partial tuples). Recall that 6y ={V e & |V EU}. Fixk > E
and let Fyy be the set of x—consistent tuples in [ [y g, 20V,

Definition 1.12 (Orthogonal partial tuples). Let &5 = {V € & | VLU}. Fix £ > F and let
Ey be the set of xk—consistent tuples in [ [ cg L 2eV

Definition 1.13 (Standard product regions in X'). Given X and U € &, there are coarsely
well-defined maps ¢=, ¢+ : Fy, EU — X which extend to a coarsely well-defined map ¢y : FU X
Ey — X. Indeed, for each (@,b) € Fy x Ey, and each V' € &, the coordinate (ou(@, b))y
is defined as follows. If V = U, then (¢y(@, b))y = ay. If VLU, then (¢y (@, b))y = by. If
VAU, then (¢y(@, b))y = p%. Finally, if U = V, let (¢u(d, b))y = o5 We refer to Fiy x Ey
as a standard product region, whose image in X we also call a standard product region and
denote by Py.

The image of Fyy in X' is again a hierarchically hyperbolic space, with index set &y and
hyperbolic spaces and projections inherited from those in &. The same is true for Ey,
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although one must replace &y with the set of V € & such that V LU, together with some
element A € G into which each such V' is nested (such an A is provided by the HHS axioms).
We won’t have much need for this here, and refer the interested reader to [BHS19. Section 5]
for details.

1.1.2. Hierarchically hyperbolic groups. A finitely generated group G is a hierarchically
hyperbolic group (HHG) if some (hence any) Cayley graph of G is an HHS, and the HHS
structure is G—invariant. Specifically, an HHG is a finitely generated group G, equipped with
a specific word metric, so that there is an HHS (G, &) where:

e (G acts cofinitely on &, preserving each relation =, 1, y;
e for each U € G and g € G, there is an isometry g: CU — CgU, and if h € GG, then the

isometry gh: CU — CghU is the same as the composition CU s enu % CghU;

o for each U € & and g,z € G, the points g o my(z) and 7y (gz) uniformly coarsely
coincide;

e for each U,V € & such that UAV or U = V, and each g € G, we have pgg = g(pY).

Examples of hierarchically hyperbolic groups include mapping class groups of finite-
type orientable surfaces and fundamental groups of compact special cube complexes, see
[BHS17b, BHS19| for details and additional examples.

The only property of HHGs that we use in this paper is immediate from the definition, in
particular from the property that G acts cofinitely on &: there exists C' = 0 such that for all
U € G, either diam(CU) < C, or CU has unbounded diameter.

1.1.3. Rank as a quasi-isometry invariant. We now introduce a technical assumption on the
HHS that we will assume throughout the paper. This condition is satisfied by all HHGs;
it is also satisfied for all naturally occurring examples of HHSs. We impose it in order to
rule out product regions with bounded but arbitrarily large factors. Our results likely have
analogues that hold in the absence of this hypothesis, but would require custom-tailoring to
the situation at hand.

Definition 1.14 (Asymphoric). We say that the HHS (X, &) of rank v is asymphoric if
there exists a constant C with the property that there does not exist a set of v + 1 pairwise
orthogonal elements U of & where each CU has diameter at least C. In this case, without
loss of generality, we assume that E is chosen to be at least as large as C.

For completeness, we remark that a result from [BHSI7b] implies that the rank is a
quasi-isometry invariant of asymphoric HHSs:

Theorem 1.15 (Quasi-isometry invariance of rank). Let (X,&) be an asymphoric HHS.
Then the rank v of X coincides with the maximal n for which there exists K and (K, K)-
quasi-isometric embeddings f: (Br(0) € R"™) — X for all R = 0. In particular, the rank is a
quasi-isometry invariant of asymphoric HHS.

Proof. 1t is easy to construct a quasi-isometric embeddings of balls in R" starting from n
pairwise orthogonal elements U of & with unbounded 77 (X). Hence, we have to show that if
there exist quasi-isometric embeddings as in the statement, then n is at most the rank. This
is because, by [BHS17bl Theorem 13.11.(2)], there exists an asymptotic cone X where a copy
of the unit ball in R” is contained in an ultralimit of standard boxes. These are products of
intervals contained in a subspace coarsely decomposing as product whose factors are various
subspaces Fy, so that any ultralimit of standard boxes in X is homeomorphic to a subset of
R” because X is asymphoric. Hence, n < v, as required. O
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1.2. Hulls and gates. Sets in an HHS have hulls, built from coarse convex hulls in hyperbolic
spaces:

Definition 1.16 (Hull of a set; Section 6 of [BHS19]). For each A < X and 6 > 0, let the
hull, Hyg(A), be the set of all p € X' so that, for each W € &, the set my (p) lies at distance at
most 0 from hulleyy (A), the coarse convex hull of A in the hyperbolic space CW (that is to
say, the union of all geodesics in CW joining points of A). Note that A < Hyp(A).

Hulls are examples of hierarchically quasiconver subspaces of X'. The other notable
examples are standard product regions. The idea behind hierarchical quasiconvexity is to
simultaneously capture (in our coarse setting) various notions of (coarse) convexity:

e First, hierarchical quasiconvexity directly generalizes the usual notion of quasicon-
vexity in a hyperbolic space: when X is a hyperbolic HHS, the two notions coincide.
More generally, hierarchical quasiconvexity of a subspace ) < X requires that ) has
uniformly quasiconvex projections to all hyperbolic spaces CU for U € &.

e Second, hierarchical quasiconvexity imitates, in the HHS setting, the notion of a
convex subcomplex A of a CAT(0) cube complex M. That notion has many equivalent
formulations; one of them says that M is convex provided that the median of z,y, z
lies in A whenever at least two of the vertices x, y, z lie in A. This generalizes naturally
to a notion of coarse median convexity in Bowditch’s coarse median spaces [Bow13],
which are discussed in more detail below. It was verified in [BHS19l Section 7] that
HHSs are coarse median spaces (we rely heavily on this fact in the rest of the paper)
and that hierarchically quasiconvex subspaces are coarsely median convex. Recently,
Russell-Spriano-Tran have proved the converse [RST1S§].

e From a point of view that emphasizes paths rather than coarse medians or projections,
hierarchically quasiconvex subspaces are “quasiconvex with respect to hierarchy paths”:
if ) is hierarchically quasiconvex, then any hierarchy path with endpoints in Y stays
close to Y.

A subset Y < X is hierarchically quasiconvex if it has quasiconvex projections to the various
hyperbolic spaces, and coarsely contains all realization points for tuples whose U—coordinate
lies in 77 () for all U € &. More precisely:

Definition 1.17 (Hierarchical quasiconvexity, Definition 5.1 of [BHSI19]). Let (X, &) be
a hierarchically hyperbolic space. Then Y < X is k-hierarchically quasiconvez, for some
Ek: [0,00) — [0, 0), if the following hold:
(1) ForallU € &, the projection 77 () is a k(0)—quasiconvex subspace of the §—hyperbolic
space CU.
(2) For all k > 0 and k-consistent tuples b e [Tyes 2V with by € 7y (V) for all U € &,
each point x € X for which dy (7 (x), by) < be(k) (where 0.(k) is as in Theorem [1.2))
satisfies d(z,)) < k(k).

As one might expect, hulls of arbitrary sets are hierarchically quasiconvex, although in
this paper we mainly consider hulls of finite sets:

Proposition 1.18. [BHS19, Lemma 6.2] There exists 0y so that for each 6 = 0y there exists
k: Ry — Ry so that for each A © X the set Hyg(A) is k—hierarchically quasiconvez.

Remark 1.19. Whenever we are working with a fixed HHS (X', &), the notation 6y will
refer to the constant from Proposition [1.18] and we fix once and for all a constant 6 > 6.

1.2.1. The gate map to a hierarchically quasiconvex subspace, and the bridge lemma. We now
recall a construction from Section 5 of [BHS19], namely the gate map to a hierarchically
quasiconvex subspace, and prove some additional facts about it. (The terminology is inspired
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by the similarity with the notion of a gate map to a convex subspace of a median space; see
Section [1.5])

Fix a hierarchically hyperbolic space (X, S).

Let A ¢ X be k—hierarchically quasiconvex. Recall, this implies that for each U € &,
the set m7(A) is k(0)—quasiconvex in CU and there is thus a coarse closest-point projection
pu.a: CU — my(A). Define a gate map ga: X — A as follows: given z € X, for each U € & let
by = pu,a(x). In [BHS19, Section 5] we show that the tuple (by7)pes is uniformly (depending
on x(0)) consistent, so Theorem and hierarchical quasiconvexity of A produce a coarsely
unique point g4(x) € A such that 7y (ga(z)) uniformly coarsely coincides with by for all
Ue6.

Intuitively, the gate map ga takes x to some realization point for the tuple whose U—
coordinate, for each U, is a closest point to my7(z) in the quasiconvex subspace 7y (A).

The following lemma, Lemma m (“the bridge lemma”), contains a lot of information
about the gates of a hierarchically quasiconvex sets A, B. It essentially describes a “bridge”
of the form g4 (B) x Hyp({a,b}), for suitable a € A,b € B, that connects the two. An efficient
way to go from a’ € A to b/ € B is to start at a’, get to the bridge, cross it, and then go to b'.

The lemma collects more information than we will need in this paper, for future reference.
The proof can be safely skipped on first reading. Before we state it, we give some intuition
coming from CAT(0) cube complexes:

Remark. The bridge lemma is well-illustrated by an analogy to CAT(0) cube complexes,
where the notion was introduced by Behrstock—Charney [BCII]. In the analogy, let P, Q be
convex subcomplexes of a CAT(0) cube complex M, and let gp,gg : M — P, (Q be cubical
closest-point projection; on the O—skeleton, these are the usual gate maps in the median space
sense. (So, a hyperplane separates gp(z) from gp(y) if and only if it crosses P and separates
x,y.) Then gp(Q) is a convex subcomplex of P crossed by exactly those hyperplanes that
cross P and @, and gp(Q) is a convex subcomplex of @) crossed by the same hyperplanes.
The convex hull of gp(Q) U go(P) is crossed by the above hyperplanes, together with the
hyperplanes that separate P from (). Hyperplanes of the latter type cross hyperplanes of
the former type, and so the convex hull decomposes as a product, which one can view as
a “bridge” between P and (), in the sense that combinatorial geodesics from P to @ travel
through the bridge.

Lemma is analogous, except we have replaced the CAT(0) cube complex with an HHS,
replaced convexity with hierarchical quasiconvexity, and replaced the cubical closest-point
projection with the gate map.

Lemma [T.20] will be important later on in the paper. We use it in Section [3| to study boxes
in asymptotic cones of an HHS; we use it in Section 4 to study coarse intersections between
standard orthants, the key point being that if A, B are hierarchically quasiconvex, then the
“coarse intersection” of A and B coarsely coincides with g4(B). Also, this lemma is useful
for obtaining simplifications of the distance formula in various instances, see for instance
Corollary where we obtain a formula for the distance between a point and a product
region. We note that another inspiration for this lemma is its analogue in the mapping class
group, as developed in [BKMMI2, Section 3.

Lemma 1.20 (Bridge lemma). For every k : [0,00) — [0,00) and all Ky > 10(0)E,
the following holds. There exists a function ' and constants K1 = Ki(k, F, Ky) and
Ky = Ko(k, E,Ky) and K3 = Ks(k, E, K1) such that for all k—hierarchically quasiconvex
sets A, B, we have:

(1) ga(B) is k' —hierarchically quasi-conver.

(2) The composition ga © 9Bl (B) is bounded distance from the identity ga(B) — ga(B).
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FI1GURE 2. The bridge between quasi-convex sets A and B

(8) For any a € ga(B),b = gp(a), we have a (K1, K1)—quasi-isometric embedding
f:94(B) x Hg({a,b}) - X with image Hp(ga(B) v gB(A)), so that f(ga(B) x {b})
Ki—coarsely coincides with gg(A).

Let H = {U € & : diam(ga(B)) > Ko}. Let a,b, f be as above.

(4) For each p,q € ga(B) and t € Hy({a,b}), we have Relg, (f(p,t), f(g,t)) < H.
(5) For each p € ga(B) and t1,t2 € Hy({a,b}), we have Relg, (f(p,t1), f(p,t2)) < H .
(6) For each pe A,q € B we have

d(p, @) =Ks.x5 d(p,94(B)) + d(q, 8(A)) + d(A, B) + d(gg,,(4)(P); 8g(4)(4))-
The reader is referred to Figure [2] for a heuristic picture of the content of the lemma.

Proof of Lemma[1.20, We start with a definition and an observation.

The sets V,H: Let V be the set of V € & with dy (A, B) = 100Ek(0). Fix Ky > 10Ex(0)
and let Hg, be the set of H € & with dy(a,a’) > Ky for some a,a’ € ga(B), say a =
ga(b),a’ = ga(V') for some b, € B.

The following claim can be proved using standard thin quadrilateral arguments in the
hyperbolic space CV for each V € V:

Claim 1.21. 7y (ga(B)) and my(gp(A)) have diameter < 10Ek(0) for V e V.
ForUe & —V and x € ga(B), dy(z,gp(z)) < 10Ex(0).

The next auxiliary claim is a sufficient condition for orthogonality between H € Hg, and
Ve

Claim 1.22. Let C' > E and let a,b,d’,b/ € X and suppose that H,V € & satisfy
dv(CL, a’), dv(b, b/> < C,‘

dv<a,b) > 100,’

dH(a, b),dH(a', b/) < C,’

dg(a,a’) > 10C;

Then H1V.

Proof of Claim[1.23 To establish that H1V we must show that H and V are not related
by either the transversality or the nesting relation. Our proof is by contradiction.

Suppose Vi H. First, assume that we are in the case that dy (a, p{/I) < E. We then have
that dy (pff,b) > 8C and thus dy (pfl, ') > 6C. Then, by consistency pY; lies E—close to both
7w (b), mp (D), which is impossible since dg(b,d’) > 6C'. It remains to consider the case where
dy(a, pf) > E. Here, by consistency, we have that dg(a, pY;) < E. Hence dg(d/, p};) = 5E,
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and so, by consistency, we have dy (a/, p‘f/f ) < E. This case now reduces to the first case, with
a’ replacing a, again yielding a contradiction.

Suppose V = H. Since dy(a,a’) > 10C and dg (b, ') > 6C, at least one of the pairs a,b or
a’, b has the property that geodesics in CH connecting the corresponding projection points
are F—far from pz. By the bounded geodesic image axiom, we have, say, dy(a,b) < E, a
contradiction. The same argument rules out H &= V.

Since we have ruled out nesting and transversality, we thus have H 1V. U

The preceding two claims imply that V_LH for all V € V and H € Hg,. We now proceed
to the proofs of the enumerated assertions.

Assertion (1) and Assertion (2): First we claim that 7 (ga(B)) is uniformly quasicon-
vex for all U € &. Observe that 77 (ga(B)) uniformly coarsely coincides with py a (7w (B)).
On the other hand, (uniform) quasiconvexity of 7y (B) and a thin quadrilateral argument
show that py a(my(B)) is uniformly quasiconvex, as required.

We now verify that ga(B) satisfies the second part of the definition of hierarchical
quasiconvexity. To that end, let (ty)yes be a consistent tuple so that ty = py.a(by)
for some by € my(B) for each U € &. Theorem and hierarchical quasiconvexity of A
provide a realization point z € A for (ty).

To complete the proof of hierarchical quasiconvexity, we must show that in fact x lies
uniformly close to ga(B). Let y = ga(gp(x)). Since y € ga(B), it suffices to show that x
and y are uniformly close. To do so, we show that 7y (x), 7y (y) are uniformly close for each
U € &, but this follows by considering the two possibilities for U covered by Claim This
proves Assertion .

For b € B, Claim can be applied as above to show that w7 (ga(gp(g4(b)))) uniformly
coarsely coincides with 77 (g (b)) for each U € &, and hence ga(gp(ga(b))) uniformly coarsely
coincides with g(b) for all b € B, thus proving Assertion (|2)).

Defining f: Fix a € g4(B). Choose b” € B so that a = g4(b”), and let b = gp(a). Note
that 100Ek(0) < dy(a,b) < dy(A, B)+20Ek(0) for V € V; the second inequality here follows
from Claim Since a € A and b € B we also have dy (4, B) < dy(a,b).

Let o’ € ga(B). Assertion |2 implies that, up to uniformly bounded distance, a’ = g4 ()
for some V' € gp(A). For each U € & — V, set by = myy(a’). For each V € V, let vy be a
geodesic from 7y (a) to my(b) and, for a fixed h € Hyp({a,b}), set by = my(h), which lies
f—close to vy .

Claim 1.23. For each a',h as above, the associated tuple (by)wes defined above is 20Ky~
consistent.

Proof of Claim[1.23 It W,W' e & -V, or if W, W’ € V, then by, by satisfy any consistency
inequality involving W, W’, since by, by coincide with the projections to CW,CW’ of a
common point in those cases.

If We&—Vand V eV, then either

o WeHg,, or
e diamy (mw(ga(B))) < Ko and dw (a,b) < 100Ek(0).

In the first case, VLW by Claim so there is no consistency inequality to check.

In the second case, if W £V, then a 200Ex(0)—consistency inequality holds, as we now
show. Indeed, if WAV, then my (a’), 7w (b)) coarsely coincide, as do 7wy (a), 7y (a’) and
7y (b), Ty (b). At least one of my (a’) or my (V') is E-far from plY, so either my (a’) or my (')
is uniformly close to pK/, but these two points coarsely coincide, so 7y (a’) = by is uniformly
close to p‘V/V. The nested cases are similar. O
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Assertion : Given the consistent tuple provided by Claim the realization theorem,
Theorem then provides a coarsely unique z € X realizing (by ), and we let f(a’,h) = x.
This gives a map f: ga(B) x Hy(a,b) — X, and one can see using the distance formula that
there exists K1 = Kj(k, E) so that f is a (K7, K1)—quasi-isometric embedding. In the next
claims, we check that f satisfies the remaining properties of Assertion .

Claim 1.24. f(ga(B) x Hyp({a,b})) is coarsely contained in Hyg(ga(B) U gp(A)).

Proof of Claim[1.24 Let h € Hy({a,b}). Let c € B and let x = f(ga(c),h). Let U € &. If
U €V, then my(z) uniformly coarsely coincides with 77 (h), which in turn lies #—close to the
geodesic vy in CU from 7y (a) to 7wy (b), by the definition of a 6-hull.

If U e &—V, then ny(x) lies uniformly close to m(ga(c)). In either case, my(x) lies
uniformly close to a geodesic starting and ending in 7y (ga(B) U gB(A)), so x lies uniformly

close to Hy(ga(B) u gp(A)). O
Claim 1.25. Hyp(ga(B) v gg(A)) is coarsely contained in the image of f.

Proof of Claim [1.25 Suppose that z € Ho(ga(B)ugp(A)). Lety = f(aq,(8)(), 8, ({ap}) (7))
We claim that 7y (y) coarsely coincides with 7y (x) for all U € &, and hence x coarsely coin-
cides with y. Indeed, suppose that U € V. By Claim[1.21] we have that 7y (ga(B)), T (g5(A))
are uniformly bounded; thus 7 (Hg(ga(B) u gB(A))) coarsely coincides with mr(Hg({a, b})).
Hence, since = € Hy(ga(B) v gp(A)), we have my () coarsely coincides with 7y (g g, ({a,p))(7))-
By definition, this coarsely coincides with 7y (y).

Suppose that U € & — V. Then 7y7(ga(B)) coarsely coincides with 7 (gp(A)) and hence
v (Ho(ga(B) v gB(A))) coarsely coincides with 77 (ga(B)). Hence, since x € Hy(ga(B) u
g5(A)), we have 7y (x) coarsely coincides with 7y7(gg,(5)(2)), which coarsely coincides with
7 (y) by definition. O

Claim 1.26. gg(A) coarsely coincides with f(ga(B) x {b}).

Proof of Claim[1.2¢. By Claim g5 (A) is coarsely contained in the image of f. Moreover,
if x € gp(A), then 7y (x) coarsely coincides with 7y (b) for all V' € V, since b € gg(A) and
v (gB(A)) is bounded by Claim Hence gp(A) is coarsely contained in f(ga(B) x {b}).

Conversely, for any o’ € g4(B), f(a’,b) coarsely coincides with gg(a’). Indeed, for V € V,
7y (f(a’,b)) coarsely coincides with 7y (b) by definition. But 7y (b) € my(gn(A)), by the
choice of b. Since 7y (gp(A)) is uniformly bounded, 7y (gp(a’)) coarsely coincides with 7y (b)
and hence 7y (f(d’,b)).

Let H e & — V. Since dy(A, B) < 100E£(0), we have that my(gp(a’)) coarsely coincides
with 7y (a’). By definition my (f(a’, b)) coarsely coincides with 7y (a’). Hence f(ga(B) x {b})
is coarsely contained in gp(A). O

Assertions ({),[): Let p,q € ga(B) and t1,t2 € Hy({a,b}). Then there exists Ko,
depending on «, K1, F such that the following hold by the construction of f. First, if
H e Relg, (f(p,t1), f(q,t1)), then H € H,.

Second, if V € Relg,(f(p,t1), f(p,t2)), then V € V, s0 V € ”HJ[(O by Lemma , as
explained above.

Assertion (0)): Let F = Hy(ga(B) ugp(A)), and consider p € A and g € B. Assertion
and Lemma [1.27) provides K4 = K4(k, X) so that

d(gr(p), 97 (9)) =K,,k4s d(A, B) + d(8g,4)(P); 8g5(4)(2))>
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so it suffices to compare d(p, q) with d(p, gr(p)) + d(gr(p),9r(q)) + d(q,9r(q)). The upper
bound is just the triangle inequality. For U € &, examining a thin quadrilateral shows

du(p,q) = du(p,pur(mu(p))) +du(pur(mu(p)), pu,r(tu(q))) +du(q, pur(ru(q))) =T
> du(p,gr(p)) +du(er(p),gr(9)) + du(q, 9r(q)) — 10T

for some uniform 7. Given L > 0, let or(p,q) = X yes {dv(v. @)} -
By the distance formula (Theorem , d(p,q) = K3 o107(p, q) — K3 for some Kj. Since,

10107 (P, 4) = o1007 (P, 97 (P)) + 01007 (87 (D), 87(q)) + 01007 (87 (D), ¢), the claim follows from
another use of the distance formula (on the right, with threshold 1007"). O

The next lemma is used in the proof of the final assertion of Lemma but it is also
interesting in its own right, since it says in particular that g4 (a) is the “coarsely closest point”
of the hierarchically quasiconvex set A to the (arbitrary) point a € X.

Lemma 1.27. Let A, B ¢ X be k—hierarchically quasiconvex sets. Then there exists K =
K(k,X,8) so that for all a € X we have d(a, B) =g,k d(a,gp(a)). Moreover, for any a € A:

d(A, B) =k i d(g5(a), ga(gr(a))).

Proof. First let a € X and b € B. Recall that for U € &, the map pyp: CU — 7y (B)
is coarsely the closest-point projection. For any U € &, we have dy(a, py p(my(a))) <
dy(a,b) + 1. By the definition of the gate, and the distance formula, we thus have K,
depending on &, so that d(a,gp(a)) < K'd(a,b) + K’'. Since this holds for any b € B, this
proves the first assertion.

Now let a € A and let U € 6. Then py a(py,p(mr(a))) lies uniformly close to any CU-
geodesic from 77 (a) to py p(my(a)), so by the distance formula and the definition of the
gate, d(a,gp(a)) = d(gp(a),ga(gn(a)))/K' — K’ for K’ depending only on X', &, and k.

Choose a € A so that d(A, B) > d(a,B)—1. Thend(A4, B) = K'd(a,gp(a))/K'— K'—1, by
the first assertion and the choice of a. As above, d(a,gp(a)) = d(gp(a),ga(gp(a)))/K' — K'.
Combining these facts shows that, up to uniform constants, d(A, B) is bounded below by

d(gB(a), ga(gB(a))), as required. O

Although we will not use it in the rest of the paper, we note the following interesting
corollary, which is useful elsewhere:

Corollary 1.28. Let (X, &) be an HHS. Then for all sufficiently large s, there exists K such
that the following holds. Let U € &. Let Py be a corresponding standard product region and
let z€ X. Let R be the set of V € & such that U =V or UAV and dy (x, oY) > s. Then

d(a:,PU) :K,K Z dv(x,pg).
VeRr
Proof. By construction, Py is k—hierarchically quasiconvex, where k depends only on E.
Lemma [1.27) provides Ko such that d(z, Py) =g, d(x,gp, (x)). Now, by the definition of gp,,
the projections my (z) and 7y (gp, (z)) uniformly coarsely coincide unless U = V or UhV. In
the latter case, gp, (z) projects uniformly close to pg, by Definition and Definition m
The claim now follows from the distance formula, Theorem O

1.3. Wallspaces. Wallspaces were introduced by Haglund-Paulin [HP98] and then further
developed by Hruska-Wise in [HW14]; there are now numerous variants of the notion. Here,
we recall the relevant definitions for Section [2| See, e.g., [HW14] for more background on
CAT(0) cube complexes.

Definition 1.29 (Wallspace, coherent orientation). A wallspace (S, W) consists of a set S
and a collection W = {(W, W)} of partitions of S; each such partition is called a wall. The
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subsets W, W < S are the halfspaces associated to (W, W) A orientation x of VW is a map
W s (W, W) — (W, W) e {W,W}. The orientation  is coherent if z(W, V[—})mx(f/l_//, V[—},) #
& for all (W,, W/), (W, W) € W. The orientation  is canonical if there exists s € S so that

s € x(W/, W/) for all but finitely many (W/, W/) e W. When W is finite, as it will always be
the case in this paper, any orientation is canonical.

Definition 1.30 (Dual cube complex). The dual cube complex C = C(S, W) associated to
the wallspace (S,WV) is the CAT(0) cube complex whose O—cubes are the coherent, canonical
orientations of W, with two O—cubes joined by a 1—cube if the corresponding orientations
differ on exactly one wall. The resulting graph is median, as was proven independently by
Chatterji-Niblo [CN05] and Nica [Nic04], building on work of Sageev [Sag95]. Thus this
graph is the 1-skeleton of a uniquely determined CAT(0) cube complex, by a theorem of
Chepoi [Che00]; we call this complex C. Note that, given a CAT(0) cube complex C, each
hyperplane W yields a wall in C(©) by partitioning C©) into the vertex sets of the two

components of C'— W. The CAT(0) cube complex dual to the resulting wallspace is exactly
C.

Definition 1.31 (Hyperplane, crossing). A hyperplane in C'is a connected subspace whose
intersection with each cube ¢ = [—1,1]" is either ¢J or a subspace obtained by restricting
exactly one coordinate to 0.

The hyperplanes in C(S, W) correspond bijectively to the walls in W. Moreover, two
hyperplanes have nonempty intersection if and only if the corresponding walls cross in the
sense that all four possible intersections of associated halfspaces are nonempty. It follows
that the dimension of C is equal to the largest cardinality of a subset of W consisting of
pairwise-crossing walls.

We occasionally use the convexr hull of a set A < C(S,W): this is the largest subcomplex
contained in the intersection of all halfspaces containing A.

Finally, we need the notion of a cubical orthant. Let C be a CAT(0) cube complex. Let
n > 1 and let R be the standard tiling of [0,0) by 1-cubes. A cubical n—orthant is a copy
of the CAT(0) cube complex R™ with the obvious product cubical structure. A cubical
n—orthant in C is a subcomplex O of C' that is isomorphic to R™ and has the property
that O < C'is an isometric embedding (and in particular a median homomorphism) on the
O—skeleton.

1.4. Ultralimits and asymptotic cones. We now recall the definitions of ultralimits and
asymptotic cones of metric spaces. A more detailed discussion can be found, for example, in
the book [DK18] or in [Dru02]; we recall just the notions we need.

Let (M, d) be a metric space and let w < 2N be a non-principal ultrafilter on N. Given a
sequence m = (my, € M)nen of observation points and a positive sequence s = (S, )pen With
8, — o0, the asymptotic cone M is the ultralimit of the based metric spaces lim,, (M, m,,, %):
define a pseudometric d on [[, M by d(y,z) = lim,, d(ygif")
pseudometric on the component containing m, i.e.,

M= {(yn)neN e[ ], Ci) :d(y,m) < oo} .

, and consider the induced

Then M is the associated quotient metric space, obtained from M by identifying points y
and z for which d(y, z) = 0.

More generally, given a sequence (M, d,) of metric spaces, with a basepoint m,, € M, for
each n, we define the ultralimit as follows. Given x = (x,,),y = (yn) € [ [,, My, let d(z,y) =
limy, dy (@, yn). We identify (z,,), (y,) when d(z,y) = 0, and restrict ourselves to points (x,)
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for which lim,, d(x,, m,) < 00. The resulting based space is the ultralimit lim,, (M, d,, my,).
Note that the asymptotic cone M defined above is just lim,, (M, d,,/sn, my). When taking
ultralimits of a sequence of spaces without rescaling, we will emphasize this by saying
“non-rescaled”.

We will adopt the following notational conventions for asymptotic cones. We let w denote
a non-principal ultrafilter on N, fixed once and for all. Given a sequence (M;);en of based
metric spaces, we denote by M the corresponding ultralimit. Given m € M, a representative
of m is a sequence (m; € M;);en, and, when there is no possibility of confusion, we use a
boldface letter to denote this representative, viz. m = (m;).

We also denote by “R. the ultrapower of the set Ry of nonnegative reals. Given A € “R,,
we sometimes use the notation, e.g., r to denote a sequence (7, )meN representing .

1.5. Median, coarse median, quasimedian. We recall some background on median
spaces and coarse median spaces. The latter were introduced by Bowditch [Bowl13] and we
refer the reader to [Bowl3, Bow18b] for a more detailed discussion of both concepts.

The discussion of coarse median spaces in [Bowl13| is given in terms of (finite) median
algebras. For concreteness, we first consider only the following example of a (finite) median
algebra: let ) be a CAT(0) cube complex (with finitely many O—cubes). Recall that there
exists a median map pu: (y<0>)3 — Y with the property that, for all z1,z2, 23 € Y@, the
0-cube p(x1, x2, x3) lies on a combinatorial geodesic from x; to x; for all distinct ¢, j € {1, 2, 3},
see e.g., [Che00]. This 0—cube with the given property is unique.

Remark 1.32 (Median and walls). Let ) be a CAT(0) cube complex and let z,y, z be
O—cubes. The median, p = u(x,y, z), can be described in terms of orientations of walls as
follows. If W is a wall in ) so that some associated halfspace W™ contains x,y, z, then u
orients W toward W+. Otherwise, W has two associated halfspaces W* so that W contains
exactly two of the points {z,y, 2z} and W~ contains exactly one of these points. Then p
orients W toward W ™. This choice of orientation of all walls is coherent and easily verified
to yield a 0—cube which is the median of z,y, z.

The above discussion provides the basis for the definition of a coarse median space.

Definition 1.33 (Coarse median space; [Bowl3]). Let (£,d) be a metric space and let
u: L2 — L be a ternary operation. We say that £, equipped with p, is a coarse median space
if there exists a constant k and a map h: N — [0, 00) so that the following hold:

o For all z,y,2,2",y,2 € L,

d(p(@,y,2),w@',y', 7)) < k(d(z,2") +d(y,y') + d(z,2)) + h(0).

e For all pe Nand A < £ with |A| < p, there is a CAT(0) cube complex V4 with finite
O-skeleton and median map g4, and maps f: A — yﬁ,o) and g: yff) — A so that the
following hold:

— d(u(g(x). 9(), 9(2)). 9(pa(z,y. ) < h(p) for all 7y, z € Y{;

— d(a,g(f(a))) < h(p) for all a € A.
The coarse median rank v of L is the smallest integer v so that )4 can be taken to have
dimension < v for all finite A.

It was shown in [BHS19] that every hierarchically hyperbolic space is a coarse median
space; we refer the reader there for details of the construction. The property of coarse medians
we need in this paper is that, given an HHS (X, &), there exists a constant ¢, depending only
on the HHS constant F/, so that the following holds. Given z,y,z € X and letting m € & be
their coarse median, then for all U € G, the point 77(m) lies f—close to any geodesic in CU
joining a, b, where a,b € {my(z), 7y (y), v (2)} are distinct.
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Definition 1.34 (Quasimedian map). Let ) be a CAT(0) cube complex with median map
wy on its O-skeleton. Let (£, u,d) be a coarse median space. Let h = 0. An h—quasimedian
map is a map q: Y — L for which

d(plq(z),q(y), q(2)), q(py(z,y,2))) < h
for all z,y,z € ).

Note that quasimedian maps are referred to by [Bowl3] as “quasimorphisms,” but we use
a different terminology to avoid any confusion with other uses of that word.

When studying asymptotic cones of HHSs, it isn’t sufficient to restrict oneself to finite
median algebras/CAT(0) cube complexes. So, we need a few more standard notions about
general median algebras and median metric spaces.

Recall that a set M equipped with a ternary operation p: M3 — M is a median algebra
if for all finite A < M, there is a finite B < M so that A € B, and B is closed under u,
and (B, p) is a finite median algebra in the above sense (i.e., we can identify its elements
with points in a finite CAT(0) cube complex in such a way that p coincides with the cubical
median). The rank of a median algebra is defined as in Definition in terms of the
dimensions of the cube complexes approximating finite sets.

Given a,b € M, the interval [a,b] is the set of ¢ € M with p(a,b,c) = ¢, and N < M is
median convez if [a,b] € N whenever a,be N.

If M is also a Hausdorff topological space, and p is continuous, then (M, u) is a topological
median algebra. We consider the following special case. Let (M,d) be a metric space. For
any a,b € M, let [a,b] be the set of ¢ € M for which d(a,b) = d(a,c) + d(c,b). If M has the
property that for all a, b, c € M, the intersection [a, b] N [b, ¢] N [¢, a] consists of a single point
u(a,b,c), then the map (a,b,c) — u(a,b,c) makes (M,d) a topological median algebra. In
this situation, we say M is a median (metric) space. The metric notion of an interval agrees
with the median notion discussed above.

Bowditch showed, in [Bow13, Theorem 2.3|, that any asymptotic cone of a coarse median
space of rank v is a topological median algebra of rank v, where the median of points
represented by sequences (x,), (), (2n) is represented by a sequence whose n'” term is the
coarse median of x,, yn, z,. Moreover, Bowditch showed in [Bow18bl, Proposition 2.4] (see
also Theorem 6.9 of the same paper) that any asymptotic cone of a coarse median space is
bilipschitz homeomorphic to a metric median space, where the median is as just described.
When we work with asymptotic cones of HHSs (recall that each HHS is coarse median of
finite rank), we will only be interested in the bilipschitz homeomorphism class, and will
therefore assume that the asymptotic cone, with the given median, is a median metric space.

We collect the above in the following proposition, which plays an important role throughout
Section

Proposition 1.35 (Asymptotic cones of HHS are median metric spaces). Let (X, &) be a
hierarchically hyperbolic space. Let X be an asymptotic cone of X. Let pn: X3 — X be the
coarse median map, and let p : X3 — X be the map sending X = (v,,),y = (yn),2 = (2n) to
the point represented by (p(Tn, Yn, zn)). Then:
e 1 makes X into a topological median space of finite rank. If (X,S) is asymphoric
and has rank v, then the median space X has rank at most v.
o X, equipped with the median wu, is bilipschitz equivalent to a median metric space.

Proof. 1t is shown in [BHS19| Section 7] that X is a coarse median space. From Theorem
it follows that the rank of X as a coarse median space is bounded above by the maximal
cardinality m of collections {U;} c & of pairwise orthogonal elements. (So, in general, the
coarse median rank of X is bounded only by the complexity of &.)

The bound on the coarse median rank in the asymphoric case is Corollary below.
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The first assertion now follows from [Bow13, Theorem 2.3] which provides the median
structure and implies that v is an upper bound on the rank of the median space (X, p).

The second assertion follows from [Bow18bl Theorem 6.9]. More specifically, being an
asymptotic cone of a quasigeodesic space, X is a complete geodesic space (see e.g., [DK18|
Proposition 10.70]). The proof of [Bow13, Proposition 9.1] shows that X, with the given
median, satisfies the hypotheses of [Bow18bl Proposition 2.4, which then yields the second
assertion. U

Finally, we conclude with some background about the notion of gate maps in a median
space, and the notion of a block; these again are vital in Section

Definition 1.36 (Block, median gate). Let (M, u,d) be a median metric space. A n-block
in M is a median convex subspace isometric to the product of n nontrivial compact intervals
in R, endowed with the ¢; metric.

Recall that the (median) interval in M between points m and n is the set [m,n] of all m’
such that pu(m,m’,n) =m'.

If N € M is a closed median convex subset, a median gate map gy: M — N is a map
such that gy(m) € [m,n] for all me M,n e N.

Closed convex subsets of a complete median space always admit a unique gate map (see
e.g. [DK18, Lemma 6.26]). If N, N' are median convex, then gy (N’) is again median convex;
see [Bowl18b].

1.6. Identifying hierarchy paths. We now prove a sufficient condition for a path in the
HHS (X, G) to be a hierarchy ray. It is straightforward, but it will play a role in Section

In the lemma, “quasimedian” will mean with respect to the coarse median on X and the
usual median on R, i.e., v : R — X is quasimedian if whenever r,s,t € R satisfy r < s < ¢,
then the coarse median of v(r),y(s),v(t) is A—close to 7(s).

Lemma 1.37. Let (X, &) be an HHS. Then for all A > 1, there exists D = D(\) such that
the following holds. Let I < R be a (possibly unbounded) subinterval and let v: I — X be a
A—quasimedian (X, \)—quasi-isometric embedding. Then v is a (D, D)-hierarchy path.

Proof. The path ~ is a (A, \)—quasigeodesic by hypothesis, so to show that it is a hierarchy
path we only need to prove that there exists a constant D so that, for each U € &, the
composition of v with 7 is an unparameterized (D, D)—quasigeodesic in CU. In order to do
so, it suffices to show that there exists a constant D’ so that for each r,s,t € I withr < s < t,
we have that 7y (y(s)) lies D’'—close to a geodesic from 7y (y(r)) to my (y(¢)).

Let r,s,t € I satisfy r < s < t. Let m be the coarse median of ~(r),v(s),(t).
Since 7y is E—coarsely Lipschitz and « is A-quasimedian, we have dy (7 (y(s)), 7y (m)) <
EX + E. By the definition of the coarse median, there exists A’ = N (E,\) such that
du(y(s), my) < XN, where my is the coarse median in the hyperbolic space CU of the three

points 7y (y(r)), 7u (v(s)), mu (y(t)). The distance from my; to any geodesic [7y (y(r)), 7o (v(t))]
is bounded in terms of the hyperbolicity constant of CU, so we are done. O

2. CUBULATION OF HULLS

Fix a hierarchically hyperbolic space (X, ). In this section, we prove that the hull of any
finite set A — X can be cubulated, i.e., approximated by a finite CAT(0) cube complex in
such a way that both distances and (coarse) medians are coarsely preserved.

We achieve the cubulation of Hyp(A) by constructing finitely many walls in Hp(A) and
then passing to the dual cube complex, using the work of Chatterji-Niblo, Nica, and Sageev
mentioned in Definition [.30l

In the case where (X, &) is a rank-one HHS — which, as we will see below, is equivalent to
being hyperbolic — the cubulation of the hull of A reduces to a classical fact about hyperbolic
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spaces: the coarse convex hull of any finite collection of points can be approximated by a
quasi-isometrically embedded 1-dimensional CAT(0) cube complex, i.e., a tree [Gro87b].

We exploit this special case to build walls in Hy(A), roughly as follows. We consider U € &
and consider a tree which approximates the coarse convex hull of 77 (A) in the hyperbolic
space CU. We then find an appropriate separated net in this tree and, for each point in this
net, we use wljl of a connected component of the complement as one of our walls.

The fact that the quality of the tree approximation in CU depends on |A| is the most
obvious way in which the dependence of the quality of our cubical approximation on |A|
makes itself felt. However, there are also several other essentially different ways in which |A|
influences the quality of the approximation. First, it does so in our choice of separated nets
(roughly, the larger the total branching of a tree is, the harder it is to approximate the tree
with a separated net), and the other two are in Lemma and Lemma m

We now turn to the formal statement of the cubulation of hulls theorem (which is Theorem
of the introduction):

Theorem 2.1 (Cubulation of hulls). Let (X,&) be a hierarchically hyperbolic space and
let k € N. Then there exists My so that for all M = My there is a constant C1 so that
for any A < X of cardinality < k, there is a Ci1—quasimedian (Cy,Ch)—quasi-isometry
pa: Y — Hyp(A), where Y is a CAT(0) cube complez.

Moreover, let U be the set of U € & so that dy(xz,y) = M for some xz,y € A. Then dim )
is equal to the maximum cardinality of a set of pairwise-orthogonal elements of U.

Finally, there exist 0—cubes y1, ...,y €Y so that k' <k and Y is equal to the convex hull

inY of {y1,..., Yy}
Remark. Since we posted an earlier version of this paper, Bowditch has given a new proof

of this theorem under somewhat more general hypotheses (very similar to, but strictly weaker
than, the HHS axioms); see Theorem 1.3 in [Bow18a].

The proof is carried out over the next several subsections. We fix once and for all (X, &),
some k € N, and a subset A = {z1,...,25} S X.

2.1. The candidate finite CAT(0) cube complex. Fix U € &. For each z; € A, recall
that 7y (z;) is a subset of the d-hyperbolic space CU of diameter at most E; for each j,
choose Eg-] € my(z;), to obtain k points ¢Y ... ,Eg € CU. As shown by Gromov, there exists
C = C(k,0) so that there is a finite tree Ty and an embedding Ty < CU, sending edges to
geodesics of CU, such that:

e dy(p,q) <dg,(p,q) < duy(p,q) + C for all p,q € Ty;

. Z?GTUforléjék;

e cach leaf of Ty lies in {¢¥,... ¢V}
This is the usual spanning tree of a finite subset of a hyperbolic space; see [Gro87b|. The given
properties of Ty ensure that, up to increasing C' uniformly, dgqqs(Ty, hulley (7 (A))) < C.

Our choice of Ty ensures that, for each z; € A, every leaf of Ty is contained in 7y (x;) for
some z; € A and each 7 (z;) contains a point of Ty.

Let M be a (large) constant to be specified below. We will point out the conditions that
M must satisfy as we proceed.

Let U be the set of all U € & with diam(n(A4)) = 100M k.

Let Uy < U be the set of E—minimal elements of . Given U,,_1, let U,, < U be the set of
all E—minimal elements of U — U, _1. Finite complexity ensures that there is some s so that
U5 —Us = U. For each

Uel,let USY = {V el : V = U}. For each V € U=Y, choose r}; € Ty closest to
pg; the set of choices is bounded diameter (moreover, in Lemma we prove that rg is
100 EC—close to p;).
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Remark (Finiteness of U). For sufficiently large M (in terms of the threshold constant in
the distance formula), Theorem implies that ¢/ is finite. One could also deduce this from
the large link axiom (Definition 1.1.(7) in [BHS19]), avoiding use of the distance formula.
Finiteness of U is used below; it will ensure that the wallspace we construct has finitely
many walls, so that the O—cubes of ) correspond bijectively to coherent orientations of the
walls (recall Definition ; in other words, we don’t have to worry about the “canonical
orientation” condition from Definition because we will be dealing with a finite wallspace.

We now proceed to the construction of the walls.

Starting with each U € U; and then repeating for Us up to Us, we choose a finite set of
elements p{ € Ty satisfying the following conditions (which implies that the p¥ together
with the r}; provide a 10Mk-net which is M-separated):

(1) du(p,2) = M,

(2) du(p!,pY) = M,

(3) du(®Y, ) = M for each V e Y=Y (when U € U, there are no such V), and

(4) each component of Ty — ({p?} v {TE}VGZ/;,U>> has diameter at most 10Mk (when
U € Uy, there are no such V, so the criterion is only about complements of the {p{}).

The existence of such a net is justified as follows. Fix U € U. For each z; € A, choose
y; € Ty lying in my(x;).

For each j < k, let TIJJ be the subtree of Ty spanned by yi,...,y;. Consider the geodesic
Tg. Let aq,...,ay be the points as on Tfj such that there is a (possibly trivial) geodesic in
Ty that intersects T[% at as and joins ag to a point in {ys,...,yx}. Note that £ <k — 2.

Note that Ty is the union of Tg along with ¢ subtrees Cjs, each of which intersects T(% at
a point as, s < £. Choose a (possibly empty) M-separated set of points piU in Tl2] so that
each p? is M—far from each ag, and M—far from y1,y2, and M—far from each pg, VeUu=v
belonging to Tg. Any collection that is maximal with these properties has the property that
PV} U {py; € T3} is an M (£ + 2)-net in T2. If k = 2, then {a,} = & and we are done.

Otherwise, each tree Cs contains at most k£ — 2 of the points y;, and exactly one of the
points ai,...,ap, namely as. So, by induction, Cy contains an M—separated collection of
points {p¥ (s)}; that are M far from any py; € Cs, and M—far from any y; € Cs, and M—far
from as, such that {p{(s)}; U {r}; € Cs} is an M(k — 1)-net in Cs. Observe that the set of
pY, together with the union over s of the {pY(s)};, has the properties listed above.

(Since the points p} are M—far from each y;, they are (M — E)-far from 7y (x;), and so
we rename M — E to M to see that the first property on the list holds for 7y (z;), not just y;.
With the renamed constant, we now have an (M + E)k-net, and in particular a 10M k—net,
provided M > E/9. We assume this just to simplify computations later.)

Definition 2.2 (Walls in Hy(A)). Given U € U and {p{'} as above, for each i we define a
partition Hy(A) = WlU LJ W’f of Hy(A) as follows. Choose a component T}; of Ty — {p¥}
and let Wﬁj = B (T};) N Hp(A), and set WZU = Hy(A) — (Wf]) Let £V = (WZU,M_)/’ZU)

Observe that the (finite) set of walls in Hy(A) specified in Definition depends on our
choice of M (since that determines /) and on our choice of the p{ (which is also constrained
by the choice of M and the number of points z;). Let Y be the CAT(0) cube complex dual
to the wallspace just defined. Since the set of walls is finite, there is exactly one O—cube in Y
for each coherent orientation of all the walls (recall that a coherent orientation is a choice of
halfspace for each wall such that, for any two walls, the chosen halfspaces have nonempty
intersection).
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The cubes in Y are closely related to the standard product regions in X. Specifically, each
cube corresponds to a collection of pairwise-crossing walls. Each wall was determined by some
U € U, namely the U for which the halfspaces in the wall are preimages of complementary
components of some plU . We think of U as labeling the wall. Now, each edge of ) is labeled
by the same U that labels its dual wall. Below, we will map ) to X in such a way that an
edge e labeled U has the property that its endpoints are sent to points in X that project
uniformly close on CV to pg whenever U = V or UhV. In this sense, we will be mapping
cubes to standard product regions.

2.2. Lemmas supporting consistency of certain tuples. The map )} — Hy(A) will be
constructed roughly as follows. For each 0—cube p € ), we will construct a tuple (by) € [ [, CV.
In Lemma [2.7] we will verify that this tuple is consistent, and this will require the following
technical lemmas, which are essentially just applications of consistency (Axiom and
bounded geodesic image (Lemma.

The content of the lemmas is the following. Given distinct, non-orthogonal U e Y,V € &,
there are three possibilities: we can have UhV,U = V, or V = U. In the first two cases, the
coarse point pg lies close to Ty in CV. In the second case, for any z € Ty far from pg, the
coarse point p¥ () lies close to Ty .

Lemma 2.3 (p{ close to Ty, transverse case). For all M > 10E, the following holds. Let
Ueld and V e &. IfUNV then pg is E—close to some my (x;), and hence 2E—close to Ty .

Proof. Since U € U, we have diamcy (my(A)) = 100Mk > 100M > 103E. Hence we can
choose z; € A so that dy (s, py;) > E. Consistency yields dy (z;, p}) < E. Since 7y (z;) has
diameter < E and contains a point of Ty, we have dy (Ty, pg) < 2F. O

Lemma 2.4 (p¥ close to Ty, nested case). For any M > 10E, the following holds. Let
Uel,Ve®, withU V. Then dy(p¥,Tyv) < 100EC.

Proof. Suppose that dv(pg,T v) > 100EC. Then, since Ty C-—coarsely coincides with
hulley (A), and the latter is 5 E—quasiconvex, we have that pg lies at distance greater than
E from any geodesic joining points in my (A). Hence, by consistency and bounded geodesic
image, any such geodesic projects to a geodesic in CU of diameter at most E, i.e., 7y (A) has
diameter bounded by 10E. This contradicts U € U, provided M > 10F. U

Lemma 2.5 (p{(z) close to Ty). For any M > 10EC the following holds. Consider U € U
and any V € & with V. & U. Then for each x € Ty — Ny(pl;) there exists x; € A with
dv (% (x),z;) < 2E (in particular, p§(z) is 10E—close to Ty ).

Proof. There exists a leaf of Ty, contained in 7y (z;) for some x; € A, in the same connected
component of Ty — Ny, /Q(pg) as x. Geodesics from z to 7y (z;) thus stay E-far from p};, so
that the desired conclusion follows from bounded geodesic image (and consistency, which
says diamy (mv (z;) U p¥(7p(z5))) < E). O
2.3. The proof of Theorem We now prove Theorem Some auxiliary lemmas

appear immediately below the proof, organized according to which part of the proof they
support.

Proof of Theorem[2.1. We break the proof into several parts.

Definition of p4: We first define p4: Y — &', noting that it suffices to define p4 on the
0-skeleton of Y. Let p € Y@ we view p as a coherent orientation of the walls [,lU provided
by Definition

For U € U, V € & and each p! (which we recall gives a pair {Wﬁj,W)zj }), we can

consider W;(U) € {WlU ,Wf] } which is the halfspace given by the orientation p, namely
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p(WZ-(U), WZ(U)) We let Sy ;v (p) € Ty be the convex hull in Ty of By (W;(U)), where, as
above, By is the composition of projection to CV and the closest point projection to Ty, .

By the definition of a coherent orientation, for any U,4,U’ 4, we have By (W;(U)) n
By (Wi (U")) # &, whence Sy v (p) N Sy irv(p) # &. The Helly property for trees thus
ensures that (), Suiv(p) # & for each V € &, and we let by = by (p) =y, Svsi,v (D).
Lemma below, proves that diam(by ) are uniformly bounded. Lemma below, shows
the (by) are n—consistent, where n = n(M, k, X).

We can now define p4(p) € X to be a realization point associated to (byr) via Theorem
Specifically, there exists & = £(n, E) so that for all U € &, we have dy(my(pa(p)),by) < &.

The image of p4 coarsely coincides with Hy(A): Let = € Hy(A).

For each wall in Hy(A) (the walls are those from Definition [2.2)), choose the halfspace
containing x; there is exactly one such halfspace since a wall is, by construction, a partition
of Hy(A) into two halfspaces. Now, any two of the chosen halfspaces contain z, so by
Definition [1.29] this orientation is coherent, and it is a canonical orientation simply because
there are only finitely many walls.

So, this orientation of all walls determines a O—cube p € ), by Definition Now, by
construction, the tuple (by (p)) has the property that, for all U € U, we have Sy (z) € by (p).
Since dy(my(x), fu(z)) < 6, because x € Hy(A), we see that dy(z,by(p)) < 6. Now,
du(bu(p),pa(p)) <&, so dy(z,pa(p)) <E+60forallUeld. If U ¢ U, then dy(x,pa(p)) <
6 + 100Mk. So, by the uniqueness axiom for HHS (Definition 1.1.(9) in [BHS19]), or simply
by Theorem we have dx(x,pa(p)) < Cf, where Cf = C{(M,k,X,0). Hence Hy(A) lies
in a uniform neighborhood of imp 4.

On the other hand, if p € ), then 7y (pa(p)) lies uniformly close (in terms of &) to
hull(7(A)) for all U € &. The definition of hierarchical quasiconvexity, together with the
fact that Hy(A) is hierarchically quasiconvex, ensures that p4(p) lies uniformly close to
Hy(A), i.e., impy4 lies in a uniform neighborhood of Hy(A).

After enlarging C7 if necessary, we thus see that there exists C] = C{(M,k, X,0) such
that Hyp(A) and imp 4 lie at Hausdorff distance at most Cj.

Distance estimates: For p € ), we say p is a separator for p if p! separates By (pa(p))
from by (p). We call U the support of the separator. In Lemma we produce a constant
T=T(M,k,n,& &), so that for each p € ) there are at most 7" separators for p.

We first relate the number of walls separating a pair of points in ) to the number of points
separating their images under p 4.

Specifically, let p,q € Y. By the definition of distance in a CAT(0) cube complex, dy(p, q)
is the number of walls separating p and ¢. Let E}/ be a wall separating p from ¢. Then,
by the construction of the tuples by (p) ad by (q), the subtrees by (p) and by (q) of Ty lie
on opposite sides of the wall in T}, determined by p). Conversely, if by (p) and by (q) are
separated by the partition of 77, determined by some pl‘-/, then EZV corresponds to a wall in
Y separating p from gq.

Hence dy(p, g) is the sum of the numbers of p! separating by (p) from by (g), as V varies.
Now, £} separates by (p) from by (q) but fails to separate Sy (pa(p)) from By (pa(q)) only if
LY is a separator for p or for ¢. Similarly, LY separates By (pa(p)) from By (pa(q)) but fails
to separate by (p), by (q) only if LY is a separator for p or for g.

Lemma [2.10| shows that p has at most T separators and ¢ has at most T' separators. Let
Q(p,q) be the sum over all V of the number of p) separating By (pa(p)) from By (pa(q)).
The preceding discussion shows that |dy(p,q) — Q(p, q)| < 2T.

Observe that: if, for some V, there exist distinct p} p},/ separating By (pa(p)) from
Bv(pa(q)), then V contributes to the distance formula sum between p4(¢q) and pa(p), at
some fixed threshold L chosen in terms of £ and M. Moreover, V' also contributes to the
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distance formula sum in the case where Sy (pa(p)) and By (pa(q)) are both M /2-close to
7y (A) and there exists at least one p! separating By (pa(p)) from By (pa(q)).
Applying Lemma [2.§ and Lemma [2.9] we have

dx(pa(p)pa(@) = Y {du(pa(p),pala)}, = Qp,q) — 100ECHN,
UeS

where N is the constant from Lemma Hence there exists C7 = C{(M, X, S, k) so that

dx(pa(p), () = dy(p,q)/C! — C! for p.g e V.
pa is coarsely Lipschitz: Crossing one hyperplane of ) corresponds to changing only
one coordinate (by) as above by a bounded amount, so there exists C{' = C{"(M, k, X) so
that pa is (C7', C7")—coarsely Lipschitz.
Dimension: The assertion about dimension follows from Lemma 2.12] and the well-known
fact that any finite set of n pairwise crossing hyperplanes in a CAT(0) cube complex intersect
in the barycenter of some n—cube.

Convex hull: For each z; € A, let y; be the orientation of the walls in Hy(A) obtained by

choosing, for each wall (T/I_/f] , Wf] ), the halfspace containing x;. This orientation is coherent
by definition, so it determines a O-cube of Y, which we also denote y;. By construction,
each wall separates two elements of A, so every hyperplane of ) separates two of the chosen
O—cubes y;,y;. Thus no intersection of combinatorial halfspaces properly contained in Y
contains all of the y;, so Y is the convex hull in Y of the set of y;.

Conclusion: Lemma provides C7” so that py4 is C7"—quasimedian, so the proof is
complete once we take C; = max{C7,CY,C{",C}"}. O

2.3.1. Lemmas supporting realization. The two lemmas below are used to construct a point
in X via realization, given the tuple (by(p)) = (by) associated to a O—cube p € Y (which we
fix for the purposes of the next two lemmas). The first lemma shows that by is a uniformly
bounded set in each CV, and the second verifies that the tuple (by) is n—consistent (and
bounds 7).

The realization theorem (Theorem then provides a point p4(p) € X that projects
&—close to by in each CV, where & just depends on E and 5. This is how we defined the map
pa:Y — X in the proof of Theorem

Lemma 2.6. There exists 7 = 7(M, k) > 0 (independent of V') so that diam(by (p)) < 7 for
allpe Y.

Proof. Fix p € Y and write by = by (p).

If Ve & —U, then diam(by) < diam(7Ty) < 100M. Hence suppose that V € U.

There exists 7 = 7(M, k) = 50Mk(k — 2) such that the following holds. Suppose that
z,y € X satisfy dy(z,y) > 7. Then there exists a € {p}'}; U {r} by, ayev so that a is
10M—far from Py (z), By (y) and from all points of Ty of valence larger than 2, and separates
By (z) from By (y). Indeed, there are at most k — 2 points of valence larger than 2, since
each leaf of Ty belongs to my(A) and |A| = k. So the geodesic from Sy (x) to By (y) has
a sub-segment of length at least 50M k avoiding the points of valence more than 2. This
subsegment contains a point « that necessarily separates Sy (x) from Sy (y) and either lies
in {p/} or {r¥}eye.v}, because such points form a 10Mk-net. The restriction to U is
justified by the fact that for W/ ©— W = U, we have that py, coarsely coincides with pVVV, SO
we can assume each r‘V/V as above coincides with r‘l//v " for some W' € U7 nested in V.

Choose any z,y € X projecting M—close to by, and suppose by contradiction that
dv(By(x),Bv(y)) > 7. Let a be as above.

Ifa= py, then we clearly have a contradiction since by is contained in one of the connected
components of Ty — {p/'}. If a = r“/}/, then we write A U {z,y} = A’ 1 A", where we group
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together all elements of A U {x,y} corresponding to a point of Ty in a given connected
component of Ty — {T“V/V }. By bounded geodesic image and the fact that T‘V/V is close to
pYV (Lemma [2.4), mw (A’) and 7y (A”) are uniformly bounded, so that Ty consists of two
uniformly bounded sets, respectively containing my (A’) and m (A”), that are joined by a
segment in Ty which is a geodesic v of CW containing no vertex of valence more than 2.
Moreover, this geodesic has Sy (x), S (y) uniformly close to its endpoints.

Since W € Uy, there exists some pr in Ty . Let us show that Sy; v (p) is far from one of
By (z) or By (y), which is a contradiction. If there is a p}” in Tjy, then since p}” was chosen
far from the leaves of Ty, we have that p!' € v, lying at distance M /2 from By (x) and from
Bw (y)-

Let T be one of the two connected components of Ty — {p}" }. Then $3;;/ (T) cannot contain
points 2/, ¢’ with By ('), By (¢/) far from 7*“7 and in different components of T} — {r‘I/,V }, which
is the required property of Sy ;v (p). Indeed, otherwise bounded geodesic image would imply
that z', 5 project respectively close to m (A’) and my (A”), thus on opposite sides of p}¥. [

Lemma 2.7. There exists n = n(M,k,X) such that the following holds. Let p€ Y. Then
the tuple (by (p)) is n—consistent.

Proof. Let UAV. If U,V € G —U, we are done because the corresponding coordinates by, by
(100Mk + E)—coarsely coincide with those of, say, x;. If U e Y and V € & — U, then any
point in Ty, whence also any point in by (p), is (100Mk + C + 2E)—close to p¥ by Lemma
and the definition of U, so we are done.

Now suppose that U,V € U. Let cy be a point in Ty which is 10E—close to pg, and
define ¢y similarly (cy and ¢y are provided by Lemma . If both by and by are 100M k—
far from pg and pg respectively, then there are Sw; v (p), Sw i v (p) containing by, by but
far from cy,cy. There cannot be ¢ € X with By(q) € Swiuv(p),Bv(q) € Swr i v(p) by
consistency, implying that the intersection of the halfspaces chosen from £ZW , /JZ.V,V/ is empty.
This contradicts the coherence of the orientation defining p.

M or &

FIGURE 3. Proof of Lemma Sw.i,u(p), Swr i v(p) are shown as oriented
halfspaces in the trees Ty, Ty .

Let U V. If Ve & —U, then by Lemma we have that p‘(f is 100EC—close to by .
Hence, we can assume V e Y. If U € & — U, similarly, the corresponding coordinates by, by
coarsely coincide with those of a point in Hyg(A) that projects close to by in CV.

Finally, suppose U,V € U. The argument is very similar to the final argument in the
transverse case above. Let ¢y = r‘lf (which is 10 E—close to pg by Lemma ; and, as given by
Lemma we let ¢y be a point in Ty which is 100 EC—close to pg(bv). If both by and by are
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100M k—far from the corresponding p, then there exist Sy v (p), Swr,i7,v(p) containing by, by
but far from cy, cy. By the bounded geodesic image axiom, pg(SW/7Z~/,V (p)) has uniformly
bounded diameter. Hence, there cannot be ¢ € X with By (q) € Sw,i,u(p), Bv(q) € Swr.ir.v(p)
by consistency, implying that the intersection of the halfspaces chosen from £}, EZ,V/ is empty.

This contradicts the coherence of the orientation defining p. 0

2.3.2. Lemmas supporting the distance estimate. The next three lemmas support the distance
estimate in the proof of Theorem

The first lemma bounds projection distances from below in terms of the walls; it was used
above to give a lower bound on dx(pa(p),pa(q)) in terms of the distance in the cube complex
Y between p and q.

Lemma 2.8. Let U € U. For each x,y € Hp(A), we have dy(z,y) + 50ECH > |{i : p{ €
[Bu (), Bu(y)]H. Moreover, if my(z), muy(y) are both C'—close to iy (A), then dy(x,y) = |{i:

€ [Bu (=), Bu(y)1}-

Proof. Let z,y € Hg(A). Recall that diam(my(z) U By (z)) < 10(E + C + 6), so dy(z,y) =
dy(Bu(x), Bu(y)) —20(E + C +6). Hence dy(x,y) = dr, (Bu(x), Bu(y)) —40ECH. Therefore,
du(z,y) = |{i : p¥ € [Bu(x), Bu(v)]}| — 40ECH — 1, as required. The “moreover” statement
follows in a similar way using the fact that the p’& are M—far from leaves of Ty . O

The next lemma is a simple application of Ramsey theory and the consistency property of
an HHS. This lemma is used in tandem with the one above. It is also used below to control
the number of separators associated to p € ). Recall that pZU is said to be a separator for p if
pY separates by (p) from By (pa) in the tree Ty.

Lemma 2.9. There exists N = N(X) = 0 so that for each x € Hy(A) there are at most N
elements U € U so that dy(By(z), 7y (A)) > 100E.

Proof. One axiom of an HHS is that there is a bound, ¢, on the cardinality of subsets of
& whose elements are pairwise E—comparable. By [BHS19, Lemma 2.1], ¢ also bounds the
maximum cardinality of a set of pairwise orthogonal elements. Given = € Hy(A), consider
the set of U € & such that dy(x, A) > 100E. Ramsey’s theorem provides N (the Ramsey
number R(c,c)) for which either there are at most N such U, or there exist Uy, Uz with
UihUs and dy, (x, A) > 100E for [ = 1,2. By Lemma pg; is 10E—close to an element of
7, (A) and thus 90 E—far from 7y, (). The same holds with U; and Us reversed, contradicting
consistency. ]

The next lemma bounds the number of separators in terms of M, k, and the constants
&, 7. Since the proof is somewhat technical, we first give a heuristic discussion. We first
show that if p € ) has, say, T" separators, then there are at least 7'M /¢ elements U € U
that support separators (this is achieved by bounding the maximal number of separators
supported on any given U € U). Lemma shows that, for “most” such U, the point p4(p)
projects in Ty close to some 7y (). So, if T” is too large, there is a specific pair x;, x5, such
that, in many U as above, p4(p) projects close to my7(z;) and far from xj. Lemma then
provides Uy, Uy with these properties, both nested into some V € &, such that pgl, p2 are
very far in CV (in terms of M, &, 7). Applications of bounded geodesic image, consistency,
and coherence of the orientation of walls corresponding to the O—cube p allow us to conclude
that dy (my (pa(p)),by) > &, which contradicts how the point p 4(p) was chosen, namely as a
realization point with constant £. For the last part of the argument, the reader will find it
helpful to consult Figure [4]

Lemma 2.10. There exists T = T(M,k,§,7,X,6) such that for any p € Y there exist at
most T separators for p.
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Proof. We fix p € ), after which, we can simplify our notation by writing by to mean by (p).
Recall from Lemma [2.7| that (by ) is an n—consistent tuple, where n depends on M, k, and the
global HHS constants, but is independent of p. Recall that the realization point p4(p) € X
provided by Theorem is characterized by the property that dy (by,pa(p)) < £ for all
V € &, where £ depends on 71 and the global HHS constants, but is independent of p.

First, for each V' € U, we bound the number of separators p}/. Since each pZV separates by
from By (pa(p)), and the set of p! in Ty is M-separated by construction, there are at most
&/M separators with support V. Let Sep be the set of V' € U that support a separator for p.

By the previous paragraph, it remains to bound the cardinality |Sep| of Sep. Now,
Lemma [2.9] provides a uniform constant N so that there are at most N elements of U where
pa(p) projects 100 E—far from every element of A.

Suppose that [Sep| > N + Nok(k — 1), where Ny = No(M, &, X, S) will be chosen momen-
tarily. (If the preceding inequality does not hold, then we have bounded |Sep| independently
of p, as required.) This lower bound implies that there are at least Nok(k — 1) elements
V e Sep where By (pa(p)) is 100E—close to 7y (A). Hence, there exists z; € A so that there
are at least No(k — 1) elements V' € Sep where By (pa(p)) is 100E—close to 7y (x;).

Now, for each such V, we have a separator p) separating By (p(p)) from by, and necessarily
lying M—far from 7y (z;), because of how our net in Ty, was chosen. Hence by separates
myv (x;) from some 7y (z¢). Hence there is a pair xj, z, and at least Ny elements U € U such
that:

e Bu(pa(p)) is 100E—close to my(z;);
e there exists a separator p{ for p, with support U, separating By (x;) from By (z).

Now, let L = 1000(M + £ + 7). Suppose we chose Ny = Ny(L), the constant from
Lemma So, if |Sep| > Nok(k — 1) + N, then Lemma [1.6| provides some V € & and two
elements Uy, Us € Sep with the above two listed properties, such that U; £ V, and Us &V,
and dv(rgl,rgQ) > 10E +¢&.

For t = 1,2, there exists p
7y, (x¢), so dy, (xj, ) > M.

By bounded geodesic image, the geodesic in Ty from Sy (z;) to By (zx) must pass E—close

to Tgl and rg? (So V' is necessarily in U.)

Ut
it

separating Sy, (pa(p)) (which is 100E—close to 7y, (x;)) from

For concreteness, suppose Uy, Uy are labeled so that N E(pgl) separates my (z;) from ng
and 7y ().

Bounded geodesic image and consistency imply that Sy (pa(p)) lies E—close to the connected
component of Ty — N E(rgt) containing my (x;) for t = 1,2. Indeed, this holds because
Bu,(pa(p)) is (M — 100E)-far in Ty, from my, (z¢).

We now analyze two cases, according to how close by lies to the component II of Ty —
NE(pY?) containing v (2).

Recall that by is the intersection of various subtrees Sy s v, each of which coarsely coincides
with the projection to CV of a halfspace belonging to the coherent orientation p.

The first case is where every such subtree lies F—close to II. In this case, the intersection of
the subtrees — which is by definition by — lies 10E—close to II. Hence, by Lemma by is
contained in the (10E + 7)-neighborhood of TI. This implies that dy (by, pgl) > L—(10E+7).
Since we saw that Sy (pa(p)) is E—close to the component of Ty —NE(rgl) containing 7y (x;),
we have dy (pa(p),by) > L — (10E + 7) — E. By our choice of L, this quantity exceeds &,
which contradicts the definition of p4(p).

So we must be in the second case, where some halfspace H belonging to the coherent
orientation p projects to a tree S in Ty — necessarily containing by — that is F—far from II.
Hence, S and 7y (z;) lie in the same component of Ty — Ng (p‘[i?). So, by the consistency
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and bounded geodesic image axioms, 7y, (H) is contained in the E-neighborhood in Ty, of
ZU; is M—far from 7y, (z;) and separates Sy, (pa(p)) (which is 100E—close
to my, (z5)) from by,, we see that pgz separates 7, (H) from by,. But the coherence of the
orientation p and the definition of by, requires by, to be contained in 7y, (H), which gives a

contradiction.

7y, (x5). But since p

FIGURE 4. The proof of Lemma [2.10

We conclude that |Sep| < No(L)k(k — 1) + N, which is independent of p. Hence there are
at most &(No(L)k(k — 1) + N)/M separators for p, which is again independent of p because
the realization constant ¢ depends on p only to the extent that it depends on the consistency
constant n for (by(p)), which was shown in Lemma [2.7| to be independent of p. O

2.3.3. Walls cross if and only if orthogonal. We now check that the walls E?, C;/ cross if and
only if ULV. One direction, done in the first lemma, is essentially just the partial realization
axiom for HHS. The other direction, which is the second lemma, relies on our specific choice
of walls.

Lemma 2.11. Suppose U,V €U and ULV, and fix any p € hulleyy(A), g € hulley (A). Then
there exists x € Hy(A) that coarsely projects to p in CU and to q in CV.

Proof. By partial realization (Definition 1.1.(8) in [BHSI9]), there exists 2’ € X projecting
E-—close to p in CU and ¢q in CV. Up to replacing E with a uniform constant depending on 6,
the projection g, (4)(2') to Hg(A) has the same property, as required. d

Lemma 2.12 (Cross iff orthogonal). The walls LY and E}/ cross if and only if ULV.

Proof. If ULV, then LY crosses E}/ (recall that this means that each of the four possible
intersections of halfspaces, one associated to each wall, is nonempty) by Lemma

Conversely, suppose U £V. We claim ,CiU and E}/ do not cross. First, suppose UhV. Then,
by Lemma pg and pg are uniformly close to the image of A in each of the corresponding
trees Ty, Ty and hence far from p}/, pgj . Thus, we can choose a halfspace from E? (resp. [,;/)
so that all its points project far from p‘(j (resp. pg) The chosen halfspaces are disjoint by
consistency. ‘

Second, suppose U & V. By construction, p{/ is M—far from pg, so we can choose a
halfspace H associated to E}/ such that 7y (H) contains a point my(z¢) and is disjoint
from N E(pg) Consistency and bounded geodesic image imply that 7y (H) is E—close to
mu(x¢) and hence M—far from piU. Thus we can choose a halfspace H' for L’iU such that
7y (H) nmy(H') = &, s0 Hn H = &, and hence £V and E}/ do not cross. O
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2.3.4. The map pa is quasimedian. The next lemma is used to show that p,4 is quasimedian,
i.e., that it takes medians in the cube complex ) (whose 1-skeleton is necessarily a median
graph) close to coarse medians in X.

Lemma 2.13. There exists C7" = C{"(X,k, M) so that p4 is C7"—quasimedian.

Proof. Let ji: X3 — X be the coarse median map. Recall from [BHS19] that p is characterized
by the following property: for all a,b,c€ X and all U € &, 7y (u(a, b, ¢)) uniformly coarsely
coincides with a coarse median point in CU for ny(a), 7y (), my(c).

Let z,y,z € Y, and let m be their median. By Remark[1.32] m corresponds to the following
orientation of the walls of ): for each wall W, m(W) is the halfspace which contains at least
two of z,y,z. In other words, for each U € U and each pZU € Ty, the orientation that m
assigns to {W,(U), WZ(U)} is the halfspace W;(U) assigned by at least two of the orientations
T

By definition, for any V € &, we have by (m) = ﬂUeL{,i Sui,v(m), where, for each U, 1, we
have that Sy ;v (m) coincides with at least two of Sy ;v (), Sviv (), Sviv(2).

In particular, for each V' ¢ U, we have that by (m) coarsely coincides with each of
Bv (), Bv (y), Bv (2)-

Also, for each U € U and each pg, we have that by7(m) lies in the same pZUfhalfspace of Ty
as at least two of the points by (), by (y), by (2). Hence byr(m) lies in the same p!—halfspace
of Ty as my, where my is the median of by (z), by (y), by (2) in the tree Tyy. We have shown
that no p{ separates by (m) from my, for any U € U.

Our (1, C)—quasi-isometrically embedded choice of Ty ensures that my is, up to uniformly
bounded error, a coarse median point for the images in CU of pa(z),pa(y),pa(z). In other
words, u(pa(z),pa(y),pa(z)) is a realization point for (my)yes. As shown earlier in the
proof of Theorem the image of p4 coarsely coincides with Hy(A), which is hierarchically
quasiconvex by Proposition [1.18 Hence p(pa(z),pa(y),pa(z)) uniformly coarsely coincides
with p4(q) for some g € Y.

Hence there exists ¢ € ) such that

dx(pa(m), p(pa(@),pa(y), pa(2))) = dx(pa(m), palq)) = dy(m,q)

and establishes that this distance can be bounded in terms of the number of walls separating
m, q. Up to additive error, this is just the sum over U € U of the number of pZU separating
by (m) from my, which we established above was 0, as required. O

At this point, we have proved all of the lemmas supporting Theorem

2.4. Application to coarse median rank and hyperbolicity. In [BHS19, Theorem 7.3],
we showed that any HHS is a coarse median space (in the sense of [Bow13|) of rank bounded
by the complexity. In the asymphoric case, the following strengthens that result.

The following corollary bounds the median space rank of any asymptotic cone of X’; see

Proposition [I.35]

Corollary 2.14. Suppose that X is asymphoric. Then any CAT(0) cube complex Y from
Theorem [2.1] satisfies dim Y < v, where v is the rank of X .

Corollary 2.15. If X is an asymphoric HHS of rank v, then X is coarse median of rank v.

Proof of Corollary and Corollary[2.15 Choose M as in the proof of Theorem since
M > E, in particular M exceeds the asymphoricity constant. For any finite A < X, let ) be
the cube complex and Y — Hy(A) be the Cj—quasimedian (C}, C)-quasi-isometry provided
by Theorem By Lemma dim Y is equal to the maximal cardinality of sets of
pairwise-orthogonal elements of /. But since elements of I/ have associated hyperbolic spaces
of diameter > M, such subsets have cardinality bounded by v. This proves Corollary
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Moreover, YO — Hy(A) is a quasimedian map from a finite median algebra satisfying the
condition (C2) from the definition of a coarse median space in [Bow13], Section 8]. The rank
of this median algebra is, by definition, dim Y < v. Hence X is coarse median of rank v. [

We can also use the proof of Corollary to characterize hyperbolic HHS. We say that a

quasi-geodesic metric space X is hyperbolic if there exist D and § so that
e any pair of points of X is joined by a (D, D)—quasi-geodesic, and
e (D, D)—quasi-geodesic triangles are J—thin.

For us, the distinction between hyperbolic geodesic spaces and hyperbolic quasi-geodesic
spaces does not matter. Indeed, any quasi-geodesic metric space X is quasi-isometric to
a geodesic metric space Y (in fact, a graph). If, in addition, X is hyperbolic then Y is
hyperbolic (in the usual sense). There is a number of ways to see this, one of which is the
“guessing geodesics” criterion for hyperbolicity from [MS13], Section 3.13][Bow14], Proposition
3.1]. It thus follows from [Bowl13, Theorem 2.1] that a coarse median quasigeodesic space is
hyperbolic if and only if it has rank at most 1.

We thus get a characterization of HHSs which are hyperbolic, which we use below in the
proof of Lemma

Corollary 2.16. Let (X,8) be an HHS. Then the following are equivalent:

o X is coarse median of rank < 1, and is thus hyperbolic;
e (Bounded orthogonality) There exists ¢ € R so that min{diam(CU),diam(CV)} < ¢
for allU,V € & satisfying ULV .

Proof. The fact that hyperbolicity implies bounded orthogonality easily follows from the
construction of standard product regions. The reverse implication follows from Corollary
with v = 1, and the aforementioned [Bow13, Theorem 2.1]. O

Remark 2.17. One can prove that bounded orthogonality implies hyperbolicity using the
guessing geodesics criterion instead of the coarse median rank. More specifically, triangles of
hierarchy paths are thin because any such triangle is contained in the hull of the vertices,
which is quasi-isometric to a 1-dimensional CAT(0) cube complex, i.e., a tree.

3. QUASIFLATS AND ASYMPTOTIC CONES

Fix an asymphoric hierarchically hyperbolic space (X,&) of rank v and let X be an
asymptotic cone of X. According to Proposition the coarse median map on X limits to
a median map on X making it into a topological median space of rank at most v. By the
same proposition, after changing the metric on X within its bilipschitz equivalence class, we
can assume that X', with its given median, is a median metric space.

With this setup in mind, we now outline this section. First, the goal is to show that given
a quasiflat in X', there are arbitrarily large balls contained in a uniform neighborhood of the
hull of boundedly many points; this is made precise in Corollary and this is what will
allow us to apply Huang’s quasiflat theorem for CAT(0) cube complexes [Hual4b] to describe
quasiflats in HHSs. Subsection [3.1] contains preliminary lemmas that relate ultralimits of
objects in & defined in terms of the HHS structure to objects in X defined in terms of the
median structure.

The content of Lemma [3.3] and Proposition [3.4] is best explained in reversed order: In
Proposition [3.4] we argue that there are balls of large radius R in quasiflats in X" that stay
eR—close to hulls of finitely many points, for a fixed small ¢ > 0. Taking ultralimits, this
gives a bilipschitz flat in an asymptotic cone that stays within bounded distance of a certain
median convex subspace, and Lemma [3.3] says that this means that, in fact, the flat is
contained in the convex subspace. This corresponds to an improvement from “eR” to “o(R)”.
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We then need to further improve this to “O(1)”, which is performed in Proposition by
shrinking the previously found balls. Further discussion of the various statements and the
corresponding proofs can be found below.

3.1. Ultralimits of hulls and some median preliminaries. Given m,m’ in a median
space M, we let hull(m, m’) denote the set of z € M for which the median of m,m/, z is z.
(Note that hull(m,m’) = [m.m'], where [m.m'] is the median interval, defined just as before.
The term “median interval” is more standard, but we think of median intervals as convex
hulls of pairs of points, which explains our choice of notation.)

Fix a hierarchically quasiconvex subspace A € X and points p,q € A, x € X. Note that the
coarse median of (p, g, z) lies uniformly close to A (see e.g., [BHS19, Section 7] or [RSTIS,
Section 5]) — this easily yields the first assertion of the following lemma, which we use freely
throughout this section.

Lemma 3.1. For any k, the ultralimit of any sequence of k—hierarchically quasiconver
subspaces is median convex. Moreover, if (Ay) is a sequence of k—hierarchically quasiconvex
subspaces and A < X is their ultralimit, then the maps ga, : X — A, limit to the median
gate map g: X — A.

Proof. We prove the assertion about gates, as the other facts are already established, as
noted above. Fix x € X, represented by a sequence (z,) in X. Fix a € A, represented by a
sequence (a,). For each n, let b, = ga, (z,), and let b be represented by (by,).

By the definition of the gate and the coarse median, the coarse median of ay, by, z, is
uniformly close to b,, so the median of a,b,x is b. Hence the median interval between
x and any point in A contains b; it follows immediately from the definition of gate that
b=g(x). O

We will also tacitly use the next lemma throughout this section. It states that the (median)
convex hull of a pair of points in an asymptotic cone of X arises as a limit of #—hulls of pairs
of points in X.

Lemma 3.2. Let x,y € X. Then hull({z,y}) = lim, Ho({Zn, yn})-

Proof. If z, € Hyp(xp,yn) then m(xy,, yn, 2,) coarsely coincides with z,, which yields

lim Hy(zy, yn) < hull(z, y).

To prove the other containment, suppose 2’ € hull(x, y) (and whence, by definition of the
hull, that 2’ = m(x,y, 2')), and let (2],) be a representative for z’. Let z, = m(xy, yn, 2,,) €
Hy(zpn,yn) and note that this implies z = m(x,y, 2’), where z is the point represented by
(z1). Since X is a median space, the median of a triple is unique and thus 2’ = z; whence
z' € limy, Hy(Zpn, yn). O

3.2. Bilipschitz flats in asymptotic cones. The next lemma relies on results of Bowditch
about cubulated subsets of median metric spaces [Bow18b]. The import of the lemma is the
following. Consider a top-rank bilipschitz flat F' in X and a median-convex subspace H
arising as an ultralimit of hierarchically quasiconvex subspaces of X. If F' lies in a uniform
neighborhood of H, then it must actually be contained in H. This will be applied in the
proof of Proposition in the case where H is a limit of 6—hulls of finite sets in X of bounded
cardinality.

Roughly, the idea of proof is as follows. If the bilipschitz flat F was median convex, we
would have gate maps on both F and H, and F could only stay close to H around gg(H),
which then needs to be the whole of F. Since F is top-dimensional, and gg(H) is one of the
factors of a product subspace of X (in view of Lemma , the other factor has to be trivial.
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On the other hand, the other factor being trivial is the same as F being contained in H.
Now, F need not be median convex, and to deal with this we rely on results from [Bow18D]
that, roughly, give us a decomposition of (large portions of) the quasiflat into “blocks,” each
of which is median convex, and we then consider chains of such blocks.

Lemma 3.3 (Close to convex implies contained in convex). Let X be an asymptotic cone of
X and let F € X be a bilipschitz v—flat. Let H be an ultralimit of uniformly hierarchically
quasiconvex subsets of X and suppose that F is contained in a neighborhood of H of finite
radius. Then F < H.

Proof. Suppose by contradiction that there exists some pe F — H.

By [Bow18bl Proposition 1.2], F' is cubulated in the sense of [Bowl18b], which means that
there are arbitrarily large balls in F' each of which is contained in a finite union of blocks. By
[Bow18bl, Proposition 3.3], this implies that there are arbitrarily large balls B in F with the
following property: B is contained in a subset of F which is a union of blocks whose pairwise
intersections are each either empty or a common face. We let F/ be such a union of blocks
which contains a ball around p € F of radius » much larger than sup .y d(z, H).

After possibly subdividing the cubulation of F’, there is a v—block By of F’ containing
p and disjoint from H. After subdividing, we can assume that each side of By has length
bounded by some ¢ much smaller than r.

Being a block, By is the median interval between a pair of opposite corners of By. So, by
Lemma 3.2 By is the ultralimit Hy of a sequence (Hg(cy,dp)) of §-hulls of pairs of points.

As noted in Definition [1.36] gm,(H) is a median convex subspace. So, gu,(H) is a
sub-block B’ of By.

On the other hand, by hypothesis, H is the limit of uniformly hierarchically quasiconvex
subspaces H, of X. By Lemma 0m,(H) is the limit of the subspaces gg,(c,.d,)(Hn)-
By Lemma , OH, (cn,dn) (Hn) is coarsely contained in a quasi-isometrically embedded
copy of 9, (cn,dn)(Hn) % In, where I, is a 6-hull. So, taking limits, we see that, if B’ has
dimension 4, then there is an (i + 1)-dimensional topologically embedded copy of [0, 1]**! in
X. This implies 7 < v.

For any codimension—1 face By of By not intersecting B’, there exists a block B} whose
intersection with By is Bs. So, By = By u Bj is a block by [Bow18bl, Lemma 3.2]. We claim
9B, (H) = gp,(H), which implies that B; is also disjoint from H.

To prove the claim, note that B’ = gp,(H) = gp,(95, (H)). (It is a general fact about
median metric spaces, following directly from the definition of a gate, that if A, C are
median-convex closed subspaces and A < C, then g4 = g4 © gc.)

Now, since By is a sub-block of the block By, and By intersects the closure of its complement
in By along a common codimension—1 face, and B is median-isomorphic to a finite product of
intervals with the ¢;—metric (by the definition of a block), gg,|p, is just the natural retraction.
So, this map is one-to-one on B’, and the claim follows.

Now proceed inductively until we find a block B,, that we cannot extend to a block Bj,41
using the procedure above, implying that we reached the boundary of F’. By induction,
9B,,(H) = gp,(H).

Hence gp,, (H) = B’, since we had B’ = gp,(H). Let ¢ € B, lie in the boundary of F’.
Then d y (g, B’) is at least d x (¢, p) — v, which exceeds sup,cp d(x, H). Hence there exists
h e H with d y(h,q) < dy(B’,h). This contradicts that gp,, (H) = B’. (Here we are using
the median metric d y, for which the notions of median gate and closest-point projection
coincide, by the definition of a median gate.) This is the required contradiction. O

3.3. Quasiflats and hulls. As mentioned above, we now argue that given a quasiflat in X
there are balls of large radius R that stay eR-close to hulls of finitely many points, for a fixed
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small € > 0. Once again we use [Bow18b, Proposition 1.2], which provides a subdivision of
(large portions) of the ultralimit of the quasiflat into blocks, and then use the fact that each
such block is the ultralimit of hulls of pairs of points.

Proposition 3.4. Let F: RY — X be a quasiflat. Then, there exists N (depending on F') so
that the following holds. For any ¢ > 0 and every Ry there exists a ball B = Br(0) € R” of
radius R > Ry and a set A € X with |A| < N so that F(B) € Ner(Hp(A)).

Proof. The proof has two parts.

Choosing N: Let X be a fized asymptotic cone of X with observation points a constant
sequence (F(0)). Let F': R — X be the corresponding ultralimit of F'. Let B be a ball of
radius 1 in R”. By [Bowl18bl, Proposition 1.2], F(B) is contained in a finite union of blocks.
Notice that each block is the convex hull of a pair of opposite corners. The cardinality of
the number of corners provides the desired N. By Lemma F(B) is contained in the
ultralimit of hulls of pairs of points. Thus, F'(B) is contained in the ultralimit of a sequence
of hulls of sets of at most /N points (the hull of a union contains the union of the hulls).

Remark on non-uniformity of N: We remark that, for the purposes of this proof, N
is allowed to depend on the particular quasiflat F', not just the quasi-isometry constants. We
are also allowing N to depend on our choice X of asymptotic cone. Bowditch’s proposition
(Proposition 1.2 in [Bow18b]) provides only that F(B) is contained in a finite union of blocks,
but does not bound the number; for our result we only need finiteness.

Conclusion: Now, suppose by contradiction that the conclusion of the proposition fails.
Then for each N, and in particular the N we found above, there is € > 0 so that, for all
balls B(0, R) of sufficiently large radius R, we have that F/(B(0, R)) cannot be contained in
Ner(Hg(A)) for any A € X with |A| < N. Let B, = B(0, R,), where (R,,) is the scaling
factor of the asymptotic cone X fixed above. Then B is the ultralimit of the B,,. The fact
that F'(B) is contained in the ultralimit of a sequence of hulls Hy(A4,,) of sets A4,, of at most N
points implies that, for w-a.e. n, F(B,) is contained in Mg, (Hp(A,)), a contradiction. [J

The following is the most technical proposition of this section, and it says that by shrinking
the balls provided by Proposition we obtain balls contained in a uniform neighborhood
of hulls of boundedly many points. The rough reason for this is the following. In view of
Lemma in any asymptotic cone the ultralimit of the balls is contained in the ultralimit
of the hulls; this means that the distance from the flat to the hulls grows more slowly than
any superlinear function. From this we deduce the distance is bounded. To make this work,
we must consider only asymptotic cones where the ultralimit of the balls is a bilipschitz flat,
so the observation point must be deep in the balls; in the proof we deal with this by using
balls of half the radius to ensure this holds in the relevant asymptotic cones.

Proposition 3.5. For every K, N there exist € > 0, Ry and L with the following property.
Let B be a ball of radius R > Ry in RY, and let F: B — X be a (K, K)-quasi-isometric
embedding. Let A < X have |A| < N, and suppose that F(B) < Nr(Hp(A)). Then
F(B'") € Np(Hyg(A)), where B is the sub-ball of B with the same center and radius R/2.

Proof. If not, there exist constants K, N and:
e balls B, = B,,(0) of radius R, in R”, and (K, K)-quasi-isometric embeddings
F,:B,—> X,
e subsets A, € X with |A4,,| < N and

1
lim —— sup d(Fy(e), Ho(An)) = 0,

m—x Ry, z€B

m

but lim,,—x SUDyeBp 10(0) d(Fy(x), Ho(Ap,)) = 0.
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We define ¢,,,(t) = SUD e Fyp (Bonine. o (0) d(x, Hg(A;n)). The ultrapower £ of the ¢, can be
regarded as a function £: “R, — “R,. Note that £ is non-decreasing.

Let 0 € “R be represented by R. For S, T € “R, we write S « T if lim,, S,,/T},, = 0,
and we write S < oo if lim,, S,, # o0, i.e., if § » 1 does not hold. We find a contradiction
(with the second bullet above) provided we show £(0/2) = limy, s, € (R /2) < 0.

The first part of the second bullet above implies that £(c) « 0. We first need:

Claim 3.6. For A € “Ry, if £(\) » 1, then for any a > 1 we have £(A — cb(N)) < £()).

Proof of Claim[3.6, Suppose not. Consider an asymptotic cone X of X with the observation
point in F'(By_ae(1)(0)) and scaling factor £(A—a£())). Then any point in the image of F' has
distance from H bounded above by £(\)/€(A—af())) < co. In fact, any point of the image of
F which gives a point of X lies in a ball of radius A —al(\) + (A —al(N)) < A—al(\) +tl(N\)
for some finite ¢, and hence in particular in the image of the ball of radius A.

By Lemma |3.3| we have F' € H. But, we chose an arbitrary observation point in
F(BA—aZ(A) (0)), and thus we get a contradiction by choosing a point that maximizes the

distance from Hy(A). O

We claim that there exists Ty € R, so that the following holds for w—a.e. m: if £,,(¢t) = Tp
for some t, and « = Ty, then £, (t — ol (t)) < € ()/2.

Remark 3.7. The proof follows from Claim [3.6] by an application of the principle from
nonstandard analysis called underspill, which says that if a predicate is true for all infinitesimal
positive non-standard reals, then it is also true for all sufficiently small standard reals.

Since we do not wish to require familiarity with non-standard analysis, rather than invoking
this principle we instead provide a self-contained argument in the language of ultrafilters.
Since our argument is a translation of the non-standard analysis argument, rather than
providing a convoluted heuristic explanation for how this argument works, we refer the
reader who would like to do more than check that the argument is formally correct to Tao’s
excellent blog post [Tao|, which explains all the relevant concepts. We note, though, that this
argument is the usual one which is used to prove that ultrapowers are saturated models and
also in proving the nonstandard formulation of continuity, see [Taod, Proposition 11], which is
a typical application of underspill.

For each n € N, let U, be the set of m > n for which there exists ¢, 1, ¥mn € Ry so that
U (tmpn) = n and o = 1 and £ (tmn — @mnlm (tmn)) > m(tmn)/2. Suppose that our
claim does not hold, i.e., suppose the desired Ty does not exist. Then, for arbitrarily large n,
we have that m € U,, for w—a.e. m. For each m, let n(m) be the maximal n for which m € U,
Our assumption, and the fact that m ¢ U,, for n > m, ensures that n(m) exists for w—a.e. m.

Let A € Ry be the ultralimit of ¢,, () and let o be that of ay,, (). Then £(A) » 1 and
a » 1, so Claim implies that £(A — a£())) « £()). This contradicts that £y, (, nom) —
U n(m)lm(Emn(m))) > lm(tmpnm))/2 for w-a.e. m. Thus we have Ty with the claimed
property for w-a.e. m.

Fix one such m, which furthermore satisfies ¢,,(R;,) < Ry /(4ap) (which is satisfied by
w-a.e. m by the second bullet). Let R}, = R, (1 +277)/2. In particular, R%, = R,,.

Claim 3.8. Either {(R),) < ly(Rym)/20 or there exists i < j with {y(RL ) < Tp.

Proof of Claim[3.8 We argue by induction on j. Suppose that R, satisfy Em(R?}n) <
U (Rim)/2) and £y (R},) = To. Note that RITY = R}, —27972R,, = R}, — ol (RY,) for

some ady, = Ty. Hence, the claim gives £, (R < € (RD)/2 < £(Rpm)/29%, as required. O

In either of the two cases provided by Claim there exists j with £,,(R},) < Tp. This
implies £y, (R, /2) < Ty, and hence £(0/2) < Tp, as required. O
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Combining Proposition [3.4] and Proposition [3.5] one gets:

Corollary 3.9. For every quasi-isometric embedding f: R™ — X, there exist L, N so that
the following holds. Then there exist arbitrarily large R so that for the ball B of radius R
around 0, there is a set Ap < X with |Ar| < N and f(B') € N (Hy(AR)), where B’ is as
in Proposition 3.5,

4. ORTHANTS AND QUASIFLATS

From now on, we fix an asymphoric HHS (X', &) of rank v. The main goal of this section is
to prove the quasiflats theorem, Theorem [A] which says that quasiflats in X are at bounded
Hausdorff distance from a finite union of standard orthants. After some preliminary work
on orthants, we complete the proof in Subsection Then, we prove two further results
giving more quantitative control on quasiflats in X" in terms of the number of orthants needed
(Theorem and the Hausdorff distance between the quasiflat and not quite the union of
the orthants, but rather the hull of the union (Lemma [4.17)).

4.1. Orthants in X. We fix once and for all a constant D so that, for any U € &, any
two points in Fy are connected by a D-hierarchy path. (Such a constant is provided by
Theorem [L.4])

We now discuss standard orthants in X', which are one of the basic objects in the statement
of Theorem [Al

Definition 4.1 (Standard orthant, standard flat, standard partial flat). Let U,..., U
be pairwise orthogonal elements of X'. Recall that we have a quasimedian quasi-isometric
embedding Fy, x --- x Fy, — X, as described in Section with constants independent
of the U;.

For each i < kand each z € [ [,
quasiconvex subset which, abusing notation slightly, we also denote Fy, x {x}, or simply by
Fy, when the choice of parallel copy is not important.

For each 1, let ; be a D-hierarchy ray in Fy, with the property that 7y, (y;) is unbounded.
We call the image of 71 x --- xy, € Fy, x--- x Fy, under the standard embedding a standard
k—-orthant in X with support set {U;}.

A standard orthant is a standard v—orthant, i.e., a standard k—orthant of maximum possible
dimension.

Similarly, given Uy, ..., Uy as above, suppose we have for each 7 < k a path 7; in Fy, such
that 7; is either a D-hierarchy ray or a bi-infinite D-hierarchy path such that 7, () is
unbounded. Then the image of y; X - -+ X i is a standard k—partial flat, or a standard partial
flat if k = v. If every ~; is bi-infinite, then we use the term standard k—flat, or standard flat
if k=w.

Fy;, the image of Fy, x {z} is a (uniformly) hierarchically

Remark 4.2. Observe that if QQ =1 x --- x 3, € Fy, x --- x Fy, is a standard k-orthant,
then it has uniformly bounded projection to CU unless U = U; for some ¢. More precisely,
each ~; has uniformly bounded projection to CU unless U = U; (in particular, 7y (7;) is
uniformly bounded for U = Uj, j # ). For each ¢ and each U £ U;, we have that 7y (Q)
uniformly coarsely coincides with 77 (7).

The next lemma says that top-dimensional standard orthants in an asymphoric HHS are
hierarchically quasiconvex (with uniform hierarchical quasiconvexity function). Here, an
analogy to the CAT(0) cube complex situation is again instructive. If II is a CAT(0) cube
complex, and O c II is a cubical orthant, then although O is ¢;—isometrically embedded
(i.e., its O-skeleton is a 1-connected median subalgebra) by definition, it need not be convex:
picture the case where II = R? and O is the ray with O-skeleton consisting of points
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{(n,n),(n,n +1):n e N}. On the other hand, if O has the property that dim O = dimII,
then O cannot contain the “corner” of any cube of II that is “missing” in O, i.e., O is convex.
This cubical fact is important in Huang’s work [Hual4b]. The final assertion of the next
lemma is analogous.

Lemma 4.3 (Top dimensional orthants are hierarchically quasiconvex). Consider a stan-
dard k-orthant O whose support set {U;} has the property that, for some C, we have
min{diamey (7 (0)), diamey (7 (0))} < C whenever U,V € U; are orthogonal and i < k.
Then O is k—hierarchically quasiconvex, where x depends on C,D, X, 6.

In particular, there exists a function k, depending on (X,8), D, and the asymphoricity
constant, so that standard orthants are k—hierarchically quasiconvez, and the same holds for
standard k—orthants contained in standard orthants.

Remark 4.4. Lemma holds when the standard orthant O is replaced by a standard flat
or standard partial flat; the exact same proof works, except with some of the rays replaced
by bi-infinite paths. The main lemma being used is Lemma which is stated for arbitrary
hierarchy paths.

Proof. Let O be a standard k—orthant which is the image of Hle ~;, where each ~; is a
hierarchy path in Fy, and {Uj,..., Uy} is a pairwise orthogonal set supporting O, and let C
be the given constant.

By Remark and the fact that hierarchy paths project close to geodesics, m(O) is
uniformly quasiconvex in CU, for U € &.

Suppose x € X has the property that 7y (z) lies uniformly close to 77 (O) for each U € &;
to verify hierarchical quasiconvexity of O, we must bound the distance from x to O.

By hierarchical quasiconvexity of | [; Fiy;, our « must lie uniformly close to [ [; Fy;, so it
suffices to show that g, (x) lies uniformly close to ; for each j, where F; denotes the parallel
copy of F}j containing the “corner” of O. Since 7y (z) coarsely coincides with my(gr, (7))
when U = U, this follows from hierarchical quasiconvexity of «;, i.e., Lemma O

The next lemma supports the preceding one. It gives a sufficient condition for a hierarchy
path to be hierarchically quasiconvex. The reader familiar with the work of Huang may find
it useful to compare this lemma with the notion of a “straight” geodesic in a CAT(0) cube
complex, defined in [Hual4b].

Lemma 4.5 (“Straight” hierarchy paths). Let v: I — X be a (D, D)-hierarchy path, where
I < R is an interval. Suppose that there exists C' so that, whenever ULV, either my ()

or y () has diameter bounded by C. Then v is k—hierarchically quasiconvex, where Kk =
k(D,X,6,0).

Proof. Let i,j € I and let x = ~v(i),y = v(j). Choose M > max{C, My}, where M is the
constant from Theorem By Theorem [2.1] there exists C, depending on M, & and X, so
that there is a CAT(0) cube complex C(x,y) and a Cj—quasimedian (C4, Cy)-quasi-isometric
embedding C(z,y) — & whose image Cy—coarsely coincides with Hg(x,y). Since v|[; ;) is a
hierarchy path from z to y, ([, j]) is coarsely (depending on D) contained in Hy(x,y) and
hence coarsely (depending on C7, D) contained in the image of C(z,y). On the other hand,
the dimension bound from Theorem [2.1] the hypothesized property of C, and our choice of
M > C imply that dim C(z,y) < 1. Moreover, Theorem implies that C(z,y) is the convex
hull of a set of at most two O—cubes in C(z,y), so C(z,y) is a subdivided interval. Hence
v([2, 7]) and Hy(x,y) uniformly coarsely coincide.

Now fix € and suppose z € X has the property that 7y (x) lies e—close to the unparameterized
(D, D)—quasigeodesic 77 (7y) for each U € &. Then there exists ¢ = 0 so that z lies e—close to
the image of m o [ for all U. Hence x lies x—close to Hg(7(0),7(i)), where x depends
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only on € and the quasiconvexity function for hulls of pairs of points. But by the above
discussion, this implies that x lies uniformly close to ([0, j]), as required. O

In the proof of Theorem [A] we will construct a quasimedian quasi-isometric embedding
of a CAT(0) cube complex into X. Huang’s theorem will provide cubical orthants in the
CAT(0) cube complex, so we need to prove that the image of each cubical orthant is coarsely
a standard orthant. For that, we will use the following lemma:

Lemma 4.6. Let O be an v—-dimensional cubical orthant with a quasimedian quasi-isometric
embedding q: O — X. Then there is a standard orthant Q < X with dpaus(q(0), Q) < 0.

Proof. Let A be so that ¢ is A-quasimedian and a (A, \)—quasi-isometric embedding.

Related points and pairs: We say that x,y € O are i—related, for 1 < i < v, if they
only differ in the i** coordinate. The i-related pairs =,y and ',y are j-related, for i # j, if
the pairs z, 2" and y,y" are j—related (i.e., if z,2’,y,y’ are the vertices of a rectangle in the
(i, 7)-plane).

Relevant domains: Let M = M (A, X) be sufficiently large. For 1 < i < v, let U; be the
collection of all U € & so that there exist i-related z,y € O with dy(¢(x),q(y)) = M. For
any K, we also let Relg(¢(0)) = {U € & : diam¢y (7 (¢(0))) = K}.

We now prove two claims about i—related pairs and u;U;:

Claim 4.7. There exists C = C(\, X) so that the following holds. Suppose that the i-related
pairs x,y and ',y are j-related. Then for any U € & either

e dy(z,y) < C and dy(2',y’) < C, or

e dy(z,2') < C and dy(y,y') < C.

Proof of Claim[{.7. Let m : O — O be the median on O coming from the cubical structure
(so each cube is an ¢; v—cube of unit side length). We have m(a2’, z,y) = x, so that in each
U € & we have that 7y () lies uniformly close to geodesics [my(2), 7y (y)]. Similarly, 7y (y')
lies uniformly close to geodesics [7y(z), 7y (y)]. Also, my(2') and 7y (y) lie uniformly close
to geodesics 7y (), 7y (y')], forcing the endpoints of [7y(2'), 7y (y)] and [7y(z), 7y (y')] to
be uniformly close in pairs, as required. O

Claim 4.8. For M sufficiently large, ULV whenever U € U;,V € U; and i # j.

Proof of Claim[{.8 Consider distinct 4, j, an i-related pair z, y and some U with dy(g(z), ¢(y)) =
M, and a j-related pair w, z and some V so that dy (q(w),q(z)) = M.

Provided M > 10(v — 1)C, applying Claim at most v — 1 times allows us to change
the coordinates of w, z (other than the j**) to find an i-related pair 2,y which is j-related
to x,y. Moreover, we have:

o dy(q(z),q(2")) = M/2 and dv (q(y), q(y')) = M /2;
e dy(q(z),q(y)) = M and dy(q(z'), q(y')) = M/2.

Claim (4.7 implies that dy(q(z),q(z")) < C, du(q(y),q(y')) < C and dv(q(2),q(y)) < C,
dv(q(2'),q(y") < C.

For M large enough, this implies that U L V. Indeed, if U = V, then the triangle inequality
yields 4C' = M /2, a contradiction. If UAV, then there exists p € {z,2',y,y'} with 7y (p)
E—far from pg and my (p) E—far from pg, contradicting consistency. A similar contradiction
arises if U,V are &—comparable. Hence U LV, as required. O

The candidate standard orthant: Let 7/ be the image of the axis along the 7
coordinate in O. Since ¢ is quasimedian and a quasi-isometric embedding, 7/ is a quasi-
geodesic projecting to unparameterized quasi-geodesics in every CU, i.e., it is a D' = D'(\)-
hierarchy ray, by Lemma m By [DHS17, Lemma 3.3], there exist U},..., U ,31 so that
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T (74) is unbounded. Moreover, by the same lemma, for 1 < i < v, 1 <j < j < k;, we

have U; LU/ B

Since each U ; € U;, Claim and the fact that X has rank v implies that k; = 1 for each
i. To streamline notation, let U; = U?.

Since {U1, ..., U,} is a pairwise-orthogonal set, the following holds for all i < v: if U,V & U;
have diam(CU),diam(CV) > E, then U £V, for otherwise {Uy,...,U;—1,U,V,Uis1,...,U,}
would contradict that X is asymphoric. It follows from Corollary that each Fy, is
hyperbolic. Hence there exists a D"”-hierarchy ray v; in Fy, so that the distance between
7vi(t) and ~/(t) is uniformly bounded for all ¢ € [0, ).

The ~; define a standard orthant ¢ with support {U;}.

q(0) and Q@ lie within finite Hausdorff distance: We claim the following. For p € O
we denote by p; the point on the i—th coordinate axis with the same i—th coordinate as p.
Then there exists C’ so that dey(q(p), q(pi)) < C” whenever U ¢  J;;U;. This holds because
we can find a sequence of at most v points, starting with p and ending with p;, so that
consecutive elements are j—related for j # i. By definition, if consecutive elements have far
away projection to some CU, then U € U; for j # .

Now let p € O. By the above claim, 7y7(g(p)) coarsely coincides with 7 (¢(p;)) if U € U;,
and otherwise it coarsely coincides with 77(c), where ¢ is the image of the “corner” of O.
We can find points ~;(¢;) uniformly close to ¢(p;) € 7/, and the ~;(¢;) define a point p’ of Q.
It is readily checked that for every U, 7y (q(p)) coarsely coincides with 7y (p'), so that ¢(p)
and p’ are within uniformly bounded distance. This proves that ¢(O) is contained in a finite
radius neighborhood of Q). A very similar argument proves the other containment. O

4.2. Coarse intersections of orthants. In this subsection we study coarse intersections

of orthants. This is mostly needed for the next section, but we need Lemma [£.11]in the proof
of Theorem [4.14]

Definition 4.9 (Coarse intersection). Let A, B < X. Suppose that there exists Ry so that
for any R, R’ > Ry, we have dpaus(Nr(A) N Ng(B),Ng/(A) n Ng/(B)) < 0. Then we refer
to any subspace at finite Hausdorff distance from Ny, (A) " Ng,(B) as the coarse intersection
of A and B, which we denote AADB.

In the next lemma, we show that, for pairs of hierarchically quasiconvex sets, an Ry as in
the definition above exists, and so the coarse intersection is well-defined. This is one of the
places where we use the bridge lemma (Lemma [1.20]).

Lemma 4.10 (Coarse intersections coarsely coincide with gates). For all k,r, there exists
Ry such that the following holds. Let A, B be k—hierarchically quasiconver and suppose
d(A, B) < r. Then for all R,R' = Ry, we have dpqus(Nr(A)NNR(B),Nr/(A)nNg/(B)) < o0,
so AAB is well-defined. Moreover, there exists K = K (k,r) such that AAB is at Hausdorff
distance at most K from ga(B).

Proof. By Lemma , there exists K7, depending only on x(0) and F, and a (K7, K;)-
quasi-isometric embedding f: ga(B) x Hg({a,b} — X such that im f Kj—coarsely coincides
with Hp(ga(B) U gp(A)), where a = ga(b) € ga(B) and b = gp(a). By Lemma[l.27 (applied
exchanging the roles of A and B), d(a, b) is bounded in terms of x and r. Hence, there exists
Ry, depending on k, K7, and r, such that any point in g4(B) < A lies at distance at most R;
from gp(A) € B, and hence at distance at most Ry from B. So, ga(B) < Ng,(4) n Ng,(B).

On the other hand, if p € Ngr(A) n Ng(B) for some R, then apply Lemma to find
K = K(k) such that d(p, A) =k x d(p,ga(p)) and d(A4, B) =g,k d(ga(p), 98(ga(p))). So,
d(p,9B(94(p))) <K,k R+ r. In other words, d(p, gg(A)) is uniformly bounded (in terms of
k, R and r) and d(p,ga(B)) is bounded similarly. So Nr(A) n Ng(B) uniformly coarsely



QUASIFLATS IN HIERARCHICALLY HYPERBOLIC SPACES 45

coincides with g4(B), proving the second claim. Since any two neighborhoods of g (B)
coarsely coincide, the first claim follows. O

The following lemma describes coarse intersections of orthants, which, as one might hope,
turn out to be sub-orthants.

Lemma 4.11 (Coarse intersections of orthants). Let O, 0" be standard orthants in X with
supports {Ui;}i<v, {U]}i<v. Then OAO' is well-defined, and coarsely coincides with go(O'),
as well as with a standard k—orthant whose support is contained in {U;}i<, 0 {U}i<p.

Proof. By Lemma we only need to show that go(O’) coarsely coincides with a standard
k—orthant whose support is contained in {U;} n {U/}.

Let 7; be the hierarchy ray in Fy, participating in O, and similarly for 7/ and O'. Let
{Vi}j=1,..k be the set of all V; = U; = U/, so that 7; and v/, lie within bounded Hausdorff
distance, in which case set a; = ;. Let O” be a standard k-orthant contained in O with
support set {V;} defined by the a;. We claim that O” represents OANO'.

By Lemma O” is hierarchically quasiconvex, and G = go(O’) is hierarchically qua-
siconvex by Lemma . We claim that O” coarsely coincides with G. Since they are
hierarchically quasiconvex, we only need to argue that their projections to each CU coarsely
coincide.

By Remark for each U, 7 (O”) coarsely coincides with some 77 (). In particular, if
U is not nested in some Uj, then 7y;(O”) uniformly coarsely coincides with each 7 (c;(0)).

Also, 77 (G) coarsely coincides with the projection of a single ~;, if 7; = o for some j.
Otherwise 77 (G) coarsely coincides with 7 (j(0)) for each j. Hence my(G) and my(O”)
coarsely coincide for all U. U

In the proof of Theorem below, we will need the following version of the above lemma,
stated for coarse intersections of standard flats instead of standard orthants.

Lemma 4.12 (Coarse intersection of standard flats). Let F, F’ be standard flats in X with
supports {U;}¢_, and {U!}Y_, respectively. Then FAF' is well-defined, and coarsely coincides
with gr(F"). Moreover, suppose that {U;} n {U!} = {U} for some U € &. Then FAF' is
either a bounded set or coarsely coincides with a standard 1-orthant or standard 1-flat with
support {U}.

Similarly, if {U;} n {U}} = {U,V'} for some (necessarily orthogonal) U,V € &, then FAF'
coarsely decomposes as the product of two hierarchically quasiconvexr subspaces o, 3, each of
which is either bounded or coarsely coincides with a standard 1-orthant or standard 1—flat.

Proof. The standard flats F, F’ are uniformly hierarchically quasiconvex by Remark
Lemma implies that FAF’ is well-defined and coarsely coincides with gr(F"). So, we
just need to show that gp(F”) is a standard 1-orthant or 1-flat with support {U}, or gr(F”)
is bounded. For each i < v, let 7; be the hierarchy path in F;, which is the ith factor of F,
and define 7, analogously for F’. Re-labeling if necessary, let U = U; = Uj. Note that by
Lemma each ;,7, is uniformly hierarchically quasiconvex. Indeed, my (7;) has uniformly
bounded diameter unless V' = U;. But if V, W = Uj; are orthogonal, then {V, W} U {U,};; is
a pairwise-orthogonal set of v + 1 elements, so by asymphoricity, CV (say) has diameter at
most E, so the same is true of 7y (v;). Hence Lemma 4.5 applies.

Let o = g, (7]). Arguing as in the proof of Lemma shows that «, which coarsely
coincides with FAF’, is either bounded or coarsely coincides with a 1-orthant or 1-flat. This
proves the first assertion.

The second assertion follows similarly. Again, FAF’ coarsely coincides with gr(F’) by
Lemma so it suffices to show that gp(F”) coarsely coincides with a product o x (3 as
in the statement. Label the supports of F, F’ so that U = Uy = U] and V = U = Uj,. Let
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a = g, (71) and let 8 = g,,(75). Then argue as in Lemma to see that a x 3 coarsely
coincides with gp(F"). O

4.3. Quasiflats theorem. We are now ready to prove Theorem [A] which we restate as:

Theorem 4.13. Let X be an asymphoric HHS of rank v and let f: R — X be a quasi-
isometric embedding. Then there exists a finite set of standard orthants Q; € X for 1 <i < k,
for which:

dhauS(f(Ry)a uleQ,-) < 0.

Proof. Let L, N be as in Corollary Then there exists an increasing unbounded sequence
Ry < Ry < ... and sets A; € X of cardinality at most N for which the following holds. Let
B; be the ball in R” of radius R; centered at a fixed basepoint, and let H; = Hg(A;). Then
f(B;) € N(H;). Let ¢;: Y; — H; be the C—quasimedian (C, C')—quasi-isometry provided by
Theorem [2.1} so ); is a CAT(0) cube complex of dimension < v and the constant C' depends
on N.

Now we pass to (non-rescaled!) ultrahmltsﬂ More specifically, f has an ultralimit which
is a (K, K)—quasi-isometric embeddmg f RY — X for some ultralimit X' of X. It is easily
deduced from Corollary [2.15| that X is a coarse median space and we have the following:
there is a CAT(0) cube complex y an ultralimit of the );, endowed with a C—quasimedian
(C, C)-quasi-isometry ¢ : Y — X so that the image of f lies in the L-neighborhood of im(¢).

By a theorem of Huang — Theorem 1.1 of [Hual4b] — there exist n—dimensional cubical
orthants Oy, ..., 0 in Y so that dpeus(f(RY),&(U* U;_10;)) < o0. Moreover, ¢(0;) lies within
finite Hausdorff distance of f(O;) for some O; < R”. Hence, Q; = f(O}) is the image of
a C'—quasimedian (C’, C')—quasi-isometric embedding. Thus, by Lemma it lies within
finite Hausdorff distance of a standard orthant. The @); are as required. O

4.4. Controlled number of orthants. We now improve Theorem by showing that
the number of standard orthants required can be bounded in terms of the quasi-isometry
constants:

Theorem 4.14 (Bounding the number of orthants). Let X' be an asymphoric HHS of rank
v. For every K there exists N so that the following holds. Let f: RY — X be a (K, K)-
quasi-isometric embedding. Then there exist standard orthants Q; € X, 1=1,...,N, so that

dnaus (f(R”), U£1Qi) < 0.

The idea of the proof is as follows. First, by the above we have that f(R") lies Hausdorff-
close to a finite union of standard orthants Oi,...,0;. Now, each O; makes a definite
contribution to the volume growth in the quasiflat f(R"), and this growth is in turn bounded by
the quasi-isometry constants. So, k£ must be bounded. This is formalized in Proposition |4.16

First, we need the following lemma, which is a slightly stronger version of the well-known
fact that quasi-isometric embeddings of R™ into itself are coarsely surjective, see [KLI7a,
Corollary 2.6].

Lemma 4.15. For every K,n > 1 there exists C' so that the following holds. Let f: R® — R"
be a (K, K)-coarsely Lipschitz proper map. Then dpqs(f(R™),R™) < C.

Proof. We actually show that if f: R® — R” is continuous and proper, then f is surjective,

and the lemma follows from the fact that f can be approximated by a continuous map.
Since f is proper, it extends to a continuous map f : R® — R™ between two copies of

the 1-point compactification R? of R™, which is homeomorphic to the sphere S™. Also, it

Lf x is proper, one can take Hausdorff limits instead. To avoid that assumption, we use ultralimits instead.
If X is not proper then X is (much) bigger than X.
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is easily seen that we can identify the domain R™ with S™ in such a way that, since f is
coarsely Lipschitz, no pair of antipodal points have the same image. But then f must be
surjective, for otherwise the Borsuk-Ulam theorem would force the existence of such pair of
antipodal points. Since f is surjective, then so is f, as required. O

Proposition 4.16 (Volume growth). For every K there exists N so that the following holds.
Let F: RV — X be a (K, K)—quasi-isometric embedding whose image lies at finite Hausdorff
distance from Uf;l O;, where each O; is a standard orthant. If dpeus(Os, O5) = 0 when i # j,
then k < N.

Proof. The idea of the proof is that each of the k orthants contributes at least e R¥ volume
growth to F(R"), but the volume growth of F(R”) is bounded above by R” times a (large)
constant depending on K.

Let D = dpqus(F (R”),Ule 0;). By Lemma since the O; are pairwise at infinite
Hausdorff distance, for each ¢ we can find a sub-orthant O} < O; so that for each i,j,
d(0;, 0}) = 2D + 1. We will identify O] with [0, 0)".

Let A; € R” be the set of points whose image under F is at distance at most D from O).
Note that the A; are disjoint.

Let g; be the composition of F' and the gate map to O}; the map g; is (K’, K')—coarsely
Lipschitz for some K’ = K'(K,X), and it is a quasi-isometric embedding with constant
depending on K, X', and D (this dependence on D is the reason why we need Lemma
dealing with proper maps). Up to increasing K’, we can further assume that there is a
(K', K')—quasi-isometry from O} to an orthant in R” so that the composition of g; and the
quasi-isometry is also (K’, K’)—coarsely Lipschitz.

Notice that for each R and i, there exists a sub-orthant OZR c O} so that if z € A; has
gi(z) € OF, then Br(x) € A;.

Let C be as in Lemma for K’, and set C; = K'C + (K')2. Since the orthants OF are
quasi-geodesic spaces with constant depending on X only, up to increasing C' we can assume
the following. Suppose that we have a subset A < OZR, for some R, ¢, with the property that
OF & N¢,(A). Then there exists x € OF so that d(z, A) < 2C; — 1 but d(x, A) > C.

A further sub-orthant: We claim that for each 4, there is a sub-orthant O} < O} with
the property that O < N¢, (gi(4i)) n O;.

Let n € N. Let O be the sub-orthant of O} defined above, which has the property that
for all x € A; with g;(z) € O, we have B, (x) c A;. If the sub-orthant O with the claimed
property does not exist, then, for each n, there exist p, € A; and z, € O} such that the
following hold:

* gi(pn) € OF;
o d(zn,gi(pn)) < 2C7;
o d(zn,9i(4;)) > C.

In fact, we can choose any x, € O} with d(zy,,gi(4;)) < 2C; — 1 but d(zy, gi(4;)) >
C1, and then pick p, € A; “nearly witnessing” the first inequality, meaning p, so that
d(Tn, gi(pn)) < 2C1.

Now, consider the (non-rescaled!) ultralimit R of R” with observation point (p;,), which is
isometric to R”. The process of taking ultralimits induces a (K’, K')—coarsely Lipschitz map
f from R to an ultralimit of O} with observation point (x,). Moreover, f is proper since
g; is a quasi-isometric embedding. Being an ultralimit of orthants, this ultralimit admits a
quasi-isometry, h, to a subspace of R”, with constants depending only on X (actually, the
ultralimit of the orthants is quasi-isometric to R”, but we do not need this). In fact, by the
choice of K’ we can choose a (K’, K')—quasi-isometry h as above in such a way that ho f is
(K', K")—coarsely Lipschitz, and notice that ho f is still proper. However, by construction the
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map f is not Cj—coarsely surjective, and thus ho f is not C—coarsely surjective, contradicting
Lemma, and thus verifying the claim.

Conclusion: We now bound from below Sr = [{x € Z" : F(x) € Br(F(0))}|. There exists
t = t(K)sothat Br < tRY. Let C' = C'(C, v, K) satisty O} < N¢v(gi(AinZ"))nO;. Consider
a maximal (2C” + 1)-net IV; in O} and, for any point p of the net, choose some g € A; N Z¥
with d(p, F((q)) < C’. Distinct p yield distinct ¢q. Moreover, |N; n Bg(F(0))| = t'RY for all
sufficiently large R and some ¢’ = ¢/(C’, X). Since the A; are disjoint, we have 8r = kt'R”
for all sufficiently large R. Hence k < t/t’, and we are done. U

Proof of Theorem [{.1j. By Theorem the image of F lies at finite Hausdorff distance
from a union of orthants Uég:l O;. We can assume that djqys(0;, Oj) = 0 when ¢ # j; indeed,
if not, then we can drop O; or O; from the collection without affecting the conclusion. Hence,
k < N, for N as in Proposition [4.16 0

4.5. Controlled distance. As in the cubical case, it is not possible in general to give an
effective bound on the Hausdorff distance between a quasiflat and the corresponding union
of orthants. However, we have the following;:

Lemma 4.17. For every K, N there exists L so that the following holds. Let F: R — X
be a (K, K)—quasi-isometric embedding whose image lies at finite Hausdorff distance from
Uf\il O;, where each O; is a standard orthant. Then F NL(HQ(Uf\;l 0;)).

Proof. Let F and O; be as in the statement. Any bounded set in O; lies in a uniform
neighborhood of the hull of the “corner point” of O; and some point along the diagonal.
Hence, there exists D so that any ball B in R™ has the property that F'(B) is contained in the
D-neighborhood of Hy(A) for some A < | J; O; with |A| < 2N. For L as in Proposition
there exist arbitrarily large balls B’ in RY so that F(B') € N7(Hp(A)) € Ni(Ho(UY, 0)))
for some A < | J; O;. Hence, the same holds for R, as required. O

Corollary 4.18. For each K there exists L, N so that the following holds. Let F': R¥ — X

be a (K, K)—quasi-isometric embedding. Then there exist standard orthants O1,...,0On so
that F < N(Ho(UX, 0:)).
Proof. Follows immediately from Theorem and Lemma O

5. INDUCED MAPS ON HINGES: MAPPING CLASS GROUP RIGIDITY

Let (X,8) be an HHS. We have in mind the case where X is the Cayley graph of the
mapping class group of a finite-type surface, equipped with the HHS structure from [BHS19,
Section 11].

In this section, we provide a new proof of quasi-isometric rigidity of mapping class groups.
More generally, we study intersection patterns of quasiflats in X and, under favorable
conditions, extract suitable “combinatorial data” from it.

In the rest of this section, we will abstract from the mapping class group to the greatest
extent permitted by our methods. We will need (X', &) to be asymphoric, which, as previously
noted, is a weak assumption. We will also impose three additional, more restrictive, assump-
tions on (X, &), which are satisfied by the standard HHS structure on the mapping class
group. First, we introduce a few relevant definitions and state the additional assumptions.
Then, we discuss the generality in which these assumptions hold.

The next definition describes those subsets of & which give rise to standard flats (as
defined in Definition [4.1)).

Definition 5.1 (Complete support set). A complete support set is a subset {U;}/_; < &
whose elements are pairwise orthogonal and satisfy diam(CU;) = oo for all i < v.
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For each U € &, we let ¢CU denote the Gromov boundary of CU.
Note that a complete support set {U;} and a pair of distinct points {pzi} € 0CU; for each
i, allows one to construct a standard flat, F, +), associated to some choice of bi-infinite

hierarchy paths in each Fy;, whose projection to CU; has limit points {pzi} in CU;.
Accordingly, it is easy to verify that a complete support set is the support set of some
standard flat if and only if each dCU; contains at least two points.

Definition 5.2 (Hinge, orthogonal hinges). A hinge is a pair (U, p) with:
e UeG;
e U belongs to some complete support set; and,
e pe 0CU.

Let Hinge(S) be the set of hinges. We say (U, p), (V, q) € Hinge(&) are orthogonal if ULV

Definition 5.3 (Ray associated to a hinge). For any p = 0, a u—ray associated to a hinge
o = (U,p) is a p—hierarchy path b, so that w7 (h,) is a quasigeodesic ray representing p and
so that diam(7y (h,)) < p for V # U.

Remark 5.4. Any two candidates for b, lie at finite Hausdorff distance, so for our purposes
an arbitrary choice is fine. If o # ¢’ € Hinge(&), then dpuys(hs, byr) = 0.

Remark 5.5. Each hinge corresponds to a 0-simplex in the HHS boundary 0X’; see [DHS17].

The first additional assumption holds, for example, in any hierarchically hyperbolic group
for which the product regions Py can be taken to be subgroups. This is the case for all
naturally occurring hierarchically hyperbolic structures on groups of which we are aware.
However, there are some pathological structures, even on a free group, where the assumption
fails.

Assumption 1. For every U € &, either diam(CU) < E or |0CU| = 2 has at least two points
at infinity.

Remark 5.6. In what follows, we could replace Assumption [I] with: for each U € & which
is the first coordinate of some hinge, |0CU| = 2. Equivalently, each U € & which is the first
coordinate of some hinge is the first coordinate of at least two hinges.

The second assumption roughly says that, if a standard 1-flat is contained in some standard
flat, then it can be realized as the intersection of a pair of standard flats.

Assumption 2. For every U contained in a complete support set there exist complete support
sets L{l,Z/lQ with {U} = lel M UQ.

The third assumption is a two-dimensional version of the second one; this assumption
says that if a standard 2—flat is contained in a standard flat, then it can be obtained as the
intersection of some pair of standard flats.

Assumption 3. If v > 2, then for every U,V , with each contained in a complete support
set and with ULV, there exist complete support sets Uy,Us with {U,V} = Uy N Us.

Remark. The three preceding assumptions are, taken together, fairly restrictive. The first,
as we said, is very general and holds for all “interesting” HHGs, including: mapping class
groups, 3—manifolds groups which are HHG, all groups acting geometrically on CAT(0) cube
complexes with factor systems (see [BHS17bl [HS18]) (a class which includes all compact
special groups in the sense of Haglund—Wise [HW0S], and in particular all right-angled Artin
and Coxeter groups), etc. More generally, this first assumption also holds for a number of
interesting HHSs as well. These include Teichmiiller spaces with the Weil-Petersson metric.
On the other hand, this condition fails to hold for the HHS structure on a Teichmiiller space
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endowed with the Teichmiiller metric, since in such structure certain CU are (isometric to)
horoballs in the hyperbolic plane, and thus have a single point as their boundary.

To see why the second condition is more restrictive, consider a right-angled Artin group
Ar presented by a finite simplicial graph T". There are two “standard” HHS structures
(see [BHS1Th, Section 8] for more details), but for our purposes, we take the one described in
the introduction. The second condition implies that for each vertex v € I' that is contained in
a maximal clique, there are two maximal cliques whose intersection is v. One can articulate
a similar combinatorial condition on right-angled Coxeter groups. So, for example, the
results in this section do not immediately improve upon, or even recover, Huang’s results on
quasi-isometric rigidity for right-angled Artin groups.

The third condition in the right angled Artin group case can similarly be interpreted as a
combinatorial constraint on the intersection pattern of cliques in the presentation graph.

In the following theorem we show that, under the additional assumptions stated above,
quasi-isometries between HHSs naturally induce (orthogonality-preserving) bijections between
corresponding sets of hinges. We think of such bijections as “combinatorial data” that we
extract from the quasi-isometry. The proof relies on studying coarse-intersection patterns of
orthants.

Theorem 5.7. Let (X,8), (V,%) be asymphoric HHS satisfying assumptions (1), (4) and
(@. For any quasi-isometry f: X — Y, there exists a bijection f*: Hinge(S) — Hinge(T)
satisfying:

o [t preserves orthogonality of hinges;
e for all o € Hinge(S), we have dhaus([)fu(g), f(bsy)) < 0.

Remark 5.8. Under suitable conditions, we expect that there exists an analogue of The-
orem in which hinges are replaced by sets of pairs {(U;, p;)}, where {U;}; is a pairwise
orthogonal set and p; € dCU;. In particular, one should be able to show in this way that
isolated flats are taken close to isolated flats. More strongly, one could consider the situation
where flats coarsely intersect in subspaces of codimension > 2, as in [FLS15].

Proof of Theorem[5.7, Let o = (U, p) € Hinge(S).

How we will define f*: We will produce a hinge ¢’ so that dpaus(be, f(be)) < o0.
Remark [5.4] implies that ¢’ is uniquely determined by this property, so we can set ff(c) = o’
To see that this is a bijection, let f : ) — X be a quasi-inverse of f. Then dpaus(f(ho), ho) <
o, so we can define an inverse for f in the same way.

Choosing ¢’: Since (U, p) is a hinge, U is in a complete support set.

Notice that, by Assumption |1} for any complete support set {U;}; we have |0CU;| = 2 for
each i, and hence there exists a standard flat F with support {U;};.

In view of this, Assumption [2| provides two standard flats F7, F», the intersection of whose
support sets is {U}. Furthermore, we claim that we can arrange that F3AFz is coarsely a
line and coarsely contains b,. This can done as follows. Consider any hinge (U, ¢) with g # p
(which exists by Assumption . Assumption [2| provides complete support sets {V;}, {VJ’ }
whose intersection is {U}. Label so that V3 = V] = U. So, by choosing distinct points
aj,bj € 0CV; and a}, b € CV] in such a way that a1 = a} = p and by = b} = ¢, we obtain
standard flats F1, Fo with the given support sets and, by Lemma coarse intersection
which is either bounded, a standard 1-orthant, or a standard 1-flat supported on U. Both
flats coarsely contain a standard 1-flat (with “limit points” p and ¢), so the last case must
hold. Moreover, the aforementioned standard 1-flat coarsely contains b, by Remark

By Theorem (Quasiflats Theorem), f(F1) and f(F2) are coarsely equal to unions of
finitely many standard orthants. Hence f(F;)A f(F2) has the following three properties:
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o f(F1)Af(Fz) is coarsely a finite union of coarse intersections of pairs of standard
orthants. Indeed, f(Fi) coarsely coincides with | J, Os and f(F2) coarsely coincides
with J, O}, where O,, O; are standard orthants provided by Theorem Hence
f(F1)Af(F2) coarsely coincides with (J, , OsAO;.

o f(F1)Af(Fz) is coarsely R, because F1AF2 was coarsely R.

o f(F1)Af(F2) coarsely contains f(hy), because F;AFs coarsely contained b,-.

By Lemma [4.11] and the first of the above properties, f(F1)A f(F2) is coarsely the finite
union of standard k—orthants, which arise as coarse intersections of pairs of standard orthants.
Hence, one of these pairs gives a 1-orthant (in particular, a copy of R, ) which coarsely
coincides with f(h,).

Let o’ be the hinge (V, q), where V is the domain of the orthant just determined and ¢ is
the unique point in 0V determined by the fact that f(h,) projects to a quasi-geodesic ray in
CV. Then ¢’ is the hinge uniquely determined by f(f,), as required.

Preservation of orthogonality: Let 0,0’ be orthogonal hinges. Assumption [3[ and
Lemma provide a standard 2-flat, F, coarsely containing b, and h,.. Moreover, F
coarsely coincides with F1AJFs, for standard flats Fi, Fo.

Hence f(F1)Af(F2) is a 2-dimensional quasiflat. On the other hand, by Theorem
f(F1)Af(Fa) is coarsely the union of finitely many coarse intersections of pairs of standard
orthants. Lemma, shows that each of these intersections is coarsely a standard k—orthant
for k = 2. Since f(F1)Af(F2) is a 2-dimensional quasiflat, we can discard any of the above
intersections which is coarsely a 0-orthant or 1-orthant. In other words, f(Fi)Af(F2) is
coarsely the union of disjoint standard 2-orthants O, ..., O¢—1. Moreover, b, and bz (o)
coarsely coincide with coordinate rays of some O;, O;.

N\
BE\ ) O, rf/
/44 h\

O 7’; , O3 N

F1GURE 5. The 2-orthants Oy, ..., O; and the cyclic ordering of their coordi-
nate rays (up to coarse coincidence).

Now, as shown in Figure |5 we can cyclically order the coordinate rays in Oy, ..., O 1.
First, label the orthants so that for each s € Z;, the 2—orthant O, has the property that one
of its coordinate rays r; coarsely coincides with a coordinate ray in Os_1 and the other, r,
coarsely coincides with a coordinate ray in Og41. Now cyclically order the coarse equivalence
classes of rays: rar, rf, - ,r;’_l.

We claim that b (o) b pe (o7) Must be adjacent in this order. This will imply that they are
coarsely contained in a common 2-orthant, and hence f#(c)Lf%(¢"), as required.

Indeed, if there was a coordinate ray r between b () and b st(,1), then r is coarsely b g1,y

so that by definition f~!(r) is coarsely h,». (Here we used Assumption [2| which guarantees
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that r is the ray associated to some hinge, and bijectivity of f%.) But then b, by, hov pairwise
have infinite Hausdorff distance, are contained in the same standard 2—orthant, and they
each arise as the coarse intersection with some other orthant, contradicting Lemma O

5.1. Sharpening of ff. The hinge f#(c) prescribes a hierarchy ray which lies within finite
distance of f(h,), but it does not (and cannot) provide a uniform bound on the distance;
which is what one typically needs to show that two given quasi-isometries coarsely coincide.
Under many circumstances, finiteness can actually be promoted to a uniform bound, with
little extra work. As an illustration of this, we give an example tailored to the mapping class
group case in the following lemma. The content of the lemma is that if a quasi-isometry
matches the “combinatorial data” of a standard flat to the data of another standard flat,
then it maps the former flat within uniform distance of the latter.

Lemma 5.9 (Flats go to flats). Let (X, 6), (Y, %) be asymphoric HHS satisfying Assumptions
, (@ and (@ There ezists C' with the following property. Let {U;}"_{ < & be a complete
support set, and let p;*r be distinct points in 0CU;. Suppose that there exists a complete
support set {Vi}?_, = T and distinct points q;—r € 0CV; so that for each k =1,...,n we have

fﬁ(Uka%) = (VkaQJ:;_r) Then; dhaus(f(f{([]“p:—r}}%f{(qu]i)}) < C

Proof. Hierarchical quasiconvexity of F (Va5 implies it uniformly coarsely coincides with
g
Hg(f{(vj,q;,r)}). Containment of f(}—{(Ui,pii)}) in a uniform neighborhood of f{(‘/j’q;;)} then

follows from Lemma The other containment follows by applying the same argument to
a quasi-inverse of f. O

5.2. Mapping class groups. We now use Theorem to provide a new proof of quasi-
isometric rigidity of mapping class groups. Like all proofs of quasi-isometric rigidity for
mapping class groups, the goal of our proof is to prove that any quasi-isometry of the mapping
class group induces a simplicial automorphism of CS, at which point we can apply Ivanov’s
theorem [[va97] to conclude that the automorphism is induced by an element of the mapping
class group. Using our quasiflats theorem we can readily convert the geometric information
of a quasi-isometry to combinatorial information about the structure of standard flats. Then,
via Theorem from the combinatorial structure of quasiflats we can extract an induced
map on certain coordinate directions in the standard flats. In the mapping class group setting,
these directions correspond to Dehn twist directions, thus giving us the automorphism of the
curve graph which is needed to apply Ivanov’s theorem.

Theorem 5.10. [BKMMI12|] Let X' be the the mapping class group of a non-sporadic surface
S. Then for any K there exists L so that: for each (K, K)—quasi-isometry f: X — X there
exists a mapping class g so that f L—coarsely coincides with left-multiplication by g.

Proof. Consider the standard HHS structure on X, so that & is the collection of all essential
subsurfaces, and the CY are curve complexes. (For details on the structure, see [BHS19),
Section 11].)

A subsurface Y lies in a complete support set if and only if it is an annulus, a once-punctured
torus or a 4-holed sphere. The assumptions of Theorem are clearly satisfied.

Consider any quasi-isometry f: X — X. A hinge (U, p) is annular if U is an annulus. We
now show that if a hinge ¢ is annular, then so is f*(¢). Indeed, a hinge o being annular is
characterized by the following property: ¢ is contained in a maximal collection H of pairwise
orthogonal hinges, and there exists a unique hinge o’ so that (H — {o}) U {0’} is a maximal
pairwise orthogonal set of hinges. This property is illustrated in Figure [6] where, if o is
(U,p*), then o' is (U, p~), where oCU = {p*}.
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FI1GURE 6. This figure shows a complete support set, consisting of five annuli
and one once-punctured torus. This is the only complete support set containing
all the subsurfaces except the annulus about the boundary of the once-
punctured torus, denoted U in the figure. In this sense, U is non-replaceable.

Since the bijection f¥ preserves orthogonality and non-orthogonality, it preserves the above
property, so f? preserves being annular.

Note that for any annulus U, the set 0CU has exactly two points. We now claim that
for each annulus U there exists an annulus V so that, denoting {p*} = 0CU, we have
YU, pt) = (V,q*) for ¢* € dCV. This holds as above, since for some maximal set H of
pairwise orthogonal hinges containing (U, p™), the hinge (U,p~) is the only hinge such that
H—{(U,p")} u{(U,p7)} is a maximal set of pairwise orthogonal hinges. In this sense, the
annulus U is “non-replaceable”. We write V' = f*(U). Notice that Lemma now applies
to show that any Dehn twist flat of X’ is mapped within uniformly bounded distance of a
Dehn twist flat.

Moreover, we have a well defined simplicial automorphism ¢ of the curve graph C.S, where
¢(a) = B if B = f*(A), where the annuli A, B have core curves «, 3 respectively. By a
theorem of Ivanov [Iva97], any simplicial automorphism of CS is induced by an element of
the mapping class group; we denote by g the element corresponding to ¢.

Suppose we are given a Dehn twist flat F with complete support set ¢/. Then, as noted
above, f(F) is coarsely a Dehn twist flat with complete support set {f*(U)}vew = {9U }veu-

We can now conclude that for any Dehn twist flat F, we have that f(F) and gF are
within bounded Hausdorff distance. For any point z € X', we can find Dehn twist flats F7°, 5
that have neighborhoods of uniformly bounded radius whose intersection contains x and has
uniformly bounded diameter. Since gF;, f(F;’) coarsely coincide for i = 1,2, we see that
gz and f(x) must coarsely coincide. Hence we get that the automorphism of X' given by
left-multiplication by ¢ is uniformly close to the quasi-isometry f, as desired. O

6. FACTORED SPACES

In this section we show that, under certain circumstances, quasi-isometries between HHSs
descend to quasi-isometries between some of their “factored” spaces, which are spaces obtained
by coning off a collection of standard product regions. These factored spaces are HHSs
themselves and their complexity is lower than the complexity of the original HHS. Hence,
studying induced quasi-isometries on factored spaces can be part of an inductive procedure
for studying quasi-isometries of the original space (see also the introduction).

Notation 6.1. Given { &, let U= be the collection of all V € & so that there exists U € U
with V £ U. We let U = Uy < & denote the union of all cardinality—v pairwise-orthogonal

subsets of &. Let X be the factored space associated to 4=, which is the space obtained
from X by coning off all Fy; for U € U= (as described in [BHS17a, Definition 2.1]). There

exists a Lipschitz factor map ¢ = gy : X — X by [BHSI17al Proposition 2.2].

By [BHS17al Proposition 2.4], X has a natural HHS structure with index set & — $I.
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Theorem 6.2 (Quasiflats collapse in factored spaces). Let X' be an asymphoric HHS of rank
v. For any K, there exists A so that for all (K, K)—quasi-isometric embeddings f: RV — X,
we have diam(g o f(RY)) < A.

Proof. Observe that if A ¢ X is an arbitrary subset, then q(Hy(A)) lies at uniformly bounded

Hausdorff distance from Hp(q(A)) (where we take hulls in X in the second expression). In
particular, if diam 3(¢q(A4)) < C for some C, then there exists C' = C'(C, E, ) so that for
any B < Hy(A) we have diam 3(q(B)) < C".
; : N

Hence, by Corollary it suffices to prove that diamy q(lJ;Z, O;) < C, where the
orthants O; are as in the Corollary and C = C(N, E, K, 119). By the construction of ¢, it
follows easily that there exists C' = C'(uo, £) such that diam 3(q(0;)) < C’ for each i. By
Proposition it suffices to bound the diameter of ¢(O; U Oy) in the case where O;AO; is a

codimension-1 sub-orthant; this is done in Lemma [6.5 O

Before proceeding to the technical Lemmas and Propositions we needed to prove the above
theorem, we state the following corollary which we consider the main result of this section.

Corollary 6.3 (Quasi-isometries descend to factored spaces). Let X', be asymphoric HHSs.
Suppose that there exists D so that for each U € Uy or U € Ly, for any x,y € Fy there exists
a bi-infinite (D, D)—quasi-geodesic containing x,y. Then for every quasi-isometry f : X — Y
there exists a quasi-isometry f : X — Y so that the diagram

x Ly

QX\L iQy
X Y
commutes.

Proof. Since X, are just re-metrized copies of X, Y (see [BHSI7a]), we can take f = f.
We now show that f is coarsely Lipschitz, and observe that the corresponding map for a
quasi-inverse of f gives a coarsely Lipschitz inverse of f .
By the definition of the metric on X',) (IBHS17al Definition 2.1]), we just have to verify
that if z,y lie in some Fy for U € U3, then their images are uniformly close in V. By

assumption, x,y lie close to a quasiflat with uniform constant, so that the conclusion follows
from Theorem [6.2 d

We can also now prove Theorem [G] from the introduction.

Proof of Theorem[G. In the case where X is a mapping class group, we have seen that the
standard HHS structure (X, &) is asymphoric of finite rank v equal to the complexity. Let
il be as in Notation and let ¢ : X — X be the factor map described above. Then any
v—dimensional quasiflat in X has uniformly bounded image in X by Theorem Now,
letting S € & be the unique E—maximal element, we have that ny : X —>CSisa Lipschitz
map, and the theorem follows. ]

Now we turn to the lemmas.

The following lemma identifies possible distance formula terms for pairs of points each in
a given orthant. Roughly, they can be of two types, each corresponding to one of the factors
of the bridge as in Lemma, between the orthants.

Lemma 6.4. There exists T with the following property. Let O, be standard orthants in
X with supports Uy, Us. Suppose that ONO’ is a k—orthant whose support is U. Then for
each x,y € O U O" we have that any U € & with dy(x,y) = T is either nested into some
U’ € Uy nUs or orthogonal to allU' € U.



QUASIFLATS IN HIERARCHICALLY HYPERBOLIC SPACES 55

Proof. Recall that OAQ’ coarsely coincides with go(O’) by Lemma (and also with a
standard orthant whose support is contained in U; N U, thereby describing U).

Let z,y,U be as in the statement. If z,y € O, then by the definition of a standard orthant,
either dy(x,y) is uniformly bounded or U = U’ for some U’ € Uy. If U’ € Uy n Uy, we are
done; otherwise, U’ LV for all V € U by the definition of a standard orthant. An identical
argument works if z,y € O’.

So, assume that z € O',y € O. If U is nested in some element of U;, for some i € {1, 2},
then either U is nested into some element of Uy N Uz, or U is orthogonal to every element
of U by the definition of a standard orthant. Hence, suppose that U is not nested into any
element of U; or Us. In particular, 7 (O) and 7y (O’) have uniformly bounded diameter, so
dy(z,y) = dy(O,0’). Therefore, provided 7 is sufficiently large, dy(z,y) > 7 implies that
dy (0, 0’) is large compared to the constant Ky from Lemma so that conclusion (5| of
the same lemma (applied with any p € go(O’), t1 = a, and to = b) shows that U is orthogonal
to each element of U. g

If the coarse intersection OAQO' is a codimension-1 sub-orthant, then ¢(O U O’) is uniformly
bounded:

Lemma 6.5. There exists C = C(E, o) so that the following holds. Let O,0" be standard
orthants with OAO" a codimension-1 sub-orthant. Then diam3(q(O v 0")) < C.

Proof. Let x € O,y € O'. Let M = {U € & : dy(z,y) > 7}. By Lemmal6.4] each U € M
belongs to a set of pairwise-orthogonal elements of size v (note that in the case that U
is orthogonal to the intersection, this has maximal rank because of the fact that we are
assuming the intersection has co-dimension-1). Hence di/(g(x),q(y)) < 7 forall U e & — 4,
so q(z) is uniformly close to ¢(y) by the uniqueness axiom. O

Proposition 6.6. Suppose that the quasiflat F lies within finite Hausdorff distance of
Ui, Os, where the O; are standard orthants with dpgys(O;, O;) = w0 for i # j. Then for
each pair of distinct orthants O;, Oy there exists a sequence j = jo,...,J51 = k so that the

coarse intersection of Oj, and Oj,,, is an (v — 1)-orthant.

Proof. Passing to an asymptotic cone, we get a bilipschitz copy F of R filled by bilipschitz
copies O; of [0,00)". The intersections of the O; have some basic properties:

Lemma 6.7.
(1) The intersection of O; and O; is bilipschitz equivalent to [0,0)" for some t = (i, j).
(2) t(i,7) = v — 1 if and only if O; and O; coarsely intersect in an (v — 1)-orthant.

Proof. Recall that the coarse intersection of two standard orthants coarsely coincides with
a standard k-orthant, as well as with the gate of one in the other (Lemma [4.11)). We now
show the following, which implies both statements: if the ultralimits A, B of uniformly
hierarchically quasiconvex sets have non-empty intersection, then their intersection is the
ultralimit g4 (B) of the gates. By Lemma [1.20/ (3)), ga(B) is contained in A n B (this uses
d(A, B) = 0). Lemma [1.20}(6) implies that the other containment holds. O

Now, consider the subspace X < F consisting of the union of all O; n O; for i, j with
t(i,j) = v—1. Let Y be the set of all O; " O; with i # jand t(i,7) <v—1. Let Y = Jpey O-

Lemma 6.8. F —Y is path-connected.

Proof. In this proof, when referring to homology, we always mean singular homology with
rational coefficients. The goal is to show Ho(F —Y) = Q.

If dim F < 2, then Y is a finite set (which is empty when dim F < 1) and the claim is
clear. Hence suppose that dim F > 3. We argue by induction on |Y|.
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We first claim that for any O € ) and any closed O’ <« O, F — O’ is path-connected and
Hy(F —O'") = 0. We use the fact that, for A, B closed homeomorphic subsets of R”, we have
H.(R" — A) = H,(R” — B), see e.g. [Dol93]. Hence, we can regard O as a coordinate orthant
in R” = F. Hence the claim holds for O’ = O. The fact that H(F — O") = 0 follows from
the fact that Hy(F — O) = 0, since a 1-cycle in F — O’ is homologous to one in F — O by,
for example, a transversality argument. The same holds for Hy(F — O’).

For the inductive step, let A be the union of all but one element of ), and let B be the
remaining one. We have a Mayer-Vietoris sequence:

H{(F—-(AnB)) > Hy(F—-(AuB)) > H(F-A)®Hy(F—-B) > H(F—-(AnB)) — 0.

By the claim above, the first term is 0, the last term is Q, and Hy(F — B) = Q. By induction,
Ho(F — A) = Q. Hence F — (A u B) is connected. O

We now finish the proof of Proposition

Let Oj, Oj, be orthants. We will now produce a sequence O; = Oj,...,0j, = Oy, of
orthants so that ¢(jj, ji+1) = v — 1 for 0 < i <1 —1. Choose x € Int(0;),y € Int(O;) and let
0:[0,1] > F —Y be a path joining them, which is provided by Lemma Let tg be the
maximal ¢ so that o(t) € O;. If tg = 1, then we take [ = 0. Otherwise, there exists O;, # O;
so that O; n Oj, has dimension v — 1 and contains o(t9). Now apply the same argument to
|[to,1] and induct.

The sequence in the cone yields a sequence of orthants in the space with the desired
property. ]
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