## Addendum

# Median structures on asymptotic cones and homomorphisms into mapping class groups 

(Proc. London Math. Soc. (3) (2011) 503-554)

Jason Behrstock, Cornelia Druţu and Mark Sapir

The goal of this addendum to [1] is to show that our methods together with a result of Bestvina, Bromberg and Fujiwara [3, Proposition 5.9] yield a proof of the following theorem.

Theorem 1. If a finitely presented group $\Gamma$ has infinitely many pairwise non-conjugate homomorphisms into $\mathcal{M C G}(S)$, then $\Gamma$ virtually splits (virtually acts non-trivially on a simplicial tree).

This theorem is a particular case of a result announced by Groves. ${ }^{\dagger}$ From private emails received by the authors, it is clear that the methods used by Groves are significantly different. Note that the same new methods allow us to give another proof of the finiteness of the set of homomorphisms from a group with property ( T ) to a mapping class group [1, Theorem 1.2], which is considerably shorter than our original proof; see Corollary 6 and the discussion following it. Theorem 1.2 in [ $\mathbf{1}]$ may equally be obtained from Theorem 1 and the fact that every group with property $(\mathrm{T})$ is a quotient of a finitely presented group with property ( T ) (see [11, Theorem p. 5]).

The property of the mapping class groups given in Theorem 1 can be viewed as another 'rank 1 ' feature of these groups. In contrast, note that a recent result of [ 8 ] shows that the rank 2 lattice $\mathrm{SL}_{3}(\mathbb{Z})$ contains infinitely many pairwise non-conjugate copies of the triangle group $\Delta(3,3,4)=\left\langle a, b \mid a^{3}=b^{3}=(a b)^{4}=1\right\rangle$. Also, as was pointed out to us by Kassabov, although the group $\mathrm{SL}_{3}(\mathbb{Z}[x])$ has property $(\mathrm{T})$ (see [12]), it has infinitely many pairwise non-conjugate homomorphisms into $\mathrm{SL}_{3}(\mathbb{Z})$ induced by ring homomorphisms $\mathbb{Z}[x] \rightarrow \mathbb{Z}$.

The following proposition contains one of the main auxiliary results in $[\mathbf{3}]$ and the key ingredient missed in our treatment of groups with many homomorphisms into mapping class groups in [1].

Proposition 2 (Bestvina, Bromberg and Fujiwara [3, Proposition 5.9]). There exists an explicitly defined finite index torsion-free subgroup $\mathcal{B B F}(S)$ of $\mathcal{M C G}(S)$ such that the set of all sub-surfaces of $S$ can be partitioned into a finite number of subsets $C_{1}, C_{2}, \ldots, C_{s}$, each of which is an orbit of $\operatorname{BBF}(S)$, and any two sub-surfaces in the same subset overlap and have the same complexity.

[^0]The proof of this important result, explained to us by Bestvina, is surprisingly simple: the subgroup $\mathcal{B B F}(S)$ is the subgroup of mapping classes from $\mathcal{M C G}(S)$ acting as an identity on the factor $\pi_{1}(S) / B$ over certain characteristic subgroup $B$ of $\pi_{1}(S)$ of finite index which is explicitly constructed.

We consider the set of colors $K=\{1,2, \ldots, s\}$, and we color each sub-surface of $S$ contained in the subset $C_{i}$ by $i$. Note that the whole surface $S$ has a color which is different from that of any proper sub-surface.

Recall that for every sequence of sub-surfaces $\mathbf{U}$ from $\Pi \mathcal{U} / \omega$, we defined an $\mathbb{R}$-tree $T_{\mathbf{U}}$ (see [1, Notation 4.4]) and that there is an equivariant bi-Lipschitz embedding $\psi$ of $\mathcal{A M}$ into $\prod_{\mathrm{U} \in \Pi \mathcal{U} / \omega} T_{\mathbf{U}}$ (see [1, Corollary 4.17]). Let $C_{k}$ be the set of all sub-surfaces of $S$ with the given color $k \in K$. Let $\pi_{k}$ be the projection of $\prod_{\mathbf{U} \in \Pi \mathcal{U} / \omega} T_{\mathbf{U}}$ onto $\prod_{\mathbf{U} \in \Pi C_{k} / \omega} T_{\mathbf{U}}$.

Remark 3. By [1, Lemma 2.1], we have that $\prod_{U \in \Pi \mathcal{U} / \omega} T_{\mathbf{U}}$ can be written as


In what follows, we use the notion of tree-graded space introduced in [6].

Theorem 4. Consider an arbitrary color $k \in K$ and the image $T_{k}=\pi_{k} \psi(\mathcal{A} \mathcal{M})$.
For every sub-surface $\mathbf{U} \in \Pi C_{k} / \omega$, consider the tree $T_{\mathbf{U}}^{\prime}=T_{\mathbf{U}} \times \prod_{\mathbf{V} \in \Pi C_{k} / \omega \backslash\{\mathbf{U}\}}\left\{a_{\mathbf{V}}\right\}$, where $a_{\mathbf{V}}$ is the point in $T_{\mathbf{V}}$ that is the projection of $\partial \mathbf{U}$ to $T_{\mathbf{V}}$.

The space $T_{k}$ is tree-graded with respect to $T_{\mathbf{U}}^{\prime}$ and with transversal trees reduced to singletons. In particular, it is an $\mathbb{R}$-tree.

Proof. Step 1. We prove by induction on $n$ that, for any finite subset $F \subset \Pi C_{k} / \omega$ of cardinality $n$, the projection $\pi_{F}(\mathcal{A M})$ of $\mathcal{A M}$ onto the finite product $\prod_{\mathbf{U} \in F} T_{\mathbf{U}}$ is an $\mathbb{R}$-tree. The case $n=1$ is obvious, the case $n=2$ follows from [ $\mathbf{1}$, Theorem 4.21, (2)], since the sub-surfaces in $F$ pairwise overlap. Assume that the statement is proved for $n$ and consider $F \subset \Pi C_{k} / \omega, F$ of cardinality $n+1$.

Both $\psi(\mathcal{A M})$ and its projections are geodesic spaces. For $\psi(\mathcal{A M})$ this follows from Proposition 4.18, while for projections it follows from the fact that the distance is $\ell^{1}$. To prove that $\pi_{F}(\psi(\mathcal{A M}))$ is a real tree, it suffices therefore to prove that it is 0-hyperbolic, that is, for every geodesic triangle its three edges have a common point. By Lemma 4.30, the subset $\pi_{F}(\psi(\mathcal{A} \mathcal{M}))$ is a median, thus it suffices to prove that, for an arbitrary triple of points $\boldsymbol{\nu}, \boldsymbol{\rho}$ and $\boldsymbol{\sigma}$ in $\pi_{F}(\psi(\mathcal{A} \mathcal{M}))$ and every geodesic $\mathfrak{g}$ joining $\boldsymbol{\nu}, \boldsymbol{\rho}$ in $\pi_{F}(\psi(\mathcal{A} \mathcal{M}))$, the median point $\boldsymbol{\mu}$ of the triple is on $\mathfrak{g}$.

Assume that there exist $\mathbf{U}$ and $\mathbf{V}$ such that the projection of $\boldsymbol{\mu}$ on $T_{\mathbf{U}} \times T_{\mathbf{V}}$ is not $(v, u)$. Assume that it is $(x, u)$, with $x \neq v$ (the other case is similar).

Consider the projection on the product $\prod_{\mathbf{Y} \in F \backslash\{\mathbf{V}\}} T_{\mathbf{Y}}$. By the inductive hypothesis, $\pi_{F}(\psi(\mathcal{A M}))$ projects onto a real tree, in particular, there exists $\boldsymbol{\mu}^{\prime}$ on $\mathfrak{g}$ such that its projection on $\prod_{\mathbf{Y} \in F \backslash\{\mathbf{V}\}} T_{\mathbf{Y}}$ coincides with that of $\boldsymbol{\mu}$. In particular, $\pi_{\mathbf{U}}\left(\mu^{\prime}\right)=\pi_{\mathbf{U}}(\mu)=x$. This implies that the projection on $T_{\mathbf{U}} \times T_{\mathbf{V}}$ of both $\boldsymbol{\mu}^{\prime}$ and $\boldsymbol{\mu}$ is $(x, v)$ (the unique point with first coordinate $x$ ). This implies that all coordinates of $\boldsymbol{\mu}^{\prime}$ and $\boldsymbol{\mu}$ are equal, thus the two points coincide.

Assume now that, for every pair $\mathbf{U}$ and $\mathbf{V}$ in $F$, the projection of $\boldsymbol{\mu}$ on $T_{\mathbf{U}} \times T_{\mathbf{V}}$ is $(v, u)$. Fix such a pair. By the inductive hypothesis and an argument as above, there exists $\boldsymbol{\mu}_{1} \in \mathfrak{g}$ such that its projection on $\prod_{\mathbf{Y} \in F \backslash\{\mathbf{U}\}} T_{\mathbf{Y}}$ coincides with that of $\boldsymbol{\mu}$. Similarly, there exists $\boldsymbol{\mu}_{2} \in \mathfrak{g}$ such that its projection on $\prod_{\mathbf{Y} \in F \backslash\{\mathbf{V}\}} T_{\mathbf{Y}}$ coincides with that of $\boldsymbol{\mu}$. Then on $T_{\mathbf{U}} \times T_{\mathbf{V}}$ the point $\boldsymbol{\mu}_{1}$ projects onto some $(x, u)$ and $\boldsymbol{\mu}_{2}$ projects onto some $(v, y)$. This implies that there
exists some $\boldsymbol{\mu}^{\prime}$ on $\mathfrak{g}$ between $\boldsymbol{\mu}_{1}$ and $\boldsymbol{\mu}_{2}$ projecting on $T_{\mathbf{U}} \times T_{\mathbf{V}}$ in $(v, u)$. Note that, for every $\mathbf{Y} \in F \backslash\{\mathbf{U}, \mathbf{V}\}$, the projection of $\boldsymbol{\mu}^{\prime}$ coincides with that of $\boldsymbol{\mu}_{1}$ and $\boldsymbol{\mu}_{2}$, hence with that of $\boldsymbol{\mu}$. It follows that $\boldsymbol{\mu}^{\prime}=\boldsymbol{\mu}$.

We now prove by induction on $n$ that, for any finite $F \subset \Pi C_{k} / \omega$ of cardinality $n$, the projection $\pi_{F}(\mathcal{A M})$ of $\mathcal{A M}$ onto the finite product $\prod_{\mathbf{U} \in F} T_{\mathbf{U}}$ is tree-graded with respect to the trees $T_{\mathbf{U}}^{F}=T_{\mathbf{U}} \times \prod_{\mathbf{V} \in F \backslash\{\mathbf{U}\}}\left\{a_{\mathbf{V}}\right\}$, where $a_{\mathbf{V}}$ is the projection of $\partial \mathbf{U}$ to $T_{\mathbf{V}}$. It only remains to prove that $\pi_{F}(\mathcal{A M})$ is complete and that it is covered by $T_{\mathrm{U}}^{F}$. Both statements are proved simultaneously when proving that $\pi_{F}(\mathcal{A M})$ equals the union $\bigcup_{U \in F} T_{\mathrm{U}}^{F}$. Clearly, the union is contained in $\pi_{F}(\mathcal{A} \mathcal{M})$. Conversely, consider a point $x=\left(x_{1}, \ldots, x_{n+1}\right)$ in $\pi_{F}(\mathcal{A M})$. The inductive hypothesis applied to $\left(x_{1}, \ldots, x_{n}\right)$ and ( $x_{2}, \ldots, x_{n+1}$ ) implies that, for each $n$-tuple, there exists $\mathbf{U} \in F$ such that, for every $\mathbf{V} \neq \mathbf{U}$, the corresponding coordinate is $\pi_{\mathbf{V}}(\mathbf{U})$, that is, the point in $T_{\mathbf{V}}$ which is the projection of $\partial \mathbf{U}$ to $T_{\mathbf{V}}$. Assume that in $\left(x_{1}, \ldots, x_{n}\right)$, the surface $\mathbf{U}$ corresponds to the first coordinate, and that in $\left(x_{2}, \ldots, x_{n+1}\right)$ the surface $\mathbf{U}^{\prime}$ corresponds to the last coordinate. The projection $\left(x_{1}, x_{n+1}\right)$ of $x$ on $T_{\mathbf{U}} \times T_{\mathbf{U}^{\prime}}$ is either of the form $\left(\pi_{\mathbf{U}}\left(\mathbf{U}^{\prime}\right), x_{n+1}\right)$ or ( $\left.x_{1}, \pi_{\mathbf{U}^{\prime}}(\mathbf{U})\right)$. In the first case, $x$ is in $\prod_{\mathbf{V} \in F \backslash\left\{\mathbf{U}^{\prime}\right\}}\left\{\pi_{\mathbf{V}}\left(\mathbf{U}^{\prime}\right)\right\} \times T_{\mathbf{U}^{\prime}}$ and in the second case, $x$ is in $T_{\mathbf{U}} \times \prod_{\mathbf{V} \in F \backslash\{\mathbf{U}\}}\left\{\pi_{\mathbf{V}}(\mathbf{U})\right\}$.

Step 2. We now prove the statements on $T_{k}$. First, we prove that $T_{k}$ is a real tree, using an approximation argument similar to that in the proof that $\mathcal{A M}$ is a median space [ $\mathbf{1}$, Theorem 4.25]. Since $T_{k}$ is a complete geodesic space, it suffices to prove that it is zero hyperbolic. Thus, it suffices to prove that, for every triple $\boldsymbol{\alpha}, \boldsymbol{\beta}$ and $\boldsymbol{\gamma}$ and $\boldsymbol{\mu}$ being its median point, $\boldsymbol{\mu}$ is on any geodesic $\mathfrak{g}$ joining $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ in $\psi(\mathcal{A M})$.

Assume that the distance from $\boldsymbol{\mu}$ to $\mathfrak{g}$ is $\varepsilon>0$. Take a finite set of surfaces $F$ such that the projections of $\boldsymbol{\alpha}, \boldsymbol{\beta}$ and $\boldsymbol{\mu}$ in $\prod_{\mathbf{U} \notin F} T_{\mathbf{U}}$ compose a set of diameter $\varepsilon / 4$. Since the projection on the Cartesian product $\prod_{\mathbf{U} \in F} T_{\mathbf{U}}$ is a tree, the projection of $\mathfrak{g}$ contains that of $\boldsymbol{\mu}$, hence there exists $\boldsymbol{\mu}^{\prime}$ on $\mathfrak{g}$ with the same projection as $\boldsymbol{\mu}$ in $\prod_{\mathbf{U} \in F} T_{\mathbf{U}}$.
Then the distance from $\boldsymbol{\mu}^{\prime}$ to $\boldsymbol{\mu}$ is

$$
\sum_{\mathbf{U} \notin F} \widetilde{\operatorname{dist}_{\mathbf{U}}}\left(\boldsymbol{\mu}^{\prime}, \boldsymbol{\mu}\right) \leqslant \sum_{\mathbf{U} \notin F}\left[\widetilde{\operatorname{dist}_{\mathbf{U}}}\left(\boldsymbol{\mu}^{\prime}, \boldsymbol{\alpha}\right)+\widetilde{\operatorname{dist}_{\mathbf{U}}}(\boldsymbol{\alpha}, \boldsymbol{\mu})\right] \leqslant \varepsilon / 4+\varepsilon / 4=\varepsilon / 2 .
$$

The tree $T_{k}$ is complete. Consider two points $\boldsymbol{\mu}$ and $\boldsymbol{\nu}$ in $\mathcal{A} \mathcal{M}$. There exists a countable family $\mathcal{C} \subset \Pi C_{k} / \omega$ equal to the set of sub-surfaces $\left\{\mathbf{U} ; \operatorname{dist}_{\mathbf{U}}(\boldsymbol{\mu}, \boldsymbol{\nu})>0\right\}$. Let $\mathfrak{h}$ be a hierarchical path joining $\boldsymbol{\mu}$ and $\boldsymbol{\nu}$. Let $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ be the endpoints of a minimal sub-arc $\mathfrak{h}_{\mathbf{U}}$ on $\mathfrak{h}$ such that $\widetilde{\operatorname{dist}}_{\mathbf{U}}(\boldsymbol{\alpha}, \boldsymbol{\beta})=\widetilde{\operatorname{dist}}_{\mathbf{U}}(\boldsymbol{\mu}, \boldsymbol{\nu})$. Assume that there exists $\mathbf{V} \neq \mathbf{U}, \mathbf{V} \in \mathcal{C}$ such that $\widetilde{\operatorname{dist}}_{\mathbf{V}}(\boldsymbol{\alpha}, \boldsymbol{\beta})>0$. Then, by projecting $\mathfrak{h}$ on $T_{\mathrm{U}} \times T_{\mathrm{V}}$ and using the tree-graded structure of the projection of $\mathcal{A} \mathcal{M}$, we obtain that the arc $\mathfrak{h}_{\mathbf{U}}$ has a strict sub-arc of endpoints $\boldsymbol{\alpha}^{\prime}$ and $\boldsymbol{\beta}^{\prime}$ such that dist $\mathbf{U}\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}^{\prime}\right)=$ $\widetilde{\text { dist }}_{\mathbf{U}}(\boldsymbol{\mu}, \boldsymbol{\nu})$. This contradicts the minimality of $\mathfrak{h}_{\mathbf{U}}$. It follows that, for every $\mathbf{V} \neq \mathbf{U}, \mathbf{V} \in \mathcal{C}$,
 any sub-surface $\mathbf{V} \neq \mathbf{U}$, the arc $\mathfrak{h}_{\mathbf{U}}$ contains points with a first coordinate distinct from the projection of $\mathbf{V}$ on $T_{\mathbf{U}}$, it follows that $a_{\mathbf{V}}$ is the projection of $\mathbf{U}$ on $T_{\mathbf{V}}$. Hence, $\mathfrak{h}_{\mathbf{U}}$ is contained in the tree $T_{\mathbf{U}}^{\prime}$, and the arcs $\mathfrak{h}_{\mathbf{U}}$ with $\mathbf{U} \in \mathcal{C}$ cover $\mathfrak{h}$ up to a subset of zero measure.

As an immediate consequence of Theorem 4, we obtain the following, which also immediately follows from the main result of [3].

Corollary 5. There exists an equivariant embedding of $\mathcal{A M}$ into a finite product of $\mathbb{R}$-trees.

Now, let $\Gamma$ have infinitely many pairwise non-conjugate homomorphisms into $\mathcal{M C G}(S)$. Theorem 4 and Proposition 2 imply that $\Gamma$ has a finite index subgroup $\Gamma^{\prime}$ that acts on the
$\mathbb{R}$-trees $T_{k}$ for each $k \in K$; further, since the global action is non-trivial (that is, without a global fixed point) at least one of the actions on a factor tree is non-trivial.

Corollary 5 and the standard argument of Bestvina [2] and Paulin [10] imply the following corollary.

Corollary 6. If a finitely generated group $\Lambda$ has infinitely many pairwise non-conjugate homomorphisms into the group $\mathcal{M C G}(S)$, then $\Lambda$ has a subgroup of index at most $|K|$ which is not an $F \mathbb{R}$-group (that is, it acts non-trivially on an $\mathbb{R}$-tree).

Since in a group with property $(\mathrm{T})$ every subgroup of finite index has property $F \mathbb{R}$ (see [10]), Corollary 6.3 of [ $\mathbf{1}$ ] follows from Corollary 6.

It is still unknown if every finitely generated group acting non-trivially on an $\mathbb{R}$-tree also acts non-trivially on a simplicial tree. In order to obtain such an action in our case, we apply the theorem of Bestvina and Feighn below.

Definition 7. Given an action of a group on an $\mathbb{R}$-tree, an arc $\mathfrak{g}_{0}$ is called stable if the stabilizer of every non-trivial sub-arc of $\mathfrak{g}_{0}$ is the same as the stabilizer of $\mathfrak{g}_{0}$.

The action is called stable if every arc $\mathfrak{g}$ contains a non-trivial stable sub-arc $\mathfrak{g}_{0}$.

Theorem 8 (Bestvina-Feighn [4, Theorem 9.5]). Let $G$ be a finitely presented group with a non-trivial, minimal and stable action on an $\mathbb{R}$-tree $T$. Then either (1) $G$ splits over an extension $E$-by-cyclic subgroup where $E$ is the stabilizer of a non-trivial arc of $T$, or (2) $T$ is a line. In the second case, $G$ has a subgroup, of index at most 2 that is the extension of the kernel of the action by a finitely generated free abelian group.

In order to show the stability of the action, as in [7], we describe stabilizers of pairs of points and of tripods in $T_{k}$.

Lemmas 9 and 11 describing stabilizers of arcs and tripods have similar proofs as Lemmas 5.14 and 5.15 in the main text.

Lemma 9. There exists a constant $N=N(S)$, such that if $\boldsymbol{\mu}$ and $\boldsymbol{\nu}$ are distinct points in $\mathcal{A M}$ that are not in the same piece, then the stabilizer $\operatorname{stab}(\boldsymbol{\mu}, \boldsymbol{\nu})$ is the extension of a finite subgroup of cardinality at most $N$ by an abelian group.

Proof. By hypothesis, for every representatives $\left(\mu_{n}\right)$ and $\left(\nu_{n}\right)$ of $\boldsymbol{\mu}$ and $\boldsymbol{\nu}$, respectively, the following is satisfied:

$$
\begin{equation*}
\lim _{\omega} \operatorname{dist}_{\mathcal{C}(S)}\left(\mu_{n}, \nu_{n}\right)=\infty \tag{1}
\end{equation*}
$$

Let $\boldsymbol{g}=\left(g_{n}\right)^{\omega}$ be an element in $\operatorname{stab}(\boldsymbol{\mu}, \boldsymbol{\nu})$. Then

$$
\delta_{n}(\boldsymbol{g})=\max \left(\operatorname{dist}\left(\mu_{n}, g_{n} \mu_{n}\right), \operatorname{dist}\left(\nu_{n}, g_{n} \nu_{n}\right)\right)
$$

satisfies $\delta_{n}(\boldsymbol{g})=o\left(d_{n}\right)$. Let $\mathfrak{q}_{n}$ be a hierarchy path joining $\mu_{n}$ and $\nu_{n}$ and let $\bar{\mu}_{n}$ and $\bar{\nu}_{n}$ be points on $\mathfrak{q}_{n}$ at distance $\varepsilon d_{n}$ from $\mu_{n}$ and $\nu_{n}$, respectively. By hypothesis, for $\varepsilon$ small enough $\lim _{\omega} \operatorname{dist}_{\mathcal{C}(S)}\left(\bar{\mu}_{n}, \bar{\nu}_{n}\right)=\infty$. Thus, there exist $\tilde{\mu}_{n}$ and $\tilde{\nu}_{n}$ on $\mathfrak{q}_{n}$ between $\bar{\mu}_{n}$ and $\bar{\nu}_{n}$ and at respective $\mathcal{C}(S)$-distance 3 from them. Denote by $\mathfrak{q}_{n}^{\prime}$ the sub-arc of $\mathfrak{q}_{n}$ between $\tilde{\mu}_{n}$ and $\tilde{\nu}_{n}$.

Divide $\mathfrak{q}_{n}^{\prime}$ into three consecutive sub-arcs that shadow geodesics in $\mathcal{C}(S)$ of equal length $\operatorname{dist}_{\mathcal{C}(S)}\left(\tilde{\mu}_{n}, \tilde{\nu}_{n}\right) / 3$. Let us show that there exists a point $x=\left(x_{n}\right)^{\omega}$ on the first part and a point $y=\left(y_{n}\right)^{\omega}$ on the third part which are at distance $O(1)$ from $g \mathfrak{p}^{\prime}$ (the points do not depend on $g$ ).

All large domains on $\mathfrak{q}_{n}^{\prime}$ are $\omega$-almost surely large domains for $g_{n} \mathfrak{q}_{n}$. Suppose that the whole surface $S$ is the only large domain of a part $\mathfrak{p}_{n}$ of $\mathfrak{q}_{n}^{\prime}$ of size $O\left(d_{n}\right)$. Then we can take a projection of $\mathfrak{g}_{n}$ and $g_{n} \mathfrak{g}_{n}$ to the curve complex $\mathcal{C}(S)$ and deduce from the hyperbolicity of $\mathcal{C}(S)$ that the geodesics $\mathfrak{p}_{n}^{\prime}$ and $g_{n} \mathfrak{p}_{n}^{\prime}$ are at $\mathcal{C}(S)$-distance $O(1) \omega$-almost surely (a.s.). Thus, in that case we can take points $\left(x_{n}\right)^{\omega}$ and $\left(y_{n}\right)^{\omega}$ arbitrarily.
Suppose that such a large domain in $\mathfrak{p}_{n}$ cannot be found $\omega$-a.s. Note that the distance between the entry points of $\mathfrak{g}_{n}^{\prime}$ and $g_{n} \mathfrak{g}_{n}^{\prime}$ into large domains $S^{\prime} \subset S$ are at $\mathcal{C}(S)$-distance 1 . Thus, in this case, we can take $\left(x_{n}\right)^{\omega}$ and $\left(y_{n}\right)^{\omega}$ to be the entrance points of the geodesic into large domains.

Obviously, $\lim _{\omega} \operatorname{dist}_{\mathcal{C}(S)}\left(x_{n}, y_{n}\right)=\infty$.
For every $\boldsymbol{g}=\left(g_{n}\right)^{\omega} \in \operatorname{stab}(\boldsymbol{\mu}, \boldsymbol{\nu})$, we define a sequence of translation numbers. Since $x_{n}$ is $\omega$-almost surely at distance $O(1)$ from a point $x_{n}^{\prime}$ on $g_{n} q_{n}$, define $\ell_{x}\left(g_{n}\right)$ as $(-1)^{\epsilon} \operatorname{dist}_{\mathcal{C}(S)}\left(x_{n}, g_{n} x_{n}\right)$, where $\epsilon=0$, if $x_{n}^{\prime}$ is nearer to $g_{n} \mu_{n}$ than $g_{n} x_{n}$ and $\epsilon=1$, otherwise.
Let $\ell_{x}: \operatorname{stab}(\mu, \nu) \rightarrow \Pi \mathbb{R} / \omega$ be defined by $\ell_{x}(\boldsymbol{g})=\left(\ell_{x}\left(g_{n}\right)\right)^{\omega}$. It is easy to see that $\ell_{x}$ is a quasi-morphism, that is,

$$
\begin{equation*}
\left|\ell_{x}(\boldsymbol{g h})-\ell_{x}(\boldsymbol{g})-\ell_{x}(\boldsymbol{h})\right| \leqslant \omega O(1) . \tag{2}
\end{equation*}
$$

It follows that $\left|\ell_{x}([\boldsymbol{g}, \boldsymbol{h}])\right| \leqslant \omega O(1)$.
The above and a similar argument for $y_{n}$ imply that, for every commutator, $\boldsymbol{c}=\lim _{\omega}\left(c_{n}\right)$, in the stabilizer of $\boldsymbol{\mu}$ and $\boldsymbol{\nu}, \operatorname{dist}_{\mathcal{C}(S)}\left(x_{n}, c_{n} x_{n}\right)$ and $\operatorname{dist}_{\mathcal{C}(S)}\left(y_{n}, c_{n} y_{n}\right)$ are at most $O(1)$. Bowditch's acylindricity result [5, Theorem 1.3; Lemma 2.1] imply that the set of commutators of $\operatorname{stab}(\boldsymbol{\mu}, \boldsymbol{\nu})$ has uniformly bounded cardinality, say, $N$. Then any finitely generated subgroup $G$ of $\operatorname{stab}(\boldsymbol{\mu}, \boldsymbol{\nu})$ has conjugacy classes of cardinality at most $N$, that is, $G$ is an $F C$-group [9]. By [ $\mathbf{9}$ ], the set of all torsion elements of $G$ is finite, and the derived subgroup of $G$ is finite of cardinality $\leqslant N(S)$ (by Lemma 2.13).

Lemma 10 [7, Lemma 2.20, (2)]. Let $\mathbb{F}$ be a tree-graded space. For every non-trivial geodesic $\mathfrak{g}$ in the tree obtained by collapsing non-trivial pieces, $T=\mathbb{F} / \approx$, there exists a nontrivial geodesic $\mathfrak{p}$ in $\mathbb{F}$ such that its projection on $T$ is $\mathfrak{g}$, and such that given an isometry $\phi$ of $\mathbb{F}$ permuting the pieces, the isometry $\tilde{\phi}$ of $T$ induced by $\phi$ fixes $\mathfrak{g}$ pointwise if and only if $\phi$ fixes the set of cut-points Cutp (p) pointwise.

The quotient tree $\mathcal{A} \mathcal{M} / \approx$ is described in [ $\mathbf{1}$, Lemma 3.8].

Lemma 11. Let $\widetilde{\boldsymbol{\mu}}_{1}, \widetilde{\boldsymbol{\mu}}_{2}$ and $\widetilde{\boldsymbol{\mu}}_{3}$ be three points in the quotient tree $\mathcal{A} \mathcal{M} / \approx$ which form a non-trivial tripod. Then the stabilizer $\operatorname{stab}\left(\widetilde{\boldsymbol{\mu}}_{1}, \widetilde{\boldsymbol{\mu}}_{2}, \widetilde{\mu}_{3}\right)$ in $\mathcal{M C G}(S)_{b}^{\omega}$ is a finite subgroup of cardinality at most $N=N(S)$.

Proof. For every $i \in\{1,2,3\}$ let $\mathfrak{g}_{i}$ denote the geodesic joining $\widetilde{\boldsymbol{\mu}}_{j}$ and $\widetilde{\boldsymbol{\mu}}_{k}$ in $T$, where $\{i, j, k\}=\{1,2,3\}$, and let $\mathfrak{p}_{i}$ denote a geodesic in $\mathcal{A M}$ associated to $\mathfrak{g}_{i}$ by Lemma 10. By eventually replacing the endpoints of $\mathfrak{p}_{i}$ with cut-points in their interiors, we may assume that the three geodesics $\mathfrak{p}_{1}, \mathfrak{p}_{2}$ and $\mathfrak{p}_{3}$ compose a triangle in $\mathcal{A} \mathcal{M}$ of vertices $\boldsymbol{\alpha}, \boldsymbol{\beta}$ and $\boldsymbol{\gamma}$. Note that the elements in $\operatorname{stab}\left(\widetilde{\boldsymbol{\mu}}_{1}, \widetilde{\boldsymbol{\mu}}_{2}, \widetilde{\boldsymbol{\mu}}_{3}\right)$ fix pointwise all the cut-points of all the geodesics $\mathfrak{p}_{i}$. Since the set of cut-points does not change, we may replace the three geodesics by three paths $\mathfrak{h}^{i}$, each of which is a ultralimit of a sequence of hierarchy paths, $\lim _{\omega}\left(\mathfrak{h}_{n}^{i}\right)$, with the property that the endpoints of $\mathfrak{h}_{n}^{1}, \mathfrak{h}_{n}^{2}$ and $\mathfrak{h}_{n}^{3}$ are in the set of vertices of a triangle, $\mu_{n}^{1}, \mu_{n}^{2}$ and $\mu_{n}^{3}$. Each $\mathfrak{h}_{n}^{i}$
projects onto a geodesic $\gamma_{n}^{i}$ in the curve complex $\mathcal{C}(S)$, and according to [1, Lemma 4.15], we also have $\lim _{\omega}\left(\operatorname{length}\left(\gamma_{n}^{i}\right)\right)=\infty$.

By hyperbolicity of $\mathcal{C}(S)$, for every $a>0$ there exists $b>0$ such that, for any triple of points $x, y, z \in \mathcal{C}(S)$, the intersection of the three $a$-tubular neighborhoods of geodesics $[x, y]$, $[y, z]$ and $[z, x]$ is a set $C_{a}(x, y, z)$ of diameter at most $b$. In particular, for every $n$, the three $a$-tubular neighborhoods of the geodesics $\gamma_{n}^{1}, \gamma_{n}^{2}$ and $\gamma_{n}^{3}$ intersect in a set $C_{n}$ of diameter at most $b$. Fix an $\epsilon>0$ and consider a sub-path $\mathfrak{k}_{n}^{1}$ of $\mathfrak{h}_{n}^{1}$ such that the limit path $\mathfrak{k}_{1}=\lim _{\omega}\left(\mathfrak{k}_{n}^{1}\right)$ has endpoints at dist-distance $\epsilon$ and $2 \epsilon$ from $\boldsymbol{\mu}_{2}$. Consider a (sufficiently) large proper domain $Y_{n}^{2}$ for $\mathfrak{k}_{n}^{1}$. If no proper large domain exists for $\mathfrak{k}_{n}^{1}$ (that is, the only large domain for this hierarchy path is $S$ ), then pick instead a marking $\rho_{n}^{1}$ on $\mathfrak{k}_{n}^{1}$. Since we started with a nontrivial tripod, for $\epsilon$ small enough the sub-arc $\mathfrak{k}_{1}$ is at positive dist-distance from $\mathfrak{h}_{2}$, hence $Y_{n}^{2}$ is $\omega$-almost surely not a large domain of $\mathfrak{h}_{n}^{2}$ (or, in the second case, $\rho_{n}^{1}$ is not at uniformly bounded $\mathcal{C}(S)$-distance from $\mathfrak{h}_{n}^{2}$ ). Therefore, $Y_{n}^{2}$ is a large domain of $\mathfrak{h}_{n}^{3}$ (respectively, $\rho_{n}^{1}$ is at $\mathcal{C}(S)$-distance $O(1)$ from $\left.\mathfrak{h}_{n}^{3}\right)$. Let $g=\left(g_{n}\right)^{\omega}$ be an element of $\operatorname{stab}\left(\widetilde{\boldsymbol{\mu}}_{1}, \widetilde{\boldsymbol{\mu}}_{2}, \widetilde{\mu}_{3}\right)$. Consider any geodesic quadrangle with two of the opposite edges being $\mathfrak{h}_{n}^{1}$ and $g_{n} \mathfrak{h}_{n}^{1}$. Since $\mathfrak{k}_{1}$ is at positive dist-distance both from $\boldsymbol{\mu}_{2}$ and from $\boldsymbol{\mu}_{3}$, the domain $Y_{n}^{2}$ (or the marking $\rho_{n}^{1}$ ) cannot be at uniformly bounded $C(S)$-distance from the edges $\left[\mu_{n}^{2}, g_{n} \mu_{n}^{2}\right]$ and $\left[\mu_{n}^{3}, g_{n} \mu_{n}^{3}\right]$ of the quadrangle. Thus, $Y_{n}^{2}$ can only be a large domain of $\mathfrak{h}_{n}^{1}$ and $g_{n} \mathfrak{h}_{n}^{1}$ (respectively, only these two edges contain points at $\mathcal{C}(S)$-distance $O(1)$ from $\left.\rho_{n}^{1}\right)$. A similar argument shows that $Y_{n}^{2}$ is a large domain of (or $\rho_{n}^{1}$ is at $\mathcal{C}(S)$-distance $O(1)$ from) $g_{n} \mathfrak{h}_{n}^{3}$.
In a similar manner, we take a sub-path $\mathfrak{k}_{n}^{2}$ of $\mathfrak{h}_{n}^{2}$ such that the limit path $\mathfrak{k}_{2}=\lim \omega\left(\mathfrak{k}_{n}^{2}\right)$ has endpoints at dist-distance $\epsilon$ and $2 \epsilon$ from $\boldsymbol{\mu}_{1}$; we fix $Y_{n}^{1}$ a proper large domain for $\mathfrak{k}_{n}^{2}$ (or a marking $\rho_{n}^{1}$ on $\mathfrak{k}_{n}^{2}$ if no such domain exists). Then we show that $Y_{n}^{1}$ is also a large domain for $\mathfrak{h}_{n}^{3}, g_{n} \mathfrak{h}_{n}^{2}$ and $g_{n} \mathfrak{h}_{n}^{3}$ (respectively, $\rho_{n}^{1}$ is at $\mathcal{C}(S)$-distance $O(1)$ from these paths). Likewise, we find a large domain $Y_{n}^{3}$ for $\mathfrak{h}_{n}^{1}$ and $\mathfrak{h}_{n}^{2}$ and their translations by $g_{n}$ (or a marking $\rho_{n}^{3}$ at $C(S)$-distance $O(1)$ from all these paths).
Let $\widehat{\mathfrak{h}}_{n}^{1}$ be the sub-arc of $\mathfrak{h}_{n}^{1}$ between the sub-arcs corresponding to the domains $Y_{n}^{2}$ and $Y_{n}^{3}$ (respectively, the sub-arc between the markings $\rho_{n}^{2}$ and $\rho_{n}^{3}$ ), and $\widehat{\gamma}_{n}^{1}$ its projection into the complex of curves. Note that $\widehat{\gamma}_{n}^{1}$ is a sub-arc of $\gamma_{n}^{1}$. Likewise consider $\widehat{\mathfrak{h}}_{n}^{i}$ and $\widehat{\gamma}_{n}^{i}$ for $i=2,3$. The set $C_{n}$ equals also the intersection of the three $a$-tubular neighborhoods of the geodesics $\widehat{\gamma}_{n}^{1}, \widehat{\gamma}_{n}^{2}$ and $\widehat{\gamma}_{n}^{3}$. Indeed, it clearly contains this intersection. On the other hand, the existence of a point in $C_{n}$ not in the intersection would imply, up to reindexing, the existence of a point in $\gamma_{n}^{1} \backslash \widehat{\gamma}_{n}^{1}$ at finite $\mathcal{C}(S)$-distance from both $\gamma_{n}^{2}$ and $\gamma_{n}^{3}$. All elements in $\gamma_{n}^{1} \backslash \widehat{\gamma}_{n}^{1}$ are projections in $\mathcal{C}(S)$ of sub-arcs of $\mathfrak{h}_{n}^{1}$ with limits at dist-distance at most $2 \epsilon$ from either $\boldsymbol{\mu}_{2}$ or $\boldsymbol{\mu}_{3}$. For $\epsilon$ small enough these limits are therefore at positive dist-distance from either $\mathfrak{h}_{2}$ or $\mathfrak{h}_{3}$, hence the ultralimit of the $\mathcal{C}(S)$-distance of the corresponding sequence of sub-arcs of $\mathfrak{h}_{n}^{1}$ either to $\mathfrak{h}_{n}^{2}$ or to $\mathfrak{h}_{n}^{3}$ is $\infty$.
The translation $g_{n} C_{n}$ is the intersection of the three $a$-tubular neighborhoods of the geodesics $g_{n} \widehat{\gamma}_{n}^{1}, g_{n} \widehat{\gamma}_{n}^{2}$ and $g_{n} \widehat{\gamma}_{n}^{3}$. For every $i$, on the path $g_{n} \mathfrak{h}_{n}^{i}$ the two large domains $Y_{n}^{j}$ and $g_{n} Y_{n}^{j}$ occur such that the corresponding sub-arcs have limits at dist zero. Then with an argument as above, it can be proved that $g_{n} C_{n}$ is also the intersection of three $a$-tubular neighborhoods of geodesics of $\mathcal{C}(S)$ joining the projections of $Y_{n}^{1}, Y_{n}^{2}$ and $Y_{n}^{3}$. It follows that $C_{n}$ and $g_{n} C_{n}$ are at the Hausdorff distance at most $D=D(S)$.

According to the above, there exist $\lambda_{n}$ satisfying $\lim _{\omega}\left(\lambda_{n}\right)=\infty$ and points $\alpha_{n}$ on $\gamma_{n}^{1}$ at distance at least $2 \lambda_{n}$ from the projections of the domains $Y_{n}^{2}, Y_{n}^{3}, g_{n} Y_{n}^{2}$ and $g_{n} Y_{n}^{3}$ and such that $g_{n} \alpha_{n}$ is at distance $O(1)$ from $\alpha_{n}$. We pick $\beta_{n}$ on $\gamma_{n}^{1}$ at distance $\lambda_{n}$ from $\alpha_{n}$. Then $g_{n} \beta_{n}$ is on $g_{n} \gamma_{n}^{1}$ at distance $\lambda_{n}$ from $g_{n} \alpha_{n}$.

Since $\beta_{n}$ is on a geodesic between $\alpha_{n}$ and the projection of $Y_{n}^{2}$, say, and both endpoints are at distance $O(1)$ from $g_{n} \gamma_{n}^{1}$, it follows that there exists $\beta_{n}^{\prime}$ on $g_{n} \gamma_{n}$ at distance $O(1)$ from $\beta_{n}$. It follows that $\beta_{n}^{\prime}$ is at distance $\lambda_{n}+O(1)$ from $g_{n} \alpha_{n}$, hence it is at distance $O(1)$ from $g_{n} \beta_{n}$. We
have thus obtained $\alpha_{n}$ and $\beta_{n}$ at $\mathcal{C}(S)$-distance $\lambda_{n}$ such that $g_{n} \alpha_{n}$ is at $\mathcal{C}(S)$-distance $O(1)$ from $\alpha_{n}$, and $g_{n} \beta_{n}$ is at $\mathcal{C}(S)$-distance $O(1)$ from $\beta_{n}$. It now follows from Bowditch's acylindricity result [1, Lemma 2.1; 5, Theorem 1.3] that stab $\left(\widetilde{\boldsymbol{\mu}}_{1}, \widetilde{\boldsymbol{\mu}}_{2}, \widetilde{\boldsymbol{\mu}}_{3}\right)$ has uniformly bounded cardinality.

Lemma 12. Let $\mathcal{B B F}(S)_{b}^{\omega}$ be the subset in $\Pi_{b} \mathcal{M C G}(S) / \omega$ composed of elements $\left(x_{i}\right)^{\omega}$ with $x_{i} \in \mathcal{B B F}(S) \omega$-almost surely. Then $\mathcal{B B F}(S)_{b}^{\omega}$ is a torsion-free subgroup of index $|\mathcal{M C G}(S) / \mathcal{B B F}(S)|$ in $\Pi_{b} \mathcal{M C G}(S) / \omega$. Moreover, $\mathcal{B B F}(S)_{b}^{\omega}$ acts on each $T_{k}$ faithfully.

Proof. Only the last statement requires a proof. An element $g_{\omega}=\left(g_{n}\right)^{\omega}$ in $\Pi_{b} \mathcal{M C G}(S) / \omega$, which acts by fixing $T_{k}$ pointwise must fix pointwise $T_{\mathbf{U}}$ for each $\mathbf{U} \in \Pi C_{k} / \omega$. In particular, for each $U \in C_{k}$ the mapping class $g_{n}$ fixes $\omega$-almost surely its boundary $\partial U$. Each $C_{k}$ contains a pair of sub-surfaces whose boundaries fill the surface, and the only mapping classes which fix a pair of filling curves are those of finite order (uniformly bounded by the complexity of $S$ ). Hence, only finite-order elements of $\Pi_{b} \mathcal{M C G}(S) / \omega$ can be in the kernel of the homomorphism $\operatorname{BBF}(S)_{b}^{\omega} \rightarrow \operatorname{Isom}\left(T_{k}\right)$. Since $\mathcal{B B F}(S)_{b}^{\omega}$ is torsion-free, the proof is complete.

Corollary 13. A finitely generated $F \mathbb{R}$ group $\Lambda$ cannot have infinitely many pairwise non-conjugate homomorphisms into the group $\mathcal{B B F}(S)$.

Let $\mathbf{U}=\left(U_{i}\right)^{\omega}$ be an element of $\Pi C_{k} / \omega$ and let $T_{\mathbf{U}}^{\prime}$ be the corresponding sub-tree in $T_{k}$.

Lemma 14. (1) The stabilizer in $\mathcal{B B F} \mathcal{F}(S)_{b}^{\omega}$ of a non-trivial arc in $T_{\mathrm{U}}^{\prime}$ has a homomorphism onto a (finite of cardinality at most $N=N(S)$ )-by-abelian subgroup $A$ of $\Pi_{b} \mathcal{M C G}\left(U_{i}\right) / \omega$. The kernel $W$ of that homomorphism acts identically on $T_{\mathrm{U}}^{\prime}$.
(2) The stabilizer in $\operatorname{BBF}(S)_{b}^{\omega}$ of a non-trivial tripod in $T_{\mathbf{U}}^{\prime}$ has a homomorphism onto a finite of cardinality at most $N=N(S)$ subgroup of $\Pi_{b} \mathcal{M C G}\left(U_{i}\right) / \omega$; the kernel of that homomorphism is $W$.

Proof. Let $g$ be an element in $\mathcal{B B F}(S)_{b}^{\omega}$ stabilizing a non-trivial arc $\mathfrak{h}$ in $T_{\mathbf{U}}^{\prime}$. Then $g$ stabilizes $\mathbf{U}$. Indeed, we have $g T_{\mathbf{U}}^{\prime}=T_{g \mathbf{U}}^{\prime}$. If $g \mathbf{U} \neq \mathbf{U}$, then $T_{\mathbf{U}}^{\prime}$ and $T_{g \mathbf{U}}^{\prime}$ intersect at more than one point (since they both contain $\mathfrak{h}$ ), which is impossible since these trees are the pieces in a tree-graded structure. Therefore, the stabilizer of $\mathfrak{h}$ in $\mathcal{B B} \mathcal{F}(S)_{b}^{\omega}$ must stabilize $\mathbf{U}$. Hence, there exists a homomorphism from that stabilizer to $\mathcal{M C G}_{b}(\mathbf{U})$ whose kernel fixes $T_{\mathbf{U}}^{\prime}$ pointwise. By Lemma 9 the image $A$ of that homomorphism is (finite of cardinality at most $N=N(S)$ )-by-abelian.
If instead of the stabilizer of an arc in $T_{\mathbf{U}}^{\prime}$ we consider the stabilizer of a tripod, then the argument is similar, except that we use Lemma 11 instead of 9 .

Lemma 15. Let $\Lambda$ be a finitely generated group with infinitely many pairwise non-conjugate homomorphisms into $\mathcal{M C G}(S)$. Then $\Lambda$ contains a subgroup $\Lambda^{\prime}$ of index at most $|K|$ which acts on each of the limit trees $T_{k}$. Moreover, each of the actions of $\Lambda^{\prime}$ on $T_{k}$ is stable.

Proof. That $\Lambda$ contains a subgroup $\Lambda^{\prime}$ of index at most $|K|$ which acts on each of the trees $T_{k}$ follows immediately from Corollary 5 . We now prove that these actions are stable.

By Theorem 4, the tree $T_{k}$ is a tree-graded space with pieces of the trees $T_{\mathbf{U}}^{\prime}$ and with all the transversal trees consisting of singletons. Hence, every geodesic $\mathfrak{g}$ in $T_{k}$ is covered, up to a subset of measure zero, by (countably many) non-trivial arcs in trees $T_{\mathbf{U}}^{\prime}$.

Consider an arbitrary $\mathbf{U} \in \Pi \mathcal{U} / \omega$ and the intersection of $\Lambda^{\prime}$ with the stabilizer of $T_{\mathbf{U}}^{\prime}$ in $\mathcal{M C G}_{b}^{\omega}(S)$, denoted by $\Lambda_{\mathbf{U}}$. In view of Lemma 14 , in order to prove stability, it suffices to prove that stabilizers in $\Lambda_{\mathbf{U}}$ of non-trivial $\operatorname{arcs}$ in $T_{\mathbf{U}}^{\prime}$ satisfy the ascending chain condition. Consider the homomorphism $\pi: \Lambda_{\mathbf{U}} \rightarrow \Pi_{b} \mathcal{M C G}\left(U_{i}\right) / \omega$ defined in Lemma 14. The stabilizer in $\Lambda_{\mathbf{U}}$ of a non-trivial arc $\mathfrak{h}$ in $T_{\mathbf{U}}^{\prime}$ is the inverse image by $\pi$ of the stabilizer of $\mathfrak{h}$ in $\pi\left(\Lambda_{\mathbf{U}}\right)$. Thus, it is enough to prove that stabilizers of arcs in $\pi\left(\Lambda_{\mathbf{U}}\right)$ satisfy the ascending chain condition. According to Lemma 14, the stabilizers of arcs in $\pi\left(\Lambda_{U}\right)$ are (finite of cardinality at most $N(S)$ )-by-abelian, and stabilizers of tripods are finite of cardinality at most $N(S)$. According to [7, Lemma 2.35] an arc with stabilizer in $\pi\left(\Lambda_{\mathbf{U}}\right)$ of order larger than $(N+1)$ ! is stable. (Note that the hypothesis in Lemma 2.35 that the group acting be finitely generated is not needed in the proof.) The ascending chain condition is obviously satisfied on the set of stabilizers of sub-arcs of order at most $(N+1)$ !.

Now Theorem 1 follows from Theorem 8 and Lemma 15.

## References

1. J. Behrstock, C. Druţu and M. Sapir, 'Median structures on asymptotic cones and homomorphisms into mapping class groups', Proc. London Math. Soc. 102 (2011) 503-554.
2. M. Bestvina, 'Degenerations of the hyperbolic space', Duke Math. J. 56 (1988) 143-161.
3. M. Bestvina, K. Bromberg and K. Fujiwara, 'The asymptotic dimension of mapping class groups is finite', Preprint, 2010, arXiv: 1006.1939.
4. M. Bestvina and M. Feighn, 'Stable actions of groups on real trees', Invent. Math. 121 (1995) 287-321.
5. B. Bowditch, 'Tight geodesics in the curve complex', Invent. Math. 171 (2008) 281-300.
6. C. Druţu and M. Sapir, 'Tree-graded spaces and asymptotic cones of groups', Topology 44 (2005) 959-1058, with an appendix by D. Osin and M. Sapir.
7. C. Druţu and M. Sapir, 'Groups acting on tree-graded spaces and splittings of relatively hyperbolic groups', Adv. Math. 217 (2007) 1313-1367.
8. D. D. Long, A. W. Reid and M. Thistlethwaite, 'Zariski dense surface subgroups in $S L(3 ; \mathbb{Z})^{\prime}$, Preprint, 2010, http://www.ma.utexas.edu/users/areid/SL3surfacegroup6.pdf/.
9. B. H. Neumann, 'Groups with finite classes of conjugate elements', Proc. London Math. Soc. 1 (1951) 178-187.
10. F. Paulin, 'Topologie de Gromov équivariante, structures hyperboliques et arbres réels', Invent. Math. 94 (1988) 53-80.
11. Y. Shalom, 'Rigidity of commensurators and irreducible lattices', Invent. Math. 141 (2000) 1-54.
12. Y. Shalom, 'The algebraization of Kazhdan's property (T)', International congress of mathematicians, vol. II (European Mathematical Society, Zürich, 2006) 1283-1310.

## Jason Behrstock

Lehman College
City University of New York
New York, NY 10469
USA
jason.behrstock@lehman.cuny.edu

Cornelia Druţu<br>Mathematical Institute<br>24-29 St Giles<br>Oxford<br>OX1 3LB<br>United Kingdom<br>drutu@maths.ox.ac.uk

Mark Sapir<br>Department of Mathematics<br>Vanderbilt University<br>Nashville, TN 37240<br>USA

m.sapir@vanderbilt.edu


[^0]:    2000 Mathematics Subject Classification 20F65 (primary), 20F69, 20F38, 22F50 (secondary).
    The research of the first author was supported in part by an Alfred P. Sloan Fellowship. The research of the second author was supported in part by the ANR project 'Groupe de recherche de Géométrie et Probabilités dans les Groupes'. The research of the third author was supported in part by NSF grant DMS-0700811.
    ${ }^{\dagger}$ Groves first announced a version of this result at MSRI in 2007 (see http://www.math.cornell.edu/ ~vogtmann/MSRI/groves_daniel415.pdf). More recent announcements by Groves have included stronger versions of Theorem 1.

