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Abstract We study the geometry of non-relatively hyperbolic groups. Generalizing
a result of Schwartz, any quasi-isometric image of a non-relatively hyperbolic space
in a relatively hyperbolic space is contained in a bounded neighborhood of a sin-
gle peripheral subgroup. This implies that a group being relatively hyperbolic with
non-relatively hyperbolic peripheral subgroups is a quasi-isometry invariant. As an
application, Artin groups are relatively hyperbolic if and only if freely decomposable.
We also introduce a new quasi-isometry invariant of metric spaces called metrically
thick, which is sufficient for a metric space to be non-hyperbolic relative to any non-
trivial collection of subsets. Thick finitely generated groups include: mapping class
groups of most surfaces; outer automorphism groups of most free groups; certain
Artin groups; and others. Non-uniform lattices in higher rank semisimple Lie groups
are thick and hence non-relatively hyperbolic, in contrast with rank one which provided
the motivating examples of relatively hyperbolic groups. Mapping class groups are
the first examples of non-relatively hyperbolic groups having cut points in any asymp-
totic cone, resolving several questions of Drutu and Sapir about the structure of rela-
tively hyperbolic groups. Outside of group theory, Teichmüller spaces for surfaces of
sufficiently large complexity are thick with respect to the Weil–Peterson metric, in
contrast with Brock–Farb’s hyperbolicity result in low complexity.
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1 Introduction

Three of the most studied families of groups in geometric group theory are the
mapping class group of a surface of finite type, MCG(S); the outer automorphism
group of a finite rank free group, Out(Fn); and the special linear group, SLn(Z).
Despite the active interest in these groups, much of their quasi-isometric structure
remains unknown, particularly for the first two families. We introduce the notion of
a thick group (or more generally, metric space), a property which is enjoyed by all
groups in each of the families MCG(S), Out(Fn), and SLn(Z) except in the lowest
complexity cases where the groups are actually hyperbolic. The notion of thickness
helps unify the study of these groups and casts light on some of their geometric
properties.

Before proceeding, we recall some relevant developments. In [46], Gromov intro-
duced the notion of a relatively hyperbolic group. The theory of relatively hyperbolic
groups was developed by Farb [40], then further developed in [17,28,74,88], and
[34]. Several alternate characterizations of relative hyperbolicity have been formu-
lated, all of them more or less equivalent to each other. We recall the definition due to
Farb. In the sequel G denotes a finitely generated group endowed with a word metric,
H = {H1, . . . , Hn} is a finite family of subgroups of G and LH denotes the collection
of left cosets of {H1, . . . , Hn} in G. The group G is weakly hyperbolic relative to H if
collapsing the left cosets in LH to finite diameter sets, in a Cayley graph of G, yields
a δ-hyperbolic space. The subgroups H1, . . . , Hn are called peripheral subgroups.

The group G is (strongly) hyperbolic relative to H if it is weakly hyperbolic relative
to H and if it has the bounded coset property. This latter property, roughly speaking,
requires that in a Cayley graph of G with the sets in LH collapsed to bounded diameter
sets, a pair of quasigeodesics with the same endpoints travels through the collapsed
LH in approximately the same manner.

In [34, §8 and Appendix], Druţu, Osin and Sapir provide a geometric condition
which characterizes relative hyperbolicity of a group. They show that G is hyperbolic
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relative to H if and only if any asymptotic cone of G is tree-graded with respect to the
collection of pieces given by ultralimits of elements in LH (see Sect. 2 for definitions).
In particular any asymptotic cone of G has (global) cut-points.

The asymptotic characterization of relative hyperbolicity mentioned above is in turn
equivalent to three metric properties in the Cayley graph of G (formulated without
asymptotic cones), which are approximately as follows:

(α1) Finite radius neighborhoods of distinct elements in LH are either disjoint or
intersect in sets of uniformly bounded diameter;

(α2) geodesics diverging slower than linearly from a set gHi in LH must intersect
a finite radius neighborhood of gHi ;

(α3) fat geodesic polygons must stay close to a set in LH (“fat” here is the contrary
of “thin” in its metric hyperbolic sense; see Definition 2.7).

This definition of relative hyperbolicity also makes sense in a general metric set-
ting: a geodesic metric space X is said to be asymptotically tree-graded (ATG in short)
with respect to a collection A of subsets of X (called peripheral subsets) if the three
conditions above hold with G replaced by X and LH replaced by A (see also [23]
for another metric version of the notion of relative hyperbolicity). For instance, the
complementary set in H

3 of any family of pairwise disjoint open horoballs is asymp-
totically tree-graded with respect to the collection of boundary horospheres. It was
recently proven by Druţu that if a group is asymptotically tree-graded in a metric
sense, that is with respect to a collection A of subsets, then it is relatively hyperbolic
with respect to some family of subgroups [33] (see Theorem 2.11 in this paper). The
converse of the above statement was shown in [34] (see Theorem 2.10).

Convection 1.1 Throughout the paper, we exclude the trivial case of a metric space
X asymptotically tree-graded with respect to a collection A where some finite radius
neighborhood of some subset A ∈ A equals X. In the case of an infinite group, G,
hyperbolic relative to a collection of subgroups, the trivial case we are excluding is
where one of the subgroups is G. (Note that a group is never hyperbolic relative to a
finite index subgroup, so we need not exclude such cases in our convention).

When a group contains no collection of proper subgroups with respect to which it
is relatively hyperbolic, we say the group is not relatively hyperbolic (NRH).

Thickness is, in many respects, opposite to relative hyperbolicity. The notion of
thickness is built up inductively. A geodesic metric space is thick of order zero if it is
unconstricted, in the terminology of [34], that is: for at least one sequence of scaling
constants d = (dn) and one ultrafilter, all asymptotic cones constructed by means of
d and ω are without (global) cut-points. If the metric space is a group then this is
equivalent to the condition that at least one asymptotic cone is without cut-points.
See Sect. 3 for details, and for a list of examples of groups which are thick of order
zero (unconstricted). A metric space is thick of order n if, roughly speaking, it can
be expressed as a coarse union of a network of subspaces thick of order n − 1, each
quasi-isometrically embedded, so that two adjacent subspaces in this network have
infinite coarse intersection. The exact definition of thickness can be found in Sect. 7.
Because thickness is a quasi-isometry invariant, thickness of a finitely generated group
G is well-defined by requiring that the Cayley graph of a finite generating set of G
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be a thick metric space. Thick metric spaces behave very rigidly when embedded into
asymptotically tree-graded metric spaces in particular we obtain (see Theorem 7.8 for
a generalization of this result):

Corollary 7.9 (Thick spaces are not asymptotically tree-graded). If X is a thick met-
ric space, then X is not asymptotically tree-graded. In particular, if X is a finitely
generated thick group, then X is not relatively hyperbolic.

The following result puts strong restrictions on how NRH groups can be quasi-iso-
metrically embedded in ATG spaces.

Theorem 4.1 (NRH subgroups are peripheral). Let (X, distX ) be a metric space
asymptotically tree-graded with respect to a collection A of subsets. For every L ≥ 1
and C ≥ 0 there exists R = R(L ,C, X,A) such that the following holds. If G is a
finitely generated group endowed with a word metric dist and G is not relatively hyper-
bolic, then for any (L ,C)-quasi-isometric embedding q : (G, dist)→ (X, distX ) the
image q(G) is contained in the radius R neighborhood of some A ∈ A.

Note that in the theorem above the constant R does not depend on the group G.
This theorem shows that the presence of NRH (in particular thick) peripheral sub-

groups in a relatively hyperbolic group “rigidifies” the structure. A similar rigidity
result, with additional hypotheses on both the domain and the range plays a key role in
Schwartz’s quasi-isometric classification of rank one non-uniform lattices in semisim-
ple Lie groups [81]. Druţu–Sapir proved a similar rigidity result under the assumption
that the domain is unconstricted [34]; using work of [34] allows one to obtain the
following theorem. (For special cases of this result see also Theorems 3.6 and 7.8 in
this paper or other results in [34]).

Theorem 4.8 (Quasi-isometric rigidity of hyperbolicity relative to NRH subgroups).
If � is a finitely generated group hyperbolic relative to a finite collection of finitely
generated subgroups G for which each G ∈ G is not relatively hyperbolic, then any
finitely generated group �′ which is quasi-isometric to � is hyperbolic relative to
a finite collection of finitely generated subgroups G′ where each subgroup in G′ is
quasi-isometric to one of the subgroups in G.

In [33] is proved the quasi-isometry invariance of relative hyperbolicity (see The-
orem 2.12 in this paper), but without establishing any relation between the peripheral
subgroups (which is impossible to do in full generality, see the discussion following
Theorem 2.12). Theorem 4.8 resolves this question. Moreover, it advances towards
a classification of relatively hyperbolic groups. By results in [76], the classification
of relatively hyperbolic groups reduces to the classification of one-ended relatively
hyperbolic groups. Theorem 4.8 points out a fundamental necessary condition for the
quasi-isometry of two one-ended relatively hyperbolic groups with NRH peripheral
subgroups: that the peripheral subgroups define the same collection of quasi-isometry
classes. Nevertheless the condition is not sufficient, as can be seen in [81], where
it is proved for instance that two fundamental groups of finite volume hyperbolic
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three-manifolds are quasi-isometric if and only if they are commensurable (while all
their peripheral subgroups are isomorphic to Z

2, when there is no torsion). This raises
the question on what finer invariants of quasi-isometry may exist for relatively hyper-
bolic groups (besides the q.i. classes of peripherals) which would allow advancing
further in the classification.

Theorems 4.1 and 4.8 motivate the study of non-relative hyperbolicity and, in partic-
ular, thickness. In order to verify thickness of a finitely generated group, we formulate
an algebraic form of thickness in the setting of groups endowed with word metrics
and their undistorted subgroups (see Definition 7.3). Many important groups turn out
to have this property, and therefore are NRH:

Theorem 1.2 The following finitely generated groups (keyed to section numbers) are
algebraically thick with respect to the word metric:

Section 8. MCG(S), when S is an orientable finite type surface with 3 · genus(S)+
# punctures ≥ 5;

Section 9. Aut(Fn) and Out(Fn), when n ≥ 3;
Section 10. A freely indecomposable Artin group with any of the following proper-

ties: the integer labels on the Artin presentation graph are all even; the
Artin presentation graph is a tree; the Artin presentation graph has no
triangles; the associated Coxeter group is finite or affine of type ˜An.

Section 11. Fundamental groups of 3-dimensional graph manifolds;
Section 13. Non-uniform lattices in semisimple groups of rank at least two.

The failure of strong relative hyperbolicity for SLn(Z)when n ≥ 3 was first proved
in [55]. For the case of mapping class groups, the failure of strong relative hyperbolic-
ity is also proved in [3,18,55]; see the discussion after Corollary 8.3. If one is solely
interested in disproving strong relative hyperbolicity, there are more direct approaches
which avoid asymptotic cones, such as the one taken in [3]. In Propositions 5.4 and
5.5 we also give such results, generalizing the main theorem of [3].

In the particular case of Artin groups, more can be proved concerning relative
hyperbolicity. The following is an immediate consequence of Proposition 5.5 and
Example 10.1:

Proposition 1.3 Except for the integers, any Artin group with connected Artin pre-
sentation graph is not relatively hyperbolic.

Note that this gives a complete classification of which Artin groups are relatively
hyperbolic, since any group with a disconnected presentation graph is freely decom-
posable and hence relatively hyperbolic with respect to the factors in the free decom-
position.

Remark 1.4 For the Artin groups which are not in the list of Theorem 1.2 we do not
know whether they are thick or not. Possibly some of them might turn out to be exam-
ples of NRH groups that are not thick. This would provide a nice class of examples,
as the groups we know which are NRH, but not thick, are fairly pathological, cf. the
end of Sect. 7.
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Theorem 1.2 and Proposition 1.3 are interesting also because some of the listed
groups are known to be weakly relatively hyperbolic. Examples include: mapping
class groups [63], certain Artin groups [51], and fundamental groups of graph man-
ifolds. Thus the study we begin in this paper, of thick groups from the point of view
of quasi-isometric rigidity, may also be perceived as a first attempt to study quasi-
isometric rigidity of weakly relatively hyperbolic groups. Note that up to now there
is no general result on the quasi-isometric behavior of weakly relatively hyperbolic
groups. In [37,53,67,68,75] strong quasi-isometric rigidity results are proved for some
particular cases of weakly relatively hyperbolic groups—in fact all of them are fun-
damental groups of some graphs of groups (fundamental groups of Haken manifolds,
groups with a JSJ decomposition, fundamental groups of finite graphs of groups with
Bass–Serre tree of finite depth).

Some of the groups mentioned in Theorem 1.2 present even further similarities
with (strongly) relatively hyperbolic groups, in that all their asymptotic cones are
tree-graded metric spaces. This is the case for the mapping class groups, where it was
proved by Behrstock [5]; and for the fundamental groups of 3-dimensional graph man-
ifolds, where it follows from results in [52,54]; the latter class includes right angled
Artin groups whose Artin presentation graph is a tree of diameter at least three (see
Proposition 10.9).

In particular these examples answer in the negative two questions of Druţu and
Sapir (see [34, Problem 1.18]) regarding a finitely generated group G for which every
asymptotic cone is tree-graded: Is G relatively hyperbolic? And is G asymptotically
tree-graded with respect to some collection of subsets of G? The negative answers to
these questions indicate that a supplementary condition on the pieces in the asymptotic
cones is indeed necessary.

Another question resolved by the example of mapping class groups is whether every
relatively hyperbolic group is in fact hyperbolic relative to subgroups that are uncon-
stricted (see [34, Problem 1.21]). Indeed, consider the finitely presented relatively
hyperbolic group � = MCG(S) ∗ MCG(S). Suppose that it is hyperbolic relative
to a finite collection of unconstricted peripheral subgroups H. Corollary 4.7 implies
that each H ∈ H must be contained in a conjugate γMCG(S)γ−1 of one of the two
free factors isomorphic to MCG(S) in �. Applying Corollary 4.7 again to � seen as
hyperbolic relative to the subgroups in H we obtain that γMCG(S)γ−1 is contained
in a conjugate of a subgroup H1 ∈ H. This implies that H is contained in a conjugate
of H1, a situation which can occur only if H coincides with the conjugate of H1.
Thus the two inclusions above are equalities, in particular H = γMCG(S)γ−1. On
the other hand, all asymptotic cones of MCG(S) have (global) cut-points, and hence
the same holds for γMCG(S)γ−1 (see [5]); this contradicts the hypothesis that H is
unconstricted. Note that in the previous argument MCG(S) can be replaced by any
group which is thick (or more generally not relatively hyperbolic) and with (global)
cut-points in any asymptotic cone (i.e., constricted, in the terminology of [34]).

In Sect. 6, we answer a related weaker question, namely, does any relatively
hyperbolic group admit a family of peripheral subgroups which are not relatively
hyperbolic? The answer is no, with Dunwoody’s inaccessible group providing a coun-
terexample. Since finitely presented groups are accessible, this raises the following
natural question.
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Question 1.5 Is there any example of a finitely presented relatively hyperbolic group
such that every list of peripheral subgroups contains a relatively hyperbolic group?

A similar question can be asked for groups without torsion, as these groups are
likewise accessible.

Thickness can be studied for spaces other than groups. As an example of this we
prove the following:

Theorem 12.3 For any surface S with 3 · genus(S)+# punctures ≥ 9, the Teichmüller
space with the Weil–Petersson metric is thick.

In particular the Teichmüller space is not asymptotically tree-graded. An inter-
esting aspect of this theorem is that although these higher complexity Teichmüller
spaces are not asymptotically tree-graded, they do have tree-graded asymptotic cones
as proven in [5]. We also note that the lack of relative hyperbolicity contrasts with the
cases with 3 · genus(S)+ # punctures ≤ 5 where it has been shown that Teichmüller
space is δ–hyperbolic with the Weil–Petersson metric (see [23], and also [4,5]). It
also contrasts with the relative hyperbolicity of Teichmüller space in the cases where
3 · genus(S)+ # punctures = 6, as recently shown in [24].

The paper is organized as follows. Section 2 provides background on asymptotic
cones and various tools developed in [34] for studying relatively hyperbolic groups.
In Sect. 3 we discuss the property of (not) having cut-points in asymptotic cones.

Section 4 contains some general results regarding quasi-isometric embeddings of
NRH groups into relatively hyperbolic groups and our main theorem of rigidity of
relatively hyperbolic groups. Motivated by these results we provide examples of NRH
groups, and in Sect. 5 we describe a way to build NRH groups. In Sect. 6 we discuss
an example of a relatively hyperbolic group such that any list of peripheral subgroups
contains a relatively hyperbolic group.

In Sect. 7 we define metric and algebraic thickness, we provide results on the struc-
ture and rigidity of thick spaces and groups and we discuss an example of an NRH
group which is not thick.

The remaining sections of this work establish thickness for various groups and met-
ric spaces. For the mapping class groups, the automorphism group of a free group, and
the outer automorphism group of a free group we prove thickness in all cases except
when these groups are virtually free (and hence are not thick), this is done in Sects. 8
and 9. Artin groups are studied in Sect. 10. Graph manifolds and Teichmüller space
are shown to be thick in Sects. 11 and 12. Finally in Sect. 13, we establish thickness
for non-uniform lattices (thickness in the uniform case follows from [58]).

2 Preliminaries

A non-principal ultrafilter on the positive integers, denoted by ω, is a non-empty
collection of sets of positive integers with the following properties:

(1) If S1 ∈ ω and S2 ∈ ω, then S1 ∩ S2 ∈ ω.
(2) If S1 ⊂ S2 and S1 ∈ ω, then S2 ∈ ω.
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(3) For each S ⊂ N exactly one of the following must occur: S ∈ ω or N\S ∈ ω.
(4) ω does not contain any finite set.

Convention: The adjective “non-principal” refers to item (4). Since we work only with
non-principal ultrafilters, we shall tacitly drop this adjective throughout the sequel.

For an ultrafilter ω, a topological space X , and a sequence of points (xi )i∈N in X ,
we define x to be the ultralimit of (xi )i∈N with respect to ω, and we write x = limω xi ,
if and only if for any neighborhood N of x in X the set {i ∈ N : xi ∈ N } is in ω.
Note that when X is compact any sequence in X has an ultralimit [15]. If moreover X
is Hausdorff then the ultralimit of any sequence is unique. Fix an ultrafilter ω and a
family of based metric spaces (Xi , xi , disti ). Using the ultrafilter, a pseudo-distance
on

∏

i∈N
Xi is provided by:

distω((ai ), (bi )) = lim
ω

disti (ai , bi ) ∈ [0,∞].

One can eliminate the possibility of the previous pseudo-distance taking the value ∞
by restricting to sequences y = (yi ) such that distω(y, x) < ∞, where x = (xi ). A
metric space can be then defined, called the ultralimit of (Xi , xi , disti ), by:

lim
ω
(Xi , xi , disti ) =

{

y ∈
∏

i∈N

Xi : distω(y, x) <∞
}

/ ∼,

where for two points y, z ∈ ∏

i∈N
Xi we define y ∼ z if and only if distω(y, z) = 0.

The pseudo-distance on
∏

i∈N
Xi induces a complete metric on limω(Xi , xi , disti ).

Let now (X, dist) be a metric space. Consider x = (xn) a sequence of points in
X , called observation points, and d = (dn) a sequence of positive numbers such that
limω dn = ∞, called scaling constants. First defined in [85,45], the asymptotic cone
of (X, dist) relative to the ultrafilter ω and the sequences x and d is given by:

Coneω(X, x, d) = lim
ω

(

X, xn,
1

dn
dist

)

.

When the group of isometries of X acts on X so that all orbits intersect a fixed
bounded set, the asymptotic cone is independent of the choice of observation points.
An important example of this is when X is a finitely generated group with a word
metric; thus, when X is a finitely generated group we always take the observation
points to be the constant sequence (1) and we drop the observation point from our
notation.

Every sequence (An)n∈N of non-empty subsets of X has a limit set in the
asymptotic cone Coneω(X, x, d), denoted by limω An and defined as the set of images
in the asymptotic cone of sequences (an)n∈N with an ∈ An for every n. The set limω An

is empty when limω
dist(xn ,An)

dn
= ∞, otherwise it is a closed subset of Coneω(X, x, d).

In the latter case, limω An is isometric to the ultralimit of (An, yn,
dist
dn
)n∈N with

the metric dist on An induced from X , and with basepoints yn ∈ An such that
limω

dist(xn ,yn)
dn

<∞ .
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Given a collection P of subsets in X and an asymptotic cone Coneω(X, x, d) of X ,
we denote by limω(P) the collection of non-empty limit sets limω Pn where (Pn)n∈N

is a sequence of subsets Pn ∈ P . We will often consider the case where X = G is a
group and H is a fixed collection of subgroups of G, in this case we take P to be the
collection of left cosets gH , with g ∈ G and H ∈ H. We denote the latter collection
also by LH. We now recall a notion introduced in [34, Sect. 2].

Definition 2.1 Let F be a complete geodesic metric space and let P be a collection
of closed geodesic subsets (called pieces). The space F is said to be tree-graded with
respect to P when the following two properties are satisfied:

(T1) The intersection of each pair of distinct pieces has at most one point.
(T2) Every simple non-trivial geodesic triangle in F is contained in one piece.

When the collection of pieces P is understood then we say simply that F is tree-graded.

Lemma 2.2 (Druţu–Sapir [34]) Let F be a complete geodesic metric space which is
tree-graded with respect to a collection of pieces P .

(1) For every point x ∈ F, the set Tx of topological arcs originating at x and inter-
secting any piece in at most one point is a complete real tree (possibly reduced
to a point). Moreover if y ∈ Tx then Ty = Tx .

(2) Any topological arc joining two points in a piece is contained in the same piece.
Any topological arc joining two points in a tree Tx is contained in the same
tree Tx .

A tree as in Lemma 2.2 (1) is called a transversal tree, and a geodesic in it is called
a transversal geodesic. Both of these notions are defined relative to the collection of
pieces P , which when understood is suppressed.

The notion of tree-graded metric space is related to the existence of cut-points.
Convention: By cut-points we always mean global cut-points. We consider a singleton
to have a cut-point.

Lemma 2.3 (Druţu–Sapir [34], Lemma 2.31) Let X be a complete geodesic metric
space containing at least two points and let C be a non-empty set of cut-points in X.
There exists a uniquely defined (maximal in an appropriate sense) collection P of
subsets of X such that

• X is tree-graded with respect to P;
• any piece in P is either a singleton or a set with no cut-point in C.

Moreover the intersection of any two distinct pieces from P is either empty or a point
from C.

Definition 2.4 Let X be a metric space and let A be a collection of subsets in X . We
say that X is asymptotically tree-graded (ATG) with respect to A if

(I) every asymptotic cone Coneω(X) of X is tree-graded with respect to limω(A);
(II) X is not contained in a finite radius neighborhood of any of the subsets in A.
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The subsets in A are called peripheral subsets.
The second condition does not appear in [34]. It is added here to avoid the triv-

ial cases, like that of X asymptotically tree-graded with respect to A = {X}. For
emphasis, one could refer to an ATG structure satisfying (II) as being a proper asymp-
totically tree-graded structure. Since we always assume that the tubular neighborhoods
of peripheral subsets are proper subsets (see Convention 1.1), we suppress the use of
the adjective “proper.” Similarly, we assume that relative hyperbolicity is always with
respect to a collection of proper peripheral subgroups.

As mentioned in the introduction, Druţu–Sapir provide a characterization of ATG
metric spaces, further simplified by Druţu in [33], in terms of three metric properties
involving elements of A, geodesics, and geodesic polygons. There are several versions
of the list of three properties, we recall here those that we shall use most, keeping the
notation in [33].

First we recall the notion of fat polygon introduced in [34]. This notion is in some
sense the opposite of the notion of “thin” polygon (i.e., a polygon behaving metrically
like a polygon in a tree, up to bounded perturbation).

Throughout the paper Nr (A) denotes the set of points x satisfying dist(x, A) < r
and N r (A) the set of points x with dist(x, A) ≤ r .

Notation 2.5 For every quasi-geodesic p in a metric space X , we denote the initial
point of p by p− and the endpoint of p by p+.

Given r > 0 we denote by p̆r the set p\Nr ({p−, p+}).
A geodesic (quasi-geodesic) k-gonal line is a set P which is the union of k geo-

desics (quasi-geodesics) q1, . . . , qk such that (qi )+ = (qi+1)− for i = 1, . . . , k −
1. If moreover (qk)+ = (q1)− then we say that P is a geodesic (quasi-geodesic)
k-gon.

Notation 2.6 Given a vertex x ∈ V and q, q′ the consecutive edges of P such that
x = q+ = q′−, we denote the polygonal line P\(q ∪ q′) by Ox (P). When there is no
possibility of confusion we simply denote it by Ox .

Definition 2.7 (fat polygons) Let ϑ > 0, σ ≥ 1 and ν ≥ 4σ . We call a k-gon P with
quasi-geodesic edges (ϑ, σ, ν)-fat if the following properties hold (Fig. 1):

(F1) for every edge q we have, with the notation 2.5, that

dist
(

q̆σϑ , P\q) ≥ ϑ;

(F2) for every vertex x we have

dist(x,Ox ) ≥ νϑ.

When σ = 2 we say that P is (ϑ, ν)-fat.

Theorem 2.8 [34,33] Let (X, dist) be a geodesic metric space and let A be a collec-
tion of subsets of X. The metric space X is asymptotically tree-graded with respect to
A if and only if the following properties are satisfied:
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Fig. 1 Properties (F1) and (F2)

(α1) For every δ > 0 the diameters of the intersections Nδ(A)∩Nδ(A′) are uniformly
bounded for distinct pairs of A, A′ ∈ A.

(α2) There exists ε in
(

0, 1
2

)

and M > 0 such that for every geodesic g of length 

and every A ∈ A with g(0), g(
) ∈ Nε
(A) we have g([0, 
]) ∩ NM (A) �= ∅.

(β3) There exists ϑ > 0, ν ≥ 8 and χ > 0 such that any (ϑ, ν)-fat geodesic hexagon
is contained in Nχ (A), for some A ∈ A.

Remark 2.9 In Theorem 2.8, property (α2) can be replaced by the following stronger
property:

(β2) There exists ε > 0 and M ≥ 0 such that for any geodesic g of length 
 and
any A ∈ A satisfying g(0), g(
) ∈ Nε
(A), the middle third g

([



3 ,

2

3

])

is
contained in NM (A).

The notion of asymptotically tree-graded space relates to the standard definition of
(strong) relative hyperbolicity by the following.

Theorem 2.10 (Druţu–Osin–Sapir [34]) A finitely generated group G is hyperbolic
relative to a finite collection of finitely generated subgroups H if and only if G is
asymptotically tree-graded with respect to LH.

The converse statement of the above theorem can be strengthened as follows.

Theorem 2.11 (Druţu [33]) If G is a finitely generated group which is asymptotically
tree-graded with respect to a collection A of subsets, then G is either hyperbolic or it
is relatively hyperbolic with respect to a finite family of finitely generated subgroups
{H1, . . . , Hm} such that every Hi is contained in N�(Ai ) for some Ai ∈ A, where �
is the maximum between the constant M in (β2) and the constant χ in (β3).

123



554 J. Behrstock et al.

A consequence of this is the following result:

Theorem 2.12 (Relative hyperbolicity is rigid, Druţu [33]) If a group G ′ is quasi-iso-
metric to a relatively hyperbolic group G then G ′ is also relatively hyperbolic.

Note that formulating a relation between the peripheral subgroups of G and of G ′
is, in general, non-trivial. This can be seen for instance when G = G ′ = A ∗ B ∗ C ,
since G is hyperbolic relative to {A, B,C}, and also hyperbolic relative to {A ∗ B,C}.

3 Unconstricted and constricted metric spaces

Definition 3.1 A coarsely path connected metric space B is unconstricted if the
following two properties hold:

(1) there exists an ultrafilter ω and a sequence d such that for every sequence of
observation points b, Coneω(B, b, d) does not have cut-points;

(2) for some constant c, every point in B is at distance at most c from a bi-infinite
geodesic in B.

When B is an infinite finitely generated group, being unconstricted means simply
that at least one of its asymptotic cones does not have cut-points. Opposite to it, a
constricted group is a group with cut-points in every asymptotic cone. See the list
following Definition 3.4 for examples of unconstricted groups.

Remark 3.2 Theorem 2.10 implies that relatively hyperbolic groups are constricted.
Thus, unconstricted groups are particular cases of NRH groups. They play an essential
part in the notion we introduce, of thick group.

Note that the definition above slightly differs from the one in [34] in that property
(2) has been added. We incorporate this condition into the definition as it is a required
hypothesis for all the quasi-isometry rigidity results we obtain. Since, up to bi-Lips-
chitz homeomorphism, the set of asymptotic cones is a quasi-isometry invariant of a
metric space B, it follows that constrictedness and unconstrictedness are quasi-isom-
etry invariants.

The property of being constricted is related to the divergence of geodesics [44].
Let X be a geodesic metric space. Given a geodesic segment c : [−R, R] → X , its
divergence is a function divc : (0, R] → R+, where for every r > 0 we define divg(r)
as the distance between c(−r) and c(r) in X \B (c (0) , r) endowed with the length
metric (with the assumption that c(−r) and c(r) can be joined in X \B (c (0) , r) by a
path of finite length). To a complete minimizing geodesic g : R → X is associated a
function divg defined similarly on R+. By a slight abuse of terminology, it is standard
to refer to the growth rate of the function divg as the divergence of g.

A geodesic in a metric space X is called periodic if its stabilizer in the group of
isometries of X is co-bounded. By combining Proposition 4.2 of [52] with Lemma 2.3,
we obtain:

Lemma 3.3 Let g : R → X be a periodic geodesic. If g has superlinear divergence,
then in any asymptotic cone, Coneω(X), for which the limit of g is non-empty there
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exists a collection of proper subsets of Coneω(X) with respect to which it is tree-
graded. Furthermore, in this case one has that the limit of g is a transversal geodesic.

��
Definition 3.4 A collection of uniformly coarsely path connected metric spaces, B,
is uniformly unconstricted if:

(1) for some constant c, every point in every space B ∈ B is at distance at most c
from a bi-infinite geodesic in B;

(2) for every sequence of spaces (Bi , disti ) in B, there exists an ultrafilter ω and a
sequence of scaling constants d so that for every sequence of basepoints b = (bi )

with bi ∈ Bi , limω(Bi , bi , 1/di disti ) does not have cut-points.

Recall that a group is elementary if it is virtually cyclic.
Examples of uniformly unconstricted collections of spaces:

(1) The collection of all cartesian products of geodesic metric spaces of infinite diam-
eter. This follows from the fact that every ultralimit of a sequence of such spaces
appears as Cartesian product of two non-trivial geodesic metric spaces. Such a
cartesian product cannot have a global cut-point, because Euclidean rectangles
do not have cut-points.

(2) The collection of finitely generated non-elementary groups with a central element
of infinite order is uniformly unconstricted [34, Theorem 6.7].

(3) The collection of finitely generated non-elementary groups satisfying the same
identity is uniformly unconstricted [34, Theorem 6.12]. Recall that a group G is
said to satisfy an identity (a law) if there exists a word w(x1, . . . , xn) in n letters
x1, . . . , xn, and their inverses, such that if xi are replaced by arbitrary elements
in G then the wordw becomes 1. In particular this applies to the collection of all
solvable groups of class at most m ∈ N, and to the collection of Burnside groups
with a uniform bound on the order of elements.

(4) The collection of uniform (or cocompact) lattices in semisimple groups of rank
at least 2 and at most m ∈ N is uniformly unconstricted [58].

(5) Every finite collection of unconstricted metric spaces is uniformly unconstricted,
as is, more generally, every collection of unconstricted metric spaces containing
only finitely many isometry classes.

Remark 3.5 Uniform unconstrictedness is a quasi-isometry invariant in the following
sense. Consider two collections of metric spaces B,B′ which are uniformly quasi-iso-
metric, meaning that there are constants L ≥ 1 and C ≥ 0 and a bijection between
B,B′ such that spaces that correspond under this bijection are (L ,C)-quasi-isometric.
It follows that B is uniformly unconstricted if and only if B′ is uniformly unconstricted.

One of the main interests in (uniformly) unconstricted metric spaces resides in their
rigid behavior with respect to quasi-isometric embeddings into ATG metric spaces.

Theorem 3.6 (Druţu–Sapir [34]) Let X be ATG with respect to a collection of subsets
A. Let B be a collection of uniformly unconstricted metric spaces. For every (L ,C)
there exists M depending only on L, C, X, A and B, such that for every (L ,C)-quasi-
isometric embedding q of a metric space B from B into X, q(B) is contained in an
M-neighborhood of a peripheral subset A ∈ A.
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4 Non-relative hyperbolicity and quasi-isometric rigidity

In the particular case when all the metric spaces in B are finitely generated groups
endowed with word metrics, Theorem 3.6 can be greatly improved: its conclusion
holds when B is the collection of all NRH groups.

Theorem 4.1 Let (X, distX ) be ATG with respect to a collection A of subsets. For
every L ≥ 1 and C ≥ 0 there exists R = R(L ,C, X,A) such that the following
holds. If (G, dist) is an NRH group endowed with a word metric, and q : (G, dist)→
(X, distX ) is an (L ,C)-quasi-isometric embedding, then q(G) is contained in NR(A)
for some A ∈ A.

Remark 4.2 The first result of this kind appeared in Schwartz’s proof of the classifi-
cation of non-uniform lattices in rank one semisimple Lie groups [81]. In that case,
one of the key technical steps is showing that any quasi-isometry of a neutered space
coarsely preserves the collection of boundary horospheres. To do this he proved the
“Quasi-flat Lemma” which, reformulated in the language of this paper, states that the
quasi-isometric image of an unconstricted metric space into a neutered space must
stay in a uniformly bounded neighborhood of a single boundary horosphere.

This theorem was later generalized by Druţu and Sapir [34] who kept the uncon-
stricted hypothesis on the domain, but replaced the hypothesis that the image is in a
neutered space by only assuming relative hyperbolicity of the target space.

Remark 4.3 Theorem 4.1 also holds in the case that G is replaced by a metric space
which is not ATG. In this case though, the constant R will additionally depend on the
choice of metric space and the choice of quasi-isometry.

Remark 4.4 By Stallings’ Ends Theorem [82] a finitely generated group has more
than one end if and only if it splits non-trivially as an amalgamated product or HNN-
extension with finite amalgamation. A group which splits in this manner is obviously
hyperbolic relative to its vertex subgroups. Consequently if a group is NRH then it is
one-ended.

Remark 4.5 A result similar to Theorem 4.1 has been obtained in [76, Sect. 3], for G
a one-ended group and X the fundamental group of a graph of groups with finite edge
groups. Although NRH groups are one-ended, the hypothesis in Theorem 4.1 cannot
be weakened to “G a one-ended group,” as illustrated by the case when G = X and
G is the fundamental group of a finite volume real hyperbolic manifold.

Before proving Theorem 4.1, we state some consequences of it, and give a list of
examples of NRH groups.

Corollary 4.6 Let G be an infinite group which admits an (L ,C)-quasi-isometric
embedding into a geodesic metric space X which is asymptotically tree-graded with
respect to a collection of subsets A. Then either q(G) is contained in NR(A) for some
A ∈ A and R = R(L ,C, X,A) or G is relatively hyperbolic.

Another consequence is a new proof of the following which was first established
in [34, Theorem 1.8].
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Corollary 4.7 (See also [34], Theorem 1.8) Let G be a finitely generated group hyper-
bolic relative to H = {H1, . . . , Hm}. Let H be an undistorted finitely generated sub-
group of G. Then either H is contained in a conjugate of Hi , i ∈ {1, 2, . . . ,m}, or H
is relatively hyperbolic.

Perhaps the most important consequence of Theorem 4.1 is the following quasi-
isometric rigidity theorem for groups hyperbolic relative to NRH subgroups.

Theorem 4.8 Let G be a finitely generated group which is hyperbolic relative to a
finite family of finitely generated subgroups H such that each H ∈ H is not relatively
hyperbolic. If a group G ′ is quasi-isometric to G then G ′ is hyperbolic relative to
H′ = {H1, . . . , Hm}, where each Hi is quasi-isometric to some H ∈ H.

Proof The proof is almost identical to the proof of Theorem 5.13 in [34]. Indeed let
X = G and let A = {gH : g ∈ G/H and H ∈ H}. The pair (X,A) satisfies all the
hypotheses of Theorem 5.13 in [34], except (1). Still, hypothesis (1) is used in that
proof only to ensure that for every quasi-isometry constants L ≥ 1 and C ≥ 0 there
exists a constant M = M(L ,C, X,A) such that for every A ∈ A and for every (L ,C)-
quasi-isometric embedding q : A → X there exists B ∈ A for which q(A) ⊂ NM (B).
In our case, each H ∈ H is known to be undistorted since it is a peripheral subgroup
(see, for instance, [34] for details). Thus, the hypothesis that all H ∈ H are NRH
implies via Theorem 4.1 that for every L ≥ 1 and C ≥ 0 there exists a constant M as
above depending only on L , C , and the undistorsion constants of each H in G. ��

In view of Theorems 4.1 and 4.8, it becomes interesting to consider examples of
NRH groups. We do this below. In Sect. 5 we give a procedure allowing one to build
NRH groups from smaller NRH groups (see Proposition 5.4).

Examples of NRH groups:

(I) Non-elementary groups without free non-abelian subgroups. This follows from
the fact that non-elementary relatively hyperbolic groups contain a free non-
abelian subgroup.
The class of groups without free non-abelian subgroups contains the non-ele-
mentary amenable groups, but it is strictly larger than that class; indeed, a well
known question attributed to J. von Neumann [69] is whether these two classes
coincide (this is known as the von Neumann problem). The first examples of
non-amenable groups without free non-abelian subgroups were given in [71].
Other examples were later given in [1,72].

(II) Non-elementary groups with infinite center. Indeed, if G is hyperbolic then
its center is finite. Assume that G is relatively hyperbolic with respect to
H1, . . . , Hm and at least one Hi is infinite (otherwise G would be hyperbolic).
Since G �= Hi there exists a left coset gHi �= Hi . For every z ∈ Z(G), Hi and
zHi = Hi z are at Hausdorff distance at most dist(1, z). This and Theorem 2.8,
(α1), imply that zHi = Hi , thus Z(G) ⊂ Hi . Similarly it can be proved that
Z(G) ⊂ gHi g−1. If follows that Z(G) ⊂ gHi g−1 ∩ Hi , hence that it is finite
(see for instance [35, Lemma 4.20]).

(III) Unconstricted groups.
(IV) Inductive limits of small cancelation groups (see Sect. 7.1).
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The remainder of this section provides the proof of Theorem 4.1, thus we let
(X, distX ),A, L , C, q and G be as in the statement of the theorem. We will proceed
by using the quasi-isometric embedding q to construct an asymptotically tree-graded
structure on (G, dist).

In order to produce an asymptotically tree-graded structure on G we first search for
a constant τ such that the following set is non-empty:

Aτ = {A ∈ A ; Nτ (A) ∩ q(G) �= ∅}. (1)

Then, for every A ∈ Aτ we consider the pre-image BA = q−1 (Nτ (A)) and the set

Bτ = {BA ; A ∈ Aτ } . (2)

For an appropriate choice of τ , we will show that the collection Bτ defines an asymp-
totically tree-graded structure on (G, dist). We begin with the following lemmas which
will allow us to choose the constant τ .

Lemma 4.9 ([34], Theorem 4.1 and Remark 4.2, (2)).

(a) There exists M ′ > 0 such that for every (L ,C)-quasi-geodesic p : [0, 
] → X
and every A ∈ A satisfying p(0), p(
) ∈ N
/3L(A), the tubular neighborhood
NM ′(A) intersects p ([0, 
]).

(b) For every σ ≥ 1 and ν ≥ 4σ there exists ϑ0 satisfying the following: for every
ϑ ≥ ϑ0 there exists χ with the property that every hexagon with (L ,C)-quasi-
geodesic edges which is (ϑ, σ, ν)-fat is contained in Nχ (A) for some A ∈ A.

Lemma 4.10 Let p : Y → X be an (L ,C)-quasi-isometric embedding. Let σ =
4L2 + L ≥ 1, ν = 4σ and ϑ ≥ C. If P is a (2Lϑ, ν + 1)-fat geodesic hexagon, then
p(P) is a hexagon with (L ,C)-quasi-geodesic edges which is (ϑ, σ, ν)-fat.

Proof (F1) Let g be an edge of P , of endpoints x, y. Let x ∈ p(g)\Nσϑ ({p(x), p(y)}).
Then x = p(t)with t ∈ g at distance at most 1

L σϑ−C from x and y. Since 1
L σϑ−C =

(4L + 1)ϑ − C ≥ 4Lϑ , property (F1) for P implies that t is at distance at least 2Lϑ
from any edge p �= g of P . Then p(x) is at distance at least 1

L 2Lϑ−C = 2ϑ−C ≥ ϑ

from q(p).
(F2) Let v be an arbitrary vertex of P . Property (F2) for P grants that dist(v,

Ov(P)) ≥ (ν + 1)(2Lϑ), hence dist
(

p(v),Op(v)
(

p(P))) ≥ 1
L (ν + 1)(2Lϑ)− C =

2(ν + 1)ϑ − C ≥ νϑ . ��
For the remainder of the proof, we fix the following constants:

• σ and ν as in Lemma 4.10;
• if ϑ0 is the constant provided by Lemma 4.9 for σ and ν above, it is no loss of

generality to assume further that ϑ0 ≥ C;
• let ϑ = 2Lϑ0;
• let χ the constant given by Lemma 4.9 for ϑ0;
• τ = max

(

χ,M ′), where M ′ is the constant from Lemma 4.9.
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If G does not contain a (ϑ, ν + 1)-fat geodesic hexagon or if all such hexagons
have uniformly bounded diameter, then G is hyperbolic by Corollary 4.20 in [33].
This contradicts our hypothesis on G. We may thus henceforth assume that for every
η > 0, the space G contains a (ϑ, ν + 1)-fat geodesic hexagon of diameter at least η.
For every such hexagon P , Lemma 4.10 and the above choice of constants imply that
q(P) ⊂ Nχ (A) ⊂ Nτ (A) for some A ∈ A. In particular the set Aτ is non-empty.

Lemma 4.11 The metric space (G, dist) is asymptotically tree-graded with respect
to the set Bτ defined in (2).

Proof We start with the simple remark that if x ∈ Nt (BA) then q(x) ∈ NLt+C+τ (A).
According to Theorem 2.8 it suffices to verify conditions (α1), (α2), (β3).
We first establish (α1). Let A, A′ ∈ Aτ , A �= A′, and let x, y ∈ Nδ (BA) ∩

Nδ (BA′). Then q(x) and q(y) are in NLδ+C+τ (A) ∩ NLδ+C+τ
(

A′). Since X is
asymptotically tree-graded, diam(NLδ+C+τ (A) ∩NLδ+C+τ

(

A′)) = D is uniformly
bounded. Thus

dist(x, y) ≤ L [distX (q(x), q(y))+ C] ≤ L (D + C) .

We prove (α2) for ε = 1
6L2 and M = (

3L + 1
L

)

(C + τ). Let g : [0, 
] → G be a
geodesic with endpoints in Nε
 (BA) for some A ∈ Aτ . Then q◦g is an (L ,C)-quasi-
geodesic with endpoints in NLε
+C+τ (A). If C + τ ≥ 


6L , that is 
 ≤ 6L(C + τ) then
g ⊂ N 3L(C+τ) ({g(0), g(
)}) ⊂ N(3L+1/L)(C+τ) (BA). If C+τ < 


6L then Lemma 4.9
implies that q ◦ g ([0, 
]) intersects NM ′(A). It follows that g ([0, 
]) intersects BA.

We prove (β3) for (ϑ, ν + 1) as above and for χ = 0. Let P be a (ϑ, ν + 1)-fat
geodesic hexagon in G. Then by Lemma 4.10, q(P) is a (ϑ0, σ, ν)-fat hexagon with
(L ,C)-quasi-geodesic edges. Lemma 4.9 implies that q(P) is contained in Nχ (A). It
follows that A ∈ Aτ and that P ⊂ BA. ��

Let M be the maximum between the constant from (β2) and the constant χ from
(β3), for (G,Bτ ). Note that the constants in (β2) and (β3) for (G,Bτ ) can be obtained
from the constants in the same properties for (X,A), as well as from τ , L and C .
Consequently M = M(X,A, L ,C).

Lemma 4.11, Theorem 2.11 and the hypothesis that G is NRH imply that G ⊂
NM (BA) for some A ∈ Aτ . Hence q(G) ⊂ NL M+C+τ (A), completing the proof of
Theorem 4.1.

5 Networks of subspaces

We begin by defining the notions of networks of subspaces and of subgroups.

Definition 5.1 (Network of subspaces). Let X be a metric space and L a collection of
subsets of X . Given τ ≥ 0 we say that X is a τ–network with respect to the collection L
if the following conditions are satisfied:

(N1) X = ⋃

L∈L Nτ (L);
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(N2) Any two elements L , L ′ in L can be thickly connected in L: there exists a
sequence, L1 = L , L2, . . . , Ln−1, Ln = L ′, with Li ∈ L and satisfying
diam(Nτ (Li ) ∩ Nτ (Li+1)) = ∞ for all 1 ≤ i < n.

We now define a version of the above notion in the context of finitely generated
groups with word metrics. Recall that a finitely generated subgroup H of a finitely
generated group G is undistorted if any word metric of H is bi-Lipschitz equivalent
to a word metric of G restricted to H .

Definition 5.2 (Algebraic network of subgroups) Let G be a finitely generated group,
let H be a finite collection of subgroups of G and let M > 0. The group G is an
M–algebraic network with respect to H if:

(AN0) All subgroups in H are finitely generated and undistorted in G.
(AN1) There is a finite index subgroup G1 of G such that G ⊂ NM (G1) and such

that a finite generating set of G1 is contained in
⋃

H∈H H .
(AN2) Any two subgroups H, H ′ in H can be thickly connected in H: there exists

a finite sequence H = H1, . . . , Hn = H ′ of subgroups in H such that for all
1 ≤ i < n, Hi ∩ Hi+1 is infinite.

Proposition 5.3 If a finitely generated group G is an M-algebraic network with
respect to H then it is an M–network with respect to the collection of left cosets

L = { gH : g ∈ G1, H ∈ H } .

Proof Property (N1) is trivial. We prove property (N2). Since it is equivariant with
respect to the action of G it suffices to prove it for L = H and L ′ = gH ′, H, H ′ ∈ H
and g ∈ G1. Fix a finite generating set S of the finite index subgroup G1 of G so that
S ⊂ ⋃

H∈H H ; all lengths in G1 will be measured with respect to this generating set.
We argue by induction on |g| = |g|S . If |g| = 1, then g ∈ S. By hypothesis, g is
contained in a subgroup ˜H in H. We take a sequence H = H1, H2, . . . , Hk = ˜H as
in (AN2), and a similar sequence ˜H = H1, H 2, . . . , Hm = H ′. Then the sequence

H = H1, H2, . . . , Hk = ˜H = g ˜H = gH1, gH2, . . . , gHm = gH ′

satisfies the properties in (N2). We now assume the inductive hypothesis that for all
g ∈ G1 with |g| ≤ n and all H, H ′ ∈ H the cosets H and gH ′ can be connected by
a sequence satisfying (N2) with τ = M . Take g ∈ G1 such that |g| = n + 1; thus
g = ĝs, where s ∈ S and ĝ ∈ G1, |ĝ| = n. By hypothesis there exists some ˜H ∈ H
containing s. Take arbitrary H, H ′ ∈ H. In order to show that H and gH ′ can be
connected by a good sequence it suffices to show, by the inductive hypothesis, that
ĝ ˜H = g ˜H and gH ′ can be connected by a good sequence. This holds because ˜H and
H ′ can be so connected, according to (AN2). ��

One of the reasons for which one can be interested in the notion of network of
groups is that it represents a way of building up NRH groups. More precisely the
following holds:
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Proposition 5.4 Let G be a finitely generated group which is an M-algebraic network
with respect to H, such that each of the subgroups in H is not relatively hyperbolic.

If G is an undistorted subgroup of a group � hyperbolic relative to ˜H1, . . . , ˜Hm,
then G is contained in a conjugate of some subgroup ˜Hi , i ∈ {1, . . . ,m}.

In particular G is not relatively hyperbolic.

Proof According to Corollary 4.7, any subgroup H ∈ H is contained in the conjugate
of some ˜Hi , i ∈ {1, . . . ,m}. Since distinct conjugates of subgroups ˜Hi have finite
intersections, it follows from (AN2) that all subgroups in H are in the same conju-
gate γ ˜Hiγ

−1. Hence, condition (AN1) implies that G has a finite index subgroup G1
which is completely contained in the same conjugate γ ˜Hiγ

−1. Given M the constant
in (AN1), for any g ∈ G, gG1g−1 ⊂ NM (G1) ⊂ NM (γ ˜Hiγ

−1). It follows that
g(γ ˜Hi γ

−1)g−1 ∩ NM (γ ˜Hiγ
−1) has infinite diameter. From this it can be deduced,

by [68, Lemma 2.2], that g(γ ˜Hiγ
−1)g−1 ∩ γ ˜Hiγ

−1 is also infinite. This implies
that the two conjugates coincide and thus g ∈ γ ˜Hiγ

−1. We have thereby shown that
G < γ ˜Hiγ

−1. ��
In Proposition 5.4 the hypotheses of undistortedness (of G in � and of every sub-

group H ∈ H in G) can be removed, if the hypothesis “all subgroups in H are NRH” is
strengthened to “all subgroups in H are non-elementary and without free non-Abelian
subgroups”. The latter condition implies the former but they are not equivalent: for
instance uniform lattices in semisimple groups of rank at least two are unconstricted
hence NRH and they have many non-Abelian free subgroups.

Thus, the following statement, generalizing the main result of [3], holds:

Proposition 5.5 Let G be a finitely generated group with a finite collection H of
finitely generated subgroups satisfying (AN1) and (AN2). Assume moreover that all
H ∈ H are non-elementary and do not contain free non-Abelian subgroups.

If G is a subgroup of a group � hyperbolic relative to ˜H1, . . . , ˜Hm, then G is
contained in a conjugate of some subgroup ˜Hi , i ∈ {1, . . . ,m}.

In particular G is not relatively hyperbolic.

Proof We use the Tits alternative in relatively hyperbolic groups: a subgroup in � is
either virtually cyclic, parabolic (i.e. contained in a conjugate of some subgroup ˜Hi ), or
it contains a free non-Abelian subgroup; the proof follows from [17,84]. Hence, with
our hypotheses, any subgroup H ∈ H is parabolic. The rest of the proof is identical
to the proof of Proposition 5.4. ��

6 Relative hyperbolicity and Dunwoody’s inaccessible group

Having a quasi-isometric rigidity theorem for relatively hyperbolic groups whose
peripheral subgroups are not relatively hyperbolic, one might think to ask:

Question 6.1 Given a finitely generated relatively hyperbolic group G, is G hyper-
bolic relative to some finite collection of subgroups none of which are relatively
hyperbolic?
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Remark 6.2 Note that if G is hyperbolic relative to {Hi ; i = 1, 2, . . . ,m} and if
each Hi is hyperbolic relative to {H j

i ; j = 1, 2, . . . , ni } then G is hyperbolic rela-

tive to {H j
i ; j = 1, 2, . . . , ni , i = 1, 2, . . . ,m}. Examples where such process never

terminates are easily found (for instance when G is a free non-Abelian group with
Hi finitely generated non-Abelian subgroups and H j

i finitely generated non-Abelian
subgroups of Hi .). Still, one might ask if in every relatively hyperbolic group there
exists a terminal point for the process above (like H = {1} in the case of a free group).
This is the meaning of Question 6.1.

We answer this question in the negative, using Dunwoody’s example J of an inac-
cessible group [36]:

Proposition 6.3 Dunwoody’s group J is relatively hyperbolic. If J is hyperbolic rel-
ative to a finite collection of subgroups A1, . . . , AI , at least one of the subgroups
A1, . . . , AI is relatively hyperbolic.

This proposition shows that J satisfies a kind of “relatively hyperbolic inaccessi-
bility”: whenever J is written as a relatively hyperbolic group, one of the peripheral
subgroups A is also relatively hyperbolic and so A can be replaced by its list of periph-
eral subgroups, giving a new relatively hyperbolic description of J ; this operation can
be repeated forever, giving an infinite sequence of finer and finer relatively hyperbolic
descriptions of J .

First we review Dunwoody’s construction of J . Let H be the group of permutations
of Z generated by the transposition t = (0, 1) and the shift map s(i) = i + 1. Each
element σ ∈ H agrees outside a finite set with a unique power s p, and the map σ �→ p
defines a homomorphismπ : H �→ Z whose kernel denoted Hω is the group of finitely
supported permutations of Z. Let Hi ⊂ Hω be the group of permutations supported on
[−i, i] = {−i,−i + 1, . . . , 0, 1, . . . , i − 1, i}, so Hω = ∪∞

i=0 Hi . Let V be the group
of all functions from Z to Z2 = {±1} with finite support and the usual group law.
Let Vi be the subgroup of all such maps with support [−i, i]. Let zi ∈ Vi be the map
defined by zi (n) = −1 if and only if n ∈ [−i, i]. The group Hi acts on the left of Vi by
hv( j) = v(h−1( j)), and so we can form the semidirect product G ′

i = Vi � Hi , each of
whose elements can be written uniquely as vh with v ∈ Vi and h ∈ Hi , and the group
law is (v0h0) · (v1h1) = (v0

h0v1)(h0h1). The element zi is central in G ′
i and so we

have a direct product subgroup Ki = 〈zi 〉 × Hi ≈ Z/2 × Hi < G ′
i . For i = 1, 2, . . .

choose Gi to be an isomorphic copy of G ′
i , with the Gi pairwise disjoint. The group

Ki being a subgroup of G ′
i and of G ′

i+1, we may identify Ki with its images in Gi

and Gi+1, which defines the following graph of groups whose fundamental group is
denoted P:

G1
K1

G2
K2

G3
K3

G4
K4 . . . (3)

We shall need below the following equation which can be regarded as taking place
within Gi+1:

Ki ∩ Ki+1 = Hi . (4)
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Collapsing all edges in (3) to the right of the one labeled Kn produces another decom-
position of P as the fundamental group of the graph of groups

G1
K1

G2
K2

G3 Gn−1
Kn−1

Gn
Kn

Qn (5)

and then collapsing all edges except the one labeled Kn we get a decomposition
P = Pn ∗Kn Qn . Noting that P contains H1 < H2 < H3 < · · · < Hω, we can form
the amalgamated product

J = P ∗Hω H. (6)

Since Hω ⊂ Qn , the group J also has the decomposition

J = Pn ∗Kn

(

Qn ∗Hω H
)

︸ ︷︷ ︸

Jn

. (7)

Applying (5) and the definition of Pn we obtain a decomposition of J as the funda-
mental group of the graph of groups

G1
K1

G2
K2

G3 Gn−1
Kn−1

Gn
Kn

Jn . (8)

From both (7) and (8) we see that J is relatively hyperbolic: in either of these
graph of groups presentations, each edge group is finite and includes properly into
both adjacent vertex groups, and so J is hyperbolic relative to the vertex groups. This
proves the first clause of Proposition 6.3.

To prepare for the rest of the proof we need some additional facts about the group H .

• H is the intersection of the nested family of subgroups J1 > J2 > J3 > · · ·
To prove this, since Jn = Qn ∗Hω H , it suffices to show that the intersection of
the nested family Q1 > Q2 > Q3 > · · · equals Hω. Consider an element x ∈
P = Q0 that is contained in this intersection. Since Q0 is generated by its subgroups
G1,G2, . . ., the element x can be written as a word w1 whose letters are elements
of G1,G2, . . . ,Gn for some n. Since x ∈ Q1, x can also be written as a product of
elements of G2,G3, . . .. By uniqueness of normal forms in a graph of groups, any
letter of w1 that is in the subgroup G1 is also in the subgroup K1; each such letter
can be pulled across the K1 edge into the subgroup G2, and so x can be written as
a word w2 whose letters are elements of G2, . . . ,Gn . Continuing inductively in this
fashion, we see that x ∈ Gn . Going one more step, since x ∈ Qn , it can be written
as a product of elements of Gn+1,Gn+2,Gn+3, . . ., and so by uniqueness of normal
forms we have x ∈ Kn < Gn+1. And going one more step again, x can be written as
a product of elements of Gn+2,Gn+3, . . ., and so x ∈ Kn+1. Applying (4) we have
x ∈ Kn ∩ Kn+1 = Hn < Hω.

Next we need:

• H satisfies the hypotheses of Proposition 5.5.
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To see this, let Heven be the abelian subgroup of H generated by the transpositions
(2n, 2n + 1), n ∈ Z, and let Hodd be the abelian subgroup generated by the transpo-
sitions (2n + 1, 2n + 2), n ∈ Z. The squared shift map s2 preserves each of these
subgroups, and so we have subgroups Heven � 〈s2〉 and Hodd � 〈s2〉 of H , each solv-
able and therefore non-elementary, without free non-Abelian subgroups. These two
subgroups generate the index 2 subgroup π−1(2Z), thus (AN1) is satisfied. Also 〈s2〉
is contained in both subgroups, whence (AN2).

Now we prove the second clause of Proposition 6.3. Arguing by contradiction, sup-
pose that J is relatively hyperbolic with respect to peripheral subgroups L1, . . . , Lm

none of which is relatively hyperbolic. By Proposition 5.5, the group H must be con-
tained in some conjugate of some Li , so we have H < L ′

i = gLi g−1 for some g ∈ J .
Since H is infinite, L ′

i is infinite. By combining Corollary 4.7 with the relatively
hyperbolic description (8), the NRH subgroup L ′

i must be contained in a conjugate of
one of G1, . . . ,Gn, Jn , but only Jn is infinite and so L ′

i < h Jnh−1 for some h ∈ J .
We therefore have H < Jn ∩ h Jnh−1, and so by malnormality Jn = h Jnh−1. Thus
L ′

i < Jn for all n, and so L ′
i < H . We have therefore proved that L ′

i = H , and so J
is hyperbolic relative to a collection of subgroups that includes H .

Now note that H∩zn H z−1
n contains Hn whose cardinality goes to+∞ as n →+∞.

Since H is a peripheral subgroup of J , the intersection of H with its distinct conjugates
has uniformly bounded cardinal. Thus for n large enough we have H = zn H z−1

n . In
particular H and zn H are at finite Hausdorff distance |zn|, which together with the
fact that H is infinite and with property (α1) imply that H = zn H , hence that zn ∈ H ,
a contradiction.

7 Thick spaces and groups

A particular case of NRH groups are those obtained by using the construction in Prop-
osition 5.4 inductively, with unconstricted groups as a starting point. This particular
case of groups are the thick groups. We begin by introducing the notion of thickness
in the general metric setting.

Definition 7.1 (Metric thickness and uniform thickness).

(M1) A metric space is called thick of order zero if it is unconstricted. A family of
metric spaces is uniformly thick of order zero if it is uniformly unconstricted.

(M2) Let X be a metric space and L a collection of subsets of X . Given τ ≥ 0 and
n ∈ N we say that X is τ–thick of order at most n + 1 with respect to the
collection L if X is a τ -network with respect to L, and moreover:
(θ) when the subsets in L are endowed with the restricted metric on X , then

the collection L is uniformly thick of order at most n.
We say X is thick of order at most n if it is τ–thick of order at most n with
respect to some collection L for some τ . Further, X is said to be τ–thick of
order n (with respect to the collection L) if it is τ–thick of order at most n (with
respect to the collection L) and for no choices of τ and L is it thick of order
at most n − 1. When the choices of L, τ , and n are irrelevant, we simply say
that X is thick.
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(M3) A family {Xi | i ∈ I } of metric spaces is uniformly thick of order at most n+1
if the following hold.
(υθ1) There exists τ > 0 such that every Xi is τ–thick of order at most n+1

with respect to a collection Li of subsets of it;
(υθ2)

⋃

i∈I Li is uniformly thick of order at most n, where each L ∈ Li is
endowed with the induced metric.

Remark 7.2 Thickness is a quasi-isometry invariant in the following sense. Let X, X ′
be metric spaces, let q : X → X ′ be a (L ,C)-quasi-isometry, let L be a collection
of subsets of X , let L′ be a collection of subsets of X ′, and suppose that there is a
bijection q# : L → L′ such that the subsets q(L) and q#(L) have Hausdorff distance
≤ C in X ′, for each L ∈ L. For example, one could simply take L′ = {q(L) ∣

∣ L ∈ L}.
If we metrize each space in L or in L′ by restricting the ambient metric, it follows that
L and L′ are uniformly quasi-isometric, and so L is uniformly unconstricted if and
only if L′ is uniformly unconstricted. This is the basis of an easy inductive argument
which shows that X is τ–thick of order n with respect to L if and only if X ′ is τ ′–thick
of order n with respect to L′, where τ ′ = τ ′(L ,C, τ ).

We now define a stronger version of thickness in the context of finitely generated
groups with word metrics.

Definition 7.3 (Algebraic thickness) Consider a finitely generated group G.

(A1) G is called algebraically thick of order zero if it is unconstricted.
(A2) G is called M–algebraically thick of order at most n + 1 with respect to H,

where H is a finite collection of subgroups of G and M > 0, if:
− G is an M-algebraic network with respect to H;
− all subgroups in H are algebraically thick of order at most n.

G is said to be algebraically thick of order n + 1 with respect to H, when n is the
smallest value for which this statement holds.

Remark 7.4 The algebraic thickness property does not depend on the word metric
on G, moreover it holds for any metric quasi-isometric to a word metric. Hence in
what follows, when mentioning this property for a group we shall mean that the group
is considered endowed with some metric quasi-isometric to a word metric. See Sect. 8
for an example where we use a proper finite index subgroup G1 to verify thickness.

Examples Examples of groups that are algebraically thick of order one are provided
by mapping class groups (see Sect. 8 and [5]), right angled Artin groups whose presen-
tation graph is a tree of diameter greater than 2 (Corollary 10.8 and Proposition 10.9),
and fundamental groups of graph manifolds (see Sect. 11 and [52]). An example of
a metric space thick of order one is the Teichmüller space with the Weil–Petersson
metric (see Sect. 12 and [5]). An example of a group thick of order two is described
in [6], see also Remark 11.3.

Question 7.5 Since the order of metric thickness is a quasi-isometry invariant (see
Remark 7.2), we ask whether the order of algebraic thickness is also a quasi-isometry
invariant.
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Proposition 7.6 (a) If a finitely generated group G is M-algebraically thick of order
at most n then it is M–metrically thick of order at most n. Moreover, if n ≥ 1
and G is M-algebraically thick of order at most n with respect to H then it is
M–metrically thick of order at most n with respect to the collection of left cosets

L = { gH : g ∈ G1, H ∈ H } .

(b) Let G1,G2, . . . ,Gn be finitely generated groups algebraically thick of order at
most n. Then any family {Xi | i ∈ I } of metric spaces such that each Xi is
isometric to Gk for some k ∈ {1, 2, . . . , n} is uniformly metrically thick of order
at most n.

Proof We prove the proposition inductively on n. The statements (a) and (b) are true
for n = 0. Suppose that they are true for all k ≤ n. We prove them for n + 1.
(a) Since all groups in H are undistorted and algebraically thick of order at most n
with respect to their own word metrics, by Remark 7.4 it follows that they are alge-
braically thick of order at most n also when endowed with the restriction of the metric
on G. This and (b) for n imply that L is uniformly metrically thick of order at most n,
verifying condition (θ). This and Proposition 5.3 allow to finish the argument.
(b) Each group Gi is Mi -algebraically thick of order at most n with respect to some
collection Hi of subgroups, where Mi > 0. Each H ∈ Hi is thick of order at most
n − 1. Property (υθ1) holds for {Xi | i ∈ I }, with the constant τ = max{Mi | i ∈
{1, 2, . . . , n}}. Each metric space Xi , i ∈ I , is isometric to some Gk , hence by (a)
it is metrically thick with respect to the family of isometric images of {gH | g ∈
G1

k, H ∈ Hk}, where G1
k is a finite index subgroup in Gk . Property (b) applied to the

finite family of groups
⋃n

k=1 Hk yields property (υθ2) for the family of metric spaces
{Xi | i ∈ I }. ��

A consequence of Proposition 7.6 is that the order of algebraic thickness is at least
the order of metric thickness. Thus, we ask the following strengthening of Question 7.5.

Question 7.7 For a finitely generated group is the order of algebraic thickness equal
to the order of metric thickness?

A motivation for the study of thickness is that it provides a metric obstruction
to relative hyperbolicity. In particular, it gives us examples to which one can apply
Theorem 4.1.

In the sequel, we shall not mention the collection of subsets/subgroups with respect
to which thickness is satisfied, when irrelevant to the problem.

Theorem 7.8 Let X be a collection of uniformly thick metric spaces, and let Y be a
metric space asymptotically tree-graded with respect to a collection P of subsets. Then
there is a constant M = M(L ,C,X ,Y,P) such that for any X ∈ X and any (L ,C)-
quasi-isometric embedding q : X ↪→ Y , the image q(X) is contained in NM (P) for
some P ∈ P .

Proof We prove the statement by induction on the order of thickness. If n = 0,
then the family X is uniformly unconstricted and the statement follows from The-
orem 3.6. Assume that the statement is true for n. We prove it for n + 1. Let X
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be a collection of metric spaces uniformly thick of order at most n + 1. For each
X ∈ X let LX be the collection of subsets with respect to which X is thick. The family
L = ⋃

X∈X LX is uniformly thick of order at most n. By the inductive hypothesis, there
exists M = M(L ,C,L,Y,P) such that for any L ∈ L, any (L ,C)-quasi-isometric
embedding of L into Y is contained into the radius M neighborhood of a set P ∈ P . Let
X be any metric space in X and let q : X → Y be an (L ,C)-quasi-isometric embed-
ding. For every L ∈ LX , the subset q(L) is contained in NM (PL) for some PL ∈ P .
Further, hypothesis (N2) is satisfied also by the collection of subsets {q(L) | L ∈ L}.
Theorem 2.8, (α1), implies that PL is the same for all L ∈ L. It follows that q

(⋃

L∈L L
)

is contained in the M–neighborhood of P . Properties (υθ1) and (N1) together imply
that q(X) is contained in the (M + Lτ + C)–neighborhood of the same P . ��

Taking Y = X this immediately implies:

Corollary 7.9 If X is a thick metric space, then X is not asymptotically tree-graded.
In particular, if X is a finitely generated group which is thick, then X is not relatively
hyperbolic.

7.1 NRH groups which are not thick

Thick groups provide an important class of NRH groups. It is therefore natural to ask
whether there exist examples of NRH groups which are not thick. A construction in
[83] (of which a more elaborated version can be found in [34, Sect. 7]) provides an
example of a two-generated group, recursively (but not finitely) presented, which is
NRH and not metrically thick.

Notation 7.10 Given an alphabet A and a word w in this alphabet, |w| denotes the
length of the word.

Definition 7.11 (Property C∗(λ)) Let FA denote the set of reduced words in an alpha-
bet A. A set W ⊂ FA which is assumed to be closed under cyclic permutations and
taking inverses, is said to satisfy property C∗(λ) if the following hold:

(1) if u is a subword in a word w ∈ W so that |u| ≥ λ|w| then u occurs only once
in w;

(2) if u is a subword in two distinct wordsw1, w2 ∈ W then |u| ≤ λmin(|w1|, |w2|).
Let A = {a, b} and let kn = 22n

. In the alphabet A consider the sequence of words

wn = (

akn bkn a−kn b−1
)kn . Note that |wn| = kn(3kn + 1). In what follows we denote

this length by dn and the sequence (dn) by d.
A standard argument gives the following result (see [16,83] for versions of it).

Lemma 7.12 If W is the minimal collection of reduced words in FA containing
{wn ; n ∈ N, n ≥ 4}, closed with respect to cyclic permutations and taking inverses,
then the following hold:

(1) W can be generated recursively;
(2) W satisfies C∗(1/500);
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(3) for every n ∈ N, the set {w ∈ W ; |w| ≥ dn} satisfies C∗(1/kn).

Proposition 7.13 [34,83] The two-generated and recursively presented group G =
〈a, b | wn, n ≥ 4〉, has the following properties.

(1) Any asymptotic cone of G is either a real tree or a tree-graded space with pieces
isometric to the same circle with the arc distance.

(2) The group G is not relatively hyperbolic.

Proof (1) Let �n be the loop through 1 in the Cayley graph of G, labeled by the
word wn starting from 1.

In [34, Sect. 7] it is proved that the asymptotic cone Coneω(G; 1, d) is tree-graded,
with the set of pieces composed of ultralimits of sequences of the form (gn�n) where
gn ∈ G. In our case these ultralimits are all isometric to the unit circle. The same proof
works in fact not only for (dn) but for any scaling sequence, thus giving the statement
in (1), since for other scaling sequences the ultralimits can be either circles, points or
lines. A version of the last part of the argument can also be found in [83].

(2) Assume that the group G is hyperbolic relative to a finite family of finitely
generated subgroups H. Then Coneω(G; 1, d) is tree-graded with set of pieces ultra-
limits of left cosets of subgroups in H. According to Lemma 2.15 in [34], the subset
without cut-point limω(�n) is contained in some limω gn H where H ∈ H.

Let pn be an arbitrary sub-path in �n , of length 1
6 dn . This sub-path is a geodesic

in the Cayley graph of G [34, §7.2]. Let p′n and p′′n be the first and the last third of
pn . Since both have length 1

18 dn and are contained ω-almost surely in No(dn)(gn H),
property (α2) implies that both intersect a tubular neighborhood of radius O(1) of
gn H . The quasi-convexity of gn H ([34, §4], [33, §4.3]) implies that ω-almost surely
the middle third of pn is contained in NM (gn H), for some uniform constant M . Now
the loop �n can be divided into 18 sub-paths of length 1

18 dn , each of which appears
as the middle third of a larger sub-path. We may conclude that �n is ω-almost surely
contained in NM (gn H). In particular 1 ∈ NM (gn H), hence it may be assumed that
gn ∈ B(1,M). Since B(1,M) is finite, the ultrafilter allows us to assume that gn is a
constant sequence.

Thus we obtained that for some g ∈ B(1,M) and some H ∈ H the left coset gH
contains in its M-tubular neighborhood ω-a.s. the loop �n . It follows that a�n ⊂
NM (agH) and b�n ⊂ NM (bgH) ω-a.s. The loop a�n has in common with �n the
path apa , where pa is the path of origin 1 and label akn−1. It follows thatω-a.s NM (gH)
and NM (agH) intersect in a set of diameter at least kn − 1. Property (α1) implies that
gH = agH , thus a ∈ gHg−1.

Likewise, the remark that b�n and �n have in common the path bpa , together with
(α1), implies that b ∈ gHg−1. It follows that G coincides with gHg−1, hence with
H , therefore the relative hyperbolic structure defined by H is not proper. ��
Remark 7.14 The arguments in the proof of statement (2), Proposition 7.13, can be
carried out for a much more general construction of the group G than the one con-
sidered here. Thus, the techniques described in [34, §7] (following an idea from [73]
further developed in [39]) allow the construction of a large class of new examples of
NRH groups.
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Corollary 7.15 The group G does not contain any subspace B which endowed with
the restriction of a word metric on G is unconstricted.

In particular G is not metrically thick.

Proof Assume that G contains an unconstricted subspace B. Then there exists an
ultrafilter ω and a sequence δ of positive numbers such that for every sequence of
observation points b in B the asymptotic cone Coneω(B; b, δ) does not have cut-
points. Since B is endowed with the restriction of a word metric on G, Coneω(B; b, δ)
can be seen as a subset of Coneω(G; b, δ).

If Coneω(G; b, δ) is a real tree then all arc-connected subsets in it have cut-points,
thus it cannot contain a subset Coneω(B; b, δ) as above.

Assume that Coneω(G; b, δ) is a tree-graded space with pieces isometric to a circle.
Lemma 2.15 in [34] implies that Coneω(B; b, δ) is contained in some piece. This is
impossible since Coneω(B; b, δ) is infinite diameter, by Definition 3.1, (2). ��
Remark 7.16 Note that the group G displays a sort of generalized version of metric
thickness with respect to the collection of subspaces {g�n ; g ∈ G, n ≥ 4}. Indeed
this collection satisfies one of the two necessary conditions for uniform unconstric-
tedness (condition (1) in Definition 3.4), property (N1) of a metric network obviously
holds, and a weaker version of property (N2) is satisfied: the diameters of the inter-
sections between neighborhoods of consecutive subspaces Li , Li+1 in a sequence
connecting thickly are no longer infinite, but increase with the minimum between the
diameters of the starting and the target subspaces L and L ′.

Question 7.17 Can the construction above be adapted to give an example of a group
which is metrically thick (and thus NRH) but not algebraically thick?

8 Mapping class groups

Let S = Sg,p denote an orientable surface of genus g with p punctures. We param-
eterize the complexity of S by ξ(S) = 3g + p − 3 which is the cardinality of any
set of closed curves subdividing S into pairs of pants, that is, any maximal, pairwise
disjoint, pairwise non-homotopic set of essential, non-peripheral closed curves on S.
Note that every surface with ξ(S) ≤ 1 either has MCG(S) finite or virtually free; in
particular, these groups are all δ–hyperbolic. This section provides our first example
of an algebraically thick group:

Theorem 8.1 MCG(S) is algebraically thick of order one when ξ(S) ≥ 2.

It is known that the mapping class group is not thick of order 0 (i.e., unconstricted)
by the following:

Theorem 8.2 (Behrstock [5]) For every surface S, every asymptotic cone of MCG(S)
has cut-points.

MCG(S) is not hyperbolic when ξ(S) ≥ 2 since for any set of curves subdividing
S into pairs of pants, the subgroup generated by Dehn twisting along these curves is a
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free abelian subgroup of MCG(S) of rank ξ(S). Indeed, according to [12], ξ(S) is the
maximal rank of a free abelian subgroup of MCG(S). Moreover, it has been shown
that these abelian subgroups are quasi-isometrically embedded in MCG(S) (see [41]
and [66]). Masur and Minsky showed that MCG(S) is weakly relatively hyperbolic
with respect to a finite collection of stabilizers of curves [63]. (The subgroup stabiliz-
ing a curve γ will be denoted stab(γ ).) Further, it is easily verified that MCG(S) is not
relatively hyperbolic with respect to such a collection of subgroups. This motivates the
question of whether there exists a collection of subgroups of MCG(S) for which this
group is relatively hyperbolic (see [5]). That no such collection exists is an immediate
consequence of Theorem 8.1:

Corollary 8.3 If S is any surface with ξ(S) ≥ 2, then there is no finite collection
of finitely generated proper subgroups with respect to which MCG(S) is relatively
hyperbolic.

Anderson, Aramayona, and Shackleton have an alternative proof of Corollary 8.3
using an algebraic characterization of relative hyperbolicity due to Osin [3]. This result
also appears in both [18,55] although it is not stated as such as it appears under the
guise of a fixed point theorem for actions of the mapping class group. We note that
the techniques of each of [3,18,55] rely in an essential way on the group structure.

Before giving the proof of Theorem 8.1 we recall some well known results con-
cerning mapping class groups. For closed surfaces the mapping class group was first
shown to be finitely generated by Dehn [29] in a result which was later independently
rediscovered by Lickorish [60]; both gave generating sets consisting of finite collec-
tions of Dehn twists. For the mapping class group MCG(S) of a punctured surface
S, the finite index subgroup which fixes the punctures pointwise is generated by a
finite set of Dehn twists [11]; this latter group is also called the pure mapping class
group, and denoted by PMCG(S). The extended mapping class group, MCG±(S),
is the group of orientation preserving and reversing mapping classes. This is a finite
extension of the mapping class group. (See [11,49,50]). Since these groups are all
quasi-isometric, Remark 7.2 implies that if we can show that the pure mapping class
group is algebraically thick of order one, it implies that the same holds for the mapping
class group and the extended mapping class group.

Introduced by Harvey, a useful tool in the study of MCG(S) is the complex of
curves C(S) [48]. When ξ(S) ≥ 2 the complex C(S) is a simplicial complex with one
vertex corresponding to each homotopy class of non-trivial, non-peripheral simple
closed curves in S, and with an n-simplex spanning each collection of n + 1 vertices
whose corresponding curves can be realized on S disjointly.

For later purposes we also need to define C(S) when ξ(S) = 1, in which case the
surface S is either a once-punctured torus or a four-punctured sphere: the vertex set of
C(S) is defined as above, with an edge attached to each pair of vertices whose corre-
sponding curves can be realized on S with minimal intersection number, that number
being 1 on a once-punctured torus and 2 on a four-punctured sphere.

In either case the complex C(S) is connected (see for example [63]). The distance
dC(S)(α, β) between two vertices α, β in C(S) is the usual simplicial metric, defined
to be the length of the shortest edge path between α and β.
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Proof of Theorem 8.1 We start by remarking that for any essential simple closed curve
γ ∈ C(S), its stabilizer stab(γ ) in MCG(S) is a central extension of MCG(S\γ ) by
the infinite cyclic subgroup generated by a Dehn twist about γ . Thus, if ξ(S) ≥ 2 then
stab(γ ) is non-elementary and has a central infinite cyclic subgroup. Consequently
stab(γ ) is unconstricted. It is an easy consequence of the distance estimates in [64,
Theorem 6.12], that stab(γ ) is undistorted for any essential simple closed curve γ .
Select a finite collection of curves�0 such that the Dehn twists along these curves gen-
erate PMCG(S). Connectivity of the curve complex implies that there is a finite con-
nected subgraph of C(S) containing the vertices in �0; let � denote the set of vertices
in this new graph. Since ξ(S) ≥ 2, if α, β are curves representing vertices at distance 1
in C(S) then α and β are disjoint, and so the subgroup stab(α)∩stab(β) = stab(α∪β)
is infinite. It follows that MCG(S) is algebraically thick of order at most 1 with respect
to H = {stab(γ ) | γ ∈ �}. By Theorem 8.2, MCG(S) is not unconstricted and thus it
is thick of order 1. ��

9 Aut(Fn) and Out(Fn)

We start by fixing a set of generators {x1, . . . , xn} for the free group Fn . We denote
the automorphism and outer automorphism groups of Fn by Aut(Fn) and Out(Fn) =
Aut(Fn)/Inn(Fn), respectively, where Inn(Fn) is the group of inner automorphisms.
Recall that an element of Aut(Fn) is a special automorphism if the induced automor-
phism of Z

n has determinant 1. The subgroup SAut(Fn) of special automorphisms
has index two in Aut(Fn).

Notation All indices in this section are taken modulo n, where n is the rank of the
free group we are considering.

We denote the following Dehn twists in Aut(Fn):

• ri =
{

xi+1 �→ xi+1xi

x j �→ x j for j �= i + 1,

• li =
{

xi+1 �→ xi xi+1

x j �→ x j for j �= i + 1,

• ni =
{

xi+2 �→ xi+2 xi

x j �→ x j for j �= i + 2.

Culler and Vogtmann proved that the set S composed of all ri and li is a set of gen-
erators of SAut(Fn), see [27]. Note that all elements in S have infinite order. The
elementary argument in Example 2.4 of [2] yields the following.

Lemma 9.1 Let n ≥ 3. The Z
2 subgroup of Aut(Fn) generated by the pair 〈φi , φ j 〉

is undistorted when φi ∈ {ri , li }, φ j ∈ {r j , l j }, and dist(i, j) ≥ 2, where dist(i, j) is
measured in Z/nZ. The Z

2 subgroups 〈ri , li 〉, 〈ni , ri 〉, and 〈ni , li+1〉 are also undis-
torted for all i . These subgroups also inject to undistorted subgroups of Out(Fn).

Theorem 9.2 If n ≥ 3, then both Aut(Fn) and Out(Fn) are algebraically thick of
order at most one.
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Proof We consider H the set of all subgroups 〈φi , φ j 〉, where φi ∈ {ri , li }, φ j ∈
{r j , l j }, and dist(i, j) ≥ 2, and we also include in H the subgroups 〈ni , ri 〉 and
〈ni , li+1〉. We may regard these as subgroups of Aut(Fn) or, since they each intersect
Inn(Fn) trivially, as subgroups of Out(Fn).

We shall now prove that both Aut(Fn) and Out(Fn) are algebraically thick of order
one with respect to the subgroups in H.

Each subgroup H = 〈φ, ψ 〉 in H is isomorphic to Z
2, hence unconstricted.

Lemma 9.1 shows that each such subgroup is undistorted.
By [27], the ri and li provide a complete set of generators for SAut(Fn), and

SAut(Fn) is a subgroup of Aut(Fn) of index two, thus we have shown that property
(AN1) is satisfied for SAut(Fn) and thus for Aut(Fn).

We verify property (AN2) in the definition of algebraic thickness. Note that since
〈φ, l j 〉 ∩ 〈φ, r j 〉 ⊃ 〈φ〉, it suffices to show that the subgroups generated by ri and ni

can be thickly connected. For every 〈ri , r j 〉with dist(i, j) ≥ 2, Lemma 9.1 shows that
the subgroup 〈ri , r j 〉 thickly connects any pair of subgroups of H where one contains
ri and the other r j . Thus, to finish the verification of property (AN2) it remains to
find sequences joining a pair of subgroups, where one contains ri and the other ri+1.
Observe that the sequence of subgroups 〈ri , ni 〉, 〈ni , li+1〉, 〈li+1, ri+1〉 each intersects
the next in an infinite diameter subset. This shows that any subgroup containing ri can
be thickly connected to one containing ri+1 through a sequence of subgroups in H,
thereby completing our verification of property (AN2).

All the subgroups of Aut(Fn) that are used above to prove thickness are mapped,
via the canonical epimorphism, injectively and without distortion to Out(Fn). Thus the
hypotheses of Definition 7.3 hold as well in Out(Fn), whence Out(Fn) is algebraically
thick of order one for n ≥ 3. ��

10 Artin groups

An Artin group is a group given by a presentation of the following form:

A = 〈x1, . . . , xn | (xi , x j )mi j = (x j , xi )m ji 〉, (9)

where, for all i �= j in {1, . . . , n},

mi j = m ji ∈ {2, 3, . . . ,∞} and (xi , x j )mi j =

⎧

⎪

⎨

⎪

⎩

Id if mi j = ∞,

xi x j xi . . .
︸ ︷︷ ︸

mi j terms

if mi j <∞.

Such a group can be described by a finite (possibly disconnected) graph GA, the Artin
presentation graph, where the vertices of GA are labeled 1, . . . , n in correspondence
with the generators x1, . . . , xn , and the vertices i and j are joined by an edge labeled
by the integer mi j whenever mi j <∞. When mi j = ∞ there is no associated relator
in the presentation (9), and GA has no edge between vertices i and j .

A subgroup generated by a subset S of {x1, . . . , xn} is called a special subgroup
of A and it is denoted by AS . Any special subgroup AS is itself an Artin group with
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presentation given by the relations in (9) containing only generators in S, and such
that GAS is the subgraph of GA spanned by the vertices corresponding to S. This has
been proved by Van der Lek in [86, Chapter II, Theorem 4.13]. See also [77] for an
elementary proof as well as for a history of the result.

In particular the two generator special subgroup Ai j generated by xi , x j is an Artin
group: if mi j = ∞ then Ai j is free of rank 2; whereas if mi j <∞ then Ai j is defined
by the single relator (xi , x j )mi j = (x j , xi )m ji .

The Coxeter group W associated to an Artin group A has a presentation obtained
from (9) by adding relations saying that each x2

i is the identity.

Example 10.1 A two generator Artin group 〈x, y
∣

∣ (x, y)m = (y, x)m〉with m <∞ is
unconstricted. This holds since the element (x, y)2m is central, and it is of infinite order
since it projects to a non-zero element of Z under the exponent sum homomorphism
A → Z.

In [51] the following has been proven.

Theorem 10.2 (I. Kapovich–P. Schupp) An Artin group A defined as in (9) with
mi j ≥ 7 for all i �= j is weakly hyperbolic relatively to the collection of two generator
special subgroups

H = {Ai j
∣

∣ mi j <∞}.

As noted in the same paper, the above result cannot be improved to say that A is
strongly hyperbolic relative to H. Nevertheless the question remained whether A was
strongly hyperbolic relative to other groups, or at least metrically hyperbolic relative
to some collection of subsets. Our methods give a partial answer to this question, with
the interesting outcome that when our methods work, A turns out to be algebraically
thick of order at most 1 with respect to the exact same collection H. We do not go as far
as to check thickness for all of the Artin groups in Theorem 10.2, but in Corollary 10.8
below we show thickness as long as the graph GA has no triangles. Here are some
other special classes of Artin groups.

Free decompositions. The graph GA with n points and no edges describes the group
with n generators and no relators, i.e., the free group on n generators. More gener-
ally, if GA is disconnected then A decomposes into a free product, one factor for each
connected component in the defining graph. The converse is true as well: if GA is con-
nected then A is freely indecomposable, in fact A is a one-ended group. This follows
for example from Proposition 1.3 and Remark 4.4. Since any non-trivial free product
is relatively hyperbolic with the free factors as peripheral subgroups, we henceforth
restrict our attention to one-ended Artin groups, those whose defining graphs have
only one connected component.

Right angled Artin groups and even Artin groups. The complete graph on n ver-
tices with each mi j = 2 describes the group with n commuting generators, i.e., Z

n .
More generally, a right angled Artin group is one for which mi j ∈ {2,∞} for all i, j .
Recently there has been interest in the quasi-isometric classification of right angled
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Artin groups (see [10,7]). Generalizing a right angled Artin group, an Artin group is
even if each mi j is an even integer or infinity.

Finite type Artin groups. An Artin group is of finite type if the associated Coxeter
group W is finite. For example, the braid group on n strands is the Artin group with n
generators, with mi,i+1 = 3, and mi j = 2 if |i − j | > 1—in this case the associated
Coxeter group W is just the symmetric group on n symbols. An Artin group of finite
type is unconstricted, since it has an infinite cyclic central subgroup of infinite index,
as proven in [21,30].

Affine type Artin groups. An Artin group A is of affine type if the associated Coxeter
group W is a Euclidean crystallographic group. For example, when GA is a cycle of
n + 1 edges with a 3 on each edge then W is the full group of symmetries of a tiling
of Rn by cubes, in which case we denote A = ˜An .

The reason for so many different special classes of Artin groups seems to be a
proliferation of techniques for studying various aspects of Artin groups, and a con-
comitant lack of any single technique that works on all Artin groups—most theorems
about Artin groups carry extra hypotheses on the Artin presentation. For example,
there are various constructions in the literature of biautomatic and/or CAT(0) struc-
tures on Artin groups (we refer the reader to [38] for the definition of a biautomatic
structure):

• Every right angled Artin group is CAT(0), in fact it is the fundamental group of a
non-positively curved cube complex [9], and so it is biautomatic [70].

• Braid groups are biautomatic [38]. More generally, Artin groups of finite type are
biautomatic [25].

• If GA has no triangles then A is CAT(0) [19] and biautomatic (combining [79] and
[42]; see comments in [19]).

• A is CAT(0) and biautomatic if the edges of GA can be oriented so that each trian-
gle has an orientation agreeing with the orientations of all three edges, and in each
square the orientations of the four edges do not alternate when going around the
square [19].

• Artin groups for which each mi j ≥ 4 are biautomatic [78].
• Artin groups of affine type ˜An , also known as the affine braid groups, are biauto-

matic [26].

We shall prove thickness for some of these groups. The method we use is:

Lemma 10.3 If the graph GA is connected, and if each two generator special subgroup
Ai j with mi j <∞ is undistorted in A, then A is algebraically thick of order ≤ 1.

Proof For i, j, k all distinct, the subgroup Ai j ∩ Aik contains the infinite order ele-
ment xi . Since GA is connected, and since the two generator special subgroups Ai j with
mi j < ∞ are undistorted and unconstricted (see Example 10.1), the lemma follows.

��
One can verify undistortedness of two generator special subgroups in different

cases by using a variety of methods: retractions; non-positive curvature methods;
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the Masur–Minsky distance estimates for mapping class groups; or automatic group
methods.

Retractions. Our first results on Artin groups use a simple algebraic method to prove
undistortedness:

Proposition 10.4 Let A be an Artin group. Suppose that for each 2 generator spe-
cial subgroup Ai j with mi j < ∞, there exists a retraction p : A → Ai j . Then A is
algebraically thick of order ≤ 1.

Proof This is a consequence of Lemma 10.3 and the observation that for any finitely
generated group G and any finitely generated subgroup H < G, if there exists a
retraction G → H then H is undistorted. ��

In each application of this proposition, the retraction from an Artin group A gener-
ated by S to a special subgroup A′ generated by S′ ⊂ S will be induced by a retraction
from S ∪ {Id} to S′ ∪ {Id}.

Even Artin groups. Consider first the case of an Artin group A presented by (9) so
that each mi j is an even integer or +∞. For each generator g ∈ S define p(g) = g if
g ∈ S′ and p(g) = 1 otherwise. This projection is well defined, since any relation

[xi , x j ]mi j = [x j , xi ]mi j

projects under p to either: itself if both xi , x j ∈ S′, or to the tautological relation
x

mi j
i = x

mi j
i if x j �∈ S′.

By Proposition 10.4 it follows that:

Theorem 10.5 Even Artin groups are algebraically thick of order at most 1.

Trees. Consider next the case that GA is a tree. There is a unique retraction p : GA �→
GA′ so that each component of GA − GA′ maps to the unique vertex of GA′ incident to
that component. This induces a map p : S �→ S′. Extend p to a map from words in S
to words in S′. Again we need only prove that given a relator vRi jv

−1 for A as above,
p(vRi jv

−1) = wp(Ri j )w
−1 defines the identity in A′. Consider the edge e of GA′

connecting si to s j . If e ⊂ A′ then p(Ri j ) = Ri j and we are done. If e is contained
in a component of GA − GA′ incident to a vertex sk of GA′ then p(Ri j ) is a word in
the single generator sk with exponent sum equal to zero and so is freely equal to the
identity. By Proposition 10.4, A is algebraically thick of order ≤ 1.

Other examples. There seem still to be numerous other examples to which Prop-
osition 10.4 applies. For example, consider the case that the group GA has rank 1,
meaning that it deformation retracts onto a circular subgroup GA′ . Suppose further-
more that each integer that occurs as a label mi j on some edge of GA′ occurs for at
least two different edges.

For any edge of GA not in GA′ there is a retraction defined as in the example above
where the graph is a tree. For any edge Ai j = e ⊂ GA′ , let f ⊂ GA′ be another
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edge with the same integer label. Removing the interiors of e and f from GA results
in two connected subgraphs Gi , G j , with notation chosen so that xi ∈ Gi . Let yi , y j

denote the endpoints of f , with notation chosen so that yi ∈ Gi . There is a retract
A → e defined by taking Gi to xi , and taking f to e so that yi goes to xi . This retract
restricts to a retraction of the generating set S onto {xi , x j }. This map extends to a
well defined retraction A → Ai j for the following reasons: for edges not equal to f
the corresponding Artin relation maps to a word freely equal to the identity; and the
Artin relation for the edge f maps to the Artin relation for the edge e because those
two edges are labeled by the same integer.

We have not investigated the full extent to which Proposition 10.4 applies, but on
the other hand we can easily construct somewhat random examples to which it seems
not to apply, for example an Artin group whose presentation graph is the complete
graph on four vertices and whose six edges are labeled by six pairwise relatively prime
integers.

Non-positive curvature. A good reference for non-positively curved groups is [20].
A geodesic metric on a cell complex C is a polyhedral Euclidean metric if for each
cell c there is a compact, convex Euclidean polyhedron P and a characteristic map
P �→ c so that the metric on P pushes forward to the given metric on c. A polyhedral
spherical metric is similarly defined, using spheres of constant curvature +1 instead
of Euclidean space. The link of each vertex in a polyhedral Euclidean metric inherits
a polyhedral spherical metric.

If C comes equipped with a polyhedral Euclidean metric then we say that C is a
piecewise Euclidean cell complex. Furthermore, if the link of each vertex v ∈ C has
no closed geodesic of length < 2π then we say that C is non-positively curved. A
subcomplex D ⊂ C is locally convex if for each vertex v ∈ D, the link of v in D is a
geodesically convex subset of the link of v in C .

Proposition 10.6 [20] If C is a finite piecewise Euclidean non-positively curved cell
complex, and if D is a locally convex subcomplex, then the inclusion of universal
covers ˜D → ˜C is globally isometric. It follows that the inclusion D ↪→ C induces an
injection π1(D)→ π1(C) with undistorted image. ��

Although right angled Artin groups are already considered in Theorem 10.5, the
following gives a different approach.

Theorem 10.7 If the Artin group A is right angled, or if it satisfies Pride’s condition
that GA has no triangles, then A is the fundamental group of a piecewise Euclidean
non-positively curved cell complex CA so that each 2 generator special subgroup Ai j

is the inclusion induced image of a locally convex subcomplex of CA.

The proof is given below. Combining Theorem 10.7 with Lemma 10.3 and Propo-
sition 10.6 we obtain:

Corollary 10.8 Artin groups A which are right angled or for which GA has no trian-
gles are algebraically thick of order ≤ 1. ��
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In one case we can compute the order to be exactly 1:

Corollary 10.9 Any right angled Artin group A for which GA is a tree of diameter at
least 3 has cut-points in every asymptotic cone, and so A is thick of order 1.

Proof Once we construct a compact, non-Seifert fibered, 3-dimensional graph man-
ifold M whose fundamental group is isomorphic to A, the result follows by work of
[52,54] (see Lemma 3.3 and Sect. 11). The manifold M will be a “flip manifold” in
the terminology of Sect. 11.

Consider first a right angled Artin group A′ for which GA′ is a star graph, meaning
a tree of diameter 2, with valence 1 vertices v1, . . . , vk for k ≥ 2, and a valence k
vertex v0 called the star vertex. The group A′ is the product of a rank k free group
with Z. We can realize A′ as the fundamental group of a 3-manifold M ′ which is the
product of a “horizontal” k + 1-holed sphere crossed with a “vertical” circle, so that
the generators v1, . . . , vk correspond to the horizontal circles in k of the boundary tori,
and the generator v0 corresponds to the vertical circle.

Suppose now that A is a right angled Artin group and GA is a tree of diameter ≥ 3.
Let v1, . . . , vm be the vertices of GA of valence ≥ 2, and note that m ≥ 2. Let GAi

denote the maximal star subgraph of GA with star vertex vi . The graph GAi presents
a special subgroup Ai which is isomorphic to the fundamental group of a 3-manifold
Mi as above, homeomorphic to the product of a sphere with holes crossed with the
circle. We have GA = GA1 ∪· · ·∪GAm . When i �= j and GAi , GA j are not disjoint then
GAi ∩GA j is a single edge of GA, in which case Mi and M j each have a torus boundary
whose fundamental group corresponds to the Z

2 special subgroup generated by vi and
v j ; we now glue these two tori so that the horizontal circle on one torus glues to the
vertical circle on the other. The result of gluing M1, . . . ,Mm in this manner is the
desired 3-manifold M , and M is not Seifert fibered because m ≥ 2. ��

Proof of Theorem 10.7 Suppose first that A is right angled. For each subset I of the
set of generator indices {1, . . . , n} for which the generators {xi

∣

∣ i ∈ I } all commute
with each other, let TI be the Cartesian product of |I | copies of the unit circle. Glue
these tori together using the obvious injection TI ′ ↪→ TI whenever I ′ ⊂ I , with base
point T∅. The result is a non-positively curved piecewise Euclidean cell complex CA

with fundamental group A.
Consider a special subgroup A′ ⊂ A with the property that if e is an edge of GA

whose endpoints are in GA′ then e is in GA′ . For example, G′
A could be a single edge

of GA. Then by construction CA′ may be regarded as a subcomplex of CA, and clearly
CA′ is locally convex.

Suppose next that A is an Artin group for which GA has no triangles. We use the
construction of Brady–McCammond [19] to produce the desired piecewise Euclid-
ean cell complex CA, and to verify local convexity of the appropriate subcomplexes.
This verification is considerably more delicate than for right angled Artin groups. The
standard presentation of a 2 generator Artin group

〈y1, y2
∣

∣ (y1, y2)m = (y2, y1)m〉
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Fig. 2 The link of the unique
vertex in the presentation
complex for the presentation for
a 2 generator Artin group given
by (10)

can be transformed into the presentation

〈d, y1, y2, . . . , ym
∣

∣ d = y1 y2, d = y2 y3, . . . , d = ym−1 ym, d = ym y1〉 (10)

by triangulating the relator (y1, y2)m = (y2, y1)m and in the process introducing new
generators d, y3, . . . , ym [19]. Note than when each m ≥ 3, the ordering yi , y j is
essential to the description of the presentation (10): the word yi y j is a subword of
some relator, but the reversed word y j yi is not.

The presentation complex of (10) has one vertex, 1 + m edges, and m triangular
faces. The link of the unique vertex is given in Fig. 2. Note that the vertices come in
four layers: the first layer d, the second layer {y1, . . . , yn}, the third layer {ȳ1, . . . , ȳn},
and the bottom layer d̄. Also, the edges come in three horizontal layers: the top edges
connecting first to second layer vertices; the middle layer connecting second to third
layer vertices; and the bottom layer connecting third to fourth layer vertices.Consider
now an Artin group A presented as in (9). Choose an orientation on each edge of GA,
which determines an ordering of the endpoints of each edge of GA; henceforth, when
we consider the 2 generator subgroup Ai j = 〈xi , x j

∣

∣ (xi , x j )mi j = (x j , xi )mi j we
will assume that the i j edge points from xi to x j . Now rewrite the presentation (9) to
produce the Brady–McCammond presentation of A, by triangulating each Artin rela-
tor (xi , x j )mi j = (x j , xi )mi j and introducing new generators following the pattern of
(10), where we carefully choose notation so that new generators associated to distinct
Ai j are distinct, as follows:

Ai, j =
〈

di, j , xi , x j , xi, j,3, xi, j,4 . . . , xi, j,m
∣

∣

di j = xi x j , di, j = x j xi, j,3, di, j = xi, j,3xi, j,4 . . . , di, j = xi, j,m xi
〉

. (11)

Let Ci j be the presentation complex for this presentation of Ai j , and let Li j be the
link of the unique vertex of Ci j . The two vertex pairs {xi , x̄i } and {x j , x̄ j } in Li j will
be called the peripheral vertex pairs in Li j .

Let CA be the presentation complex for the Brady–McCammond presentation of A,
and note that CA is the union of its subcomplexes Ci j for mi j <∞. Also, let L A be the
link of the unique vertex of CA, and note that L A is the union of its subcomplexes Li j .
When mi j ,mkl <∞ and {i, j} �= {k, l}, then either {i, j} ∩ {k, l} = ∅ in which case
Ci j ∩Ckl is the unique vertex of CA and Li j ∩ Lkl = ∅, or {i, j}∩ {k, l} is a singleton,
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say i = k, in which case Ci j ∩ Cil is a single edge of CA, labeled say by xi , and
Li j ∩ Lil is a peripheral vertex pair, say {xi , x̄i }. It follows that the layering of vertices
and edges of the sublinks Li j extends to a layering of all vertices and edges of L A.

To organize L A, note that there is a map L A to GA so that the inverse image of
the i j edge of GA is Li j , and the inverse image of the vertex of GA labeled xi is the
peripheral vertex pair of Li j labeled xi , x̄i .

Now we use the condition that GA has no triangles. In this case Brady and McCam-
mond choose a metric on CA so that each edge labeled di j has length

√
2, each edge

labeled xi or xi jk has length 1, and each triangle is a π/2, π/4, π/4 Euclidean triangle;
they prove that CA is non-positively curved. Note that each top and bottom layered edge
in L A has spherical length π/4, and each middle layer edge has spherical length π/2.

To verify that Ci j is a locally convex subcomplex of CA we must verify that for
any locally injective edge path γ in L A with endpoints in Li j but with no edge in Li j ,
the spherical length of γ is at least π .

If γ has at least four edges then we are done. If γ has three edges then it must
connect some 2nd layer vertex to some 3rd layer vertex, and so at least one of the
edges of γ is a middle layer vertex of length π/2, and we are done. The path γ cannot
have one edge because L A does not have an edge outside of Li j connecting a 2nd and
3rd layer vertex of Li j .

Suppose γ has two edges. Since GA has no triangles, γ must project to a single
edge of GA and so γ is entirely contained in some Lkl distinct from but intersecting
Li j , and hence {i, j} ∩ {k, l} is a singleton. We assume that k = i , the other cases
being handled identically. Then γ must connect one of the vertices labeled xi , x̄i to
itself. However, Lil contains no locally injective edge path of length two with both
endpoints at xi or both at x̄i . ��

Artin groups of affine type ˜An . Our next verification of undistortedness uses a
different method, relying ultimately on distance estimates in mapping class groups.

Theorem 10.10 If n ≥ 3 then the Artin group ˜An is algebraically thick of order at
most 1.

One possible approach to proving undistortedness of special subgroups of ˜An is
using the automatic group methods, which will be reviewed briefly below. Charney
and Peifer prove in [26] that ˜An is biautomatic, and it would suffice then to prove
that the two generator special subgroups of ˜An are rational with respect to the Char-
ney—Peifer biautomatic structure. Instead we shall consider an embedding of ˜An into
a braid group B, and we shall prove that all special subgroups of ˜An are undistorted in
B. This trick was suggested to us by our conversations with Ruth Charney. Our thanks
to Ruth Charney for very helpful suggestions and comments on this proof.

Proof We abbreviate ˜An to ˜A, and we write its presentation in the form

˜A = 〈

x0, x1, . . . , xn
∣

∣ xi xi+1xi = xi+1xi xi+1 for all i ∈ Z/(n + 1)Z,

xi x j = x j xi for all i, j ∈ Z/(n + 1)Z such that j − i �≡ ±1
〉

,
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Fig. 3 The geometric
realization of the braid group
elements yi and δ

0 1 2 n n+1i i+1

yi δ = y0
 y1 ...yn

-2 -1 -1

where index arithmetic takes place in Z/(n+1)Z. The cyclic permutation of the gener-
ators x0, x1, . . . , xn induces an automorphism of ˜A, and this automorphism cyclically
permutes the two generator special subgroups 〈xi , xi+1〉. It therefore suffices to show
that one of these two generator special subgroups is undistorted.

Consider the braid group B on n + 2 strands, an Artin group with n + 1 generators
y0, y1, . . . , yn and with presentation

B = 〈

y0, y1, . . . , yn
∣

∣ yi y j = y j yi if 0 ≤ i ≤ j − 2 ≤ j ≤ n,

yi yi+1 yi = yi+1 yi yi+1 if 0 ≤ i ≤ n − 1〉 .

Let h : ˜A → B denote the homomorphism defined on the generators by h(x0) =
δynδ

−1 and h(xi ) = yi for i = 1, . . . , n, where δ = y−2
0 y−1

1 · · · y−1
n . By combining

[56] with the discussion at the beginning of [26], it follows that h is injective. To
obtain this expression for δ, we refer to [26, Figure 4], which shows δ as an element
of the annular braid group on n + 1 strands. As explained in [26], this latter group is
isomorphic to the index n + 2 subgroup of B in which the 0th strand does not move,
and from this viewpoint [26, Figure 4] can be redrawn as in Fig. 3, which gives the
desired expression for δ.

Clearly h maps the special subgroup of ˜A generated by x1, x2 isomorphically to
the special subgroup of B generated by y1, y2. It therefore suffices to show that spe-
cial subgroups in B are undistorted, because of the following trick: given any finitely
generated groups K < H < G, if K is undistorted in G then K is undistorted in H .

The group B is the mapping class group of a punctured disc D, and any special
subgroup of B is the subgroup of mapping classes supported on a subsurface F ⊂ D
whose boundary is a collection of essential simple closed curves in D. But the fact
that the inclusion of the mapping class group of F into the mapping class group of D
is a quasi-isometric embedding is an immediate consequence of [64, Theorem 6.12].

��
Questions. We close this section with a discussion of the following:

Question 10.11 Are all Artin groups algebraically thick?

In this direction, and in view of Lemma 10.3, we ask the following:

Question 10.12 In any Artin group, A, is it true that every two generator special
subgroup Ai j with mi j <∞ is undistorted in A?
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One of the most important problems about Artin groups is the following:

Question 10.13 Are all Artin groups biautomatic?

In an automatic or biautomatic group, a “rational subgroup” is a subgroup with a
particularly simple relation to the (bi)automatic structure. See [38] for the definition;
see also [43] for a detailed study of rational subgroups of biautomatic groups. The key
fact that we propose using is:

Theorem 10.14 [38, Theorems 3.3.4 and 8.3.1] If G is an automatic group and H is
a rational subgroup then H is undistorted in G. ��

By using Theorem 10.14, an affirmative answer to Question 10.11 reduces to an
affirmative answer to the following refinement of Question 10.13:

Question 10.15 Does every Artin group have a biautomatic structure so that every
special subgroup is rational?

What makes this a reasonable question to pursue are the many special classes of
Artin groups known to be biautomatic (see the earlier list). It would be interesting
to check some of these classes for rationality of special subgroups. For example, we
have checked that all special subgroups of the braid group B are rational with respect
to the symmetric biautomatic structure defined in [38, Theorem 9.3.6]—incidentally,
this would provide another proof of Theorem 10.10, but to save space we opted for
quickly quoting the Masur–Minsky distance estimates for mapping class groups.

11 Fundamental groups of graph manifolds

Recall that graph manifolds are compact Haken 3-manifolds of zero Euler character-
istic, such that all their geometric components are Seifert manifolds. In this section
when referring to graph manifolds we always assume that they are connected, and we
rule out the case of Nil and Sol manifolds. Hence all graph manifolds we consider are
obtained by gluing finitely many Seifert components with hyperbolic base orbifolds
along boundary tori or Klein-bottles, where the gluing does not identify the fibers.

In the universal cover ˜M of such a manifold M , a flat projecting onto a torus or Klein
bottle along which different Seifert components are glued is called a separating flat.
A copy of a universal cover of a Seifert component is called a geometric component.
Note that separating flats bound and separate geometric components.

A particular case of graph manifolds are the flip manifolds, in the terminology of
[54]. Each Seifert component of a flip manifold is the product of a compact, oriented
surface-with-boundary (the base) and S1 (the fiber). Wherever two Seifert compo-
nents are glued along a boundary torus the gluing interchanges the base and the fiber
directions.

Every flip manifold admits a non-positively curved metric, as follows. For each Seif-
ert component, put a hyperbolic metric with geodesic boundary on the base so that
each boundary component has length 1, pick a metric on the fiber to have length 1,
and use the Cartesian product metric; each gluing map of boundary tori is then an
isometry. Note that each Seifert component is locally convex.
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Not every graph manifold admits a nonpositively curved metric [59]. On the other
hand, according to [54], the fundamental group of any graph manifold is quasi-iso-
metric to the fundamental group of some flip manifold. Moreover, the induced quasi-
isometry between the universal covers of the two manifolds preserves the geometric
decomposition, namely, the image of any geometric component is a uniformly bounded
distance from a geometric component. We prove the following.

Theorem 11.1 The fundamental group G = π1(M) of a non-Seifert fibered graph
manifold is algebraically thick of order 1 with respect to the family H of fundamental
groups of its geometric (Seifert) components.1

Remark 11.2 Note that G is weakly hyperbolic relative to the family H, because for
any finite graph of finitely generated groups, the fundamental group is weakly hyper-
bolic relative to the vertex groups.

Proof By [54, Theorem 1.1], G is quasi-isometric to the fundamental group of a com-
pact non-positively curved flip manifold with totally geodesic flat boundary, and the
images under a quasi-isometry of subgroups in H are a bounded distance from funda-
mental groups of geometric components. Since Seifert components of flip manifolds
are locally convex, an application of Proposition 10.6 shows that the subgroups in H
are undistorted in G.

Any subgroup H in H has a finite index subgroup H1 which is the fundamental
group of a trivial circle bundle over an orientable surface of genus at least two. Thus H
is quasi-isometric to the direct product of R with a convex subset in H

2. Consequently
any asymptotic cone of H is bi-Lipschitz equivalent to a direct product of an R-tree
with R, therefore H is unconstricted.

The group G decomposes as a fundamental group of a graph of groups, with vertex
groups in H and edge groups commensurable to Z

2. Any two subgroups in H can be
thickly connected using a path in this graph of groups. We conclude that G is algebra-
ically thick of order ≤ 1 with respect to H. In [54] it is proven that the fundamental
group of a non-Seifert fibered graph manifold has superlinear divergence. Hence, G
is constricted by Lemma 3.3. Thus we have that G is algebraically thick of order 1
with respect to H. ��
Remark 11.3 Using graph manifolds one can construct an example of a group that is
thick of order two but not of order zero or one. Indeed, consider a manifold N obtained
by doubling a compact flip manifold M along a periodic geodesic g ⊂ M that is not
contained in a Seifert component of M . The fundamental group of N is algebraically
thick of order 2, but not of order 0 or 1. (Details of this construction and further results
will be provided in [6]).

12 Teichmüller space and the pants graph

Let S = Sg,p be an orientable surface of genus g with p punctures, with complexity
ξ = ξ(S) = 3g+ p−3. We let CP (S) denote the pants graph of S, defined as follows.

1 This result was suggested to us by Kleiner, who had observed that these groups are not relatively hyperbolic
with respect to any collection of finitely generated subgroups [57].
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A vertex of CP (S) is an isotopy class of pants decompositions of S. Given a pants
decomposition T = {γ1, . . . , γξ }, associated to each γi is the unique component Ri

of S − ∪{γ j
∣

∣ 1 ≤ j ≤ ξ, j �= i} which is not a pair of pants. This subsurface Ri has
complexity 1, it is either a once punctured torus or a 4 punctured sphere, and we refer
to Ri as a complexity 1 piece of T . Two pairs of pants decompositions T, T ′ ∈ CP (S)
with T = {γ1, . . . , γξ } and T ′ = {γ ′1, . . . , γ ′ξ } are connected by an edge of CP (S) if
they differ by an elementary move, which means that T and T ′ can be reindexed so
that, up to isotopy, the following conditions are satisfied:

(1) γi = γ ′i for all 2 ≤ i ≤ ξ

(2) Letting X be the common complexity 1 piece of T and T ′ associated to both γ1
and γ ′1, we have dC(X)(γ1, γ

′
1) = 1.

We now recall two results concerning the pants complex. The first relates the geom-
etry of the pants complex to that of Teichmüller space, see [22].

Theorem 12.1 (Brock) CP (S) is quasi-isometric to Teichmüller space with the Weil–
Petersson metric.

Bowditch [8] asked whether Teichmüller space with the Weil–Petersson metric was
a δ–hyperbolic metric space. This was first answered by Brock and Farb in [23] where
they showed:

Theorem 12.2 (Brock–Farb) R
n can be quasi-isometrically embedded into CP (S) for

all n ≤ � ξ(S)+1
2 �.

Combined with Theorem 12.1, this result showed the answer to Bowditch’s ques-
tion is “no” when the surface is sufficiently complex, i.e., satisfies ξ(S) > 2. By
contrast, Brock–Farb gave an affirmative answer to Bowditch’s question when ξ(S) ≤
2 (see also [4,5] for alternative proofs of δ–hyperbolicity in these low complexity
cases). Brock–Farb proved hyperbolicity by showing that these Teichmüller spaces
are strongly relatively hyperbolic with respect to a collection of subsets which them-
selves are hyperbolic; they then showed that this implies hyperbolicity of Teichmüller
space. This raises the question of whether the presence of relative hyperbolicity gen-
eralizes to the higher complexity cases: we show that it does not, for sufficiently high
complexity.

Theorem 12.3 For any surface S of finite type with ξ(S) ≥ 6, Teichmüller space with
the Weil–Petersson metric is not asymptotically tree-graded as a metric space with
respect to any collection of subsets.

This is particularly interesting in light of the following:

Theorem 12.4 (Behrstock [5]) For every surface S, every asymptotic cone of Teich-
müller space with the Weil–Petersson metric is tree-graded.

Together Theorems 12.3 and 12.4 say that the pieces in the tree-graded structure of
an asymptotic cone do not merely arise by taking ultralimits of a collection of subsets.

123



584 J. Behrstock et al.

Theorem 12.3 will follow from Theorem 7.9, once we establish:

Theorem 12.5 For any surface S of finite type with ξ(S) ≥ 6, Teichmüller space with
the Weil–Petersson metric is metrically thick of order one.

Proof Let S denote a surface with ξ(S) ≥ 6. Brock–Farb proved Theorem 12.2 by
explicitly constructing quasiflats of the desired dimension. We shall use these same
quasiflats to prove thickness, so we now recall their construction. Cut S along a pair-
wise disjoint family of simple closed curves into a collection of subsurfaces each of
which is either a thrice punctured sphere or of complexity 1. Let R = {R1, . . . , Rk}
be the subcollection of complexity 1 subsurfaces, and we assume that k ≥ 2. Note
that this is possible for a given k if and only if 2 ≤ k ≤ � ξ(S)+1

2 �. For each i , let gi

denote a geodesic in the curve complex C(Ri ). One obtains a pants decomposition of
S by taking the union of the curves ∂Ri and one curve from each gi .

Theorem 12.2 is proven by showing that, for a fixed collection of subsurfaces and
geodesics as above, the collection of all such pants decompositions is a quasiflat of
rank k. If G denotes the family of geodesics {g1, g2, . . . , gk}, the above quasiflat
is denoted by QR,G . For a fixed surface S, all such quasi-isometric embeddings of
R

k have uniformly bounded quasi-isometry constants. Let L be the collection of all
quasiflats QR,G . Note that when ξ(S) ≥ 6 every element of CP (S) is contained in
some QR,G , thus this collection satisfies condition (N1) of metric thickness. Further,
since each QR,G is a quasiflat of dimension at least two with uniform quasi-isometry
constants, this collection is uniformly unconstricted.

It remains to verify condition (N2). We proceed in two steps:

(1) Any pair T, T ′ ∈ CP (S)which differ by an elementary move lie in some quasiflat
in L.

(2) Any pair of quasiflats in L which intersect can be thickly connected in L.

Since the pants complex is connected by elementary moves, the first step implies
that given any two pants decompositions T, T ′ ∈ CP (S), one can find a sequence
of quasiflats in L each intersecting the next in at least one point, such that the first
quasiflat contains T and the last contains T ′. The second step then implies that this
sequence is a subsequence of a sequence of quasiflats in L where each intersects its
successor in an infinite diameter set. This establishes condition (N2).
Step 1. Fix two pair of pants decompositions T, T ′ ∈ CP (S) which differ by an ele-
mentary move. This elementary move is supported in a subsurface R1 with ξ(R1) = 1.
Since ξ(S) ≥ 6 there exists a curve α of T and T ′ disjoint from R1. Let R2 be the
union of the pants of T and T ′ on either side of α, so R1, R2 have disjoint interior and
ξ(R2) = 1. Let g1 ⊂ C(R1) be an infinite geodesic extending the elementary move in
R1. The product of g1 with a geodesic g2 supported on R2 is a two-dimensional quasi-
flat QR,G , R = {R1, R2}, G = {g1, g2}, an element of L, containing both T and T ′.
Step 2. Consider Q = QR,G and Q′ = Q′

R′,G′ an arbitrary pair of quasiflats in L,
with non-empty intersection containing T ∈ CP (S).

(a) Assume first that there exists R ∈ R∩R′. Let g ∈ G and g′ ∈ G′ denote the cor-
responding geodesics in Q and Q′, respectively. Consider the quasiflat Q′′ = Q′′

R,G′′ ,
where G′′ is obtained from G by replacing g by g′. Then Q′′ has infinite diameter inter-
section with both Q and Q′ thus providing the desired thickly connecting sequence.
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(b) Fixing T ∈ CP (S), define a finite 1-complex as follows. A vertex is a col-
lection of pairwise disjoint subsurfaces R = {R1, . . . , Rk} with cardinality k ≥ 2,
such that each Ri is a complexity 1 piece of T . Two such collections R,R′ are con-
nected by an edge if they are not disjoint. By part (a) it suffices to show that this
1-complex is connected, and we prove this using that ξ(S) ≥ 6. Consider two vertices
R,R′. By removing elements of each we may assume that each has cardinality 2.
Let R = {R1, R2}, R′ = {R′

1, R′
2}. We may also assume that R,R′ are disjoint. If

some element of R is disjoint from some element of R′, say R1 ∩ R′
1 = ∅, then both

are connected by an edge to {R1, R′
1}; we may therefore assume that Ri ∩ R′

j �= ∅
for i, j = 1, 2. If some element of R or R′ is a once-punctured torus, say R1 with
boundary curve α, then the only possible element of R′ that can intersect R1 is the
one obtained by removing α, contradicting that there are two elements of R′ that
intersect R1; we may therefore assume that each Ri and each R′

j is a four punctured
sphere. It follows now that T has four distinct pairs of pants P1, P2, P3, P4 such that
R1 = P1∪ P2, R′

1 = P2∪ P3, R2 = P3∪ P4, R′
2 = P4∪ P1. Since ξ(S) ≥ 6, there is a

curveα of T not incident to any of P1, . . . , P4, and letting R′′ be the complexity 1 piece
of T obtained by removal of α, it follows that R = {R1, R2} is connected by an edge
to {R1, R2, R′′} which is connected to {R′

1, R′
2, R′′} which is connected to {R′

1, R′
2}.

We have now shown that Teichmüller space with the Weil–Petersson metric is thick
of order at most 1 when ξ(S) ≥ 6. That it is thick of order exactly 1 follows from
Theorem 12.4. ��

Remark 12.6 With a little more work one can prove Step 2(b) under the weaker
assumption that ξ(S) ≥ 5. Condition (N1) can also be proved when ξ(S) ≥ 5: the
proof of (N1) given here has an unnecessarily strong conclusion, namely that each
point of CP (S) lies in the union of L. However, we do not know how to weaken the
proof of Step 1 for any case when ξ(S) < 6.

Remark 12.7 The surfaces with 3 ≤ ξ(S) ≤ 5, do not fall under the cases where
Teichmüller space is hyperbolic (see [23], or for alternate arguments, [4] or [5]) or
under the cases of Theorem 12.5 where Teichmüller space is metrically thick and
hence not relatively hyperbolic. Accordingly, in the preprint versions of this paper
(December 2005) we explicitly asked whether in these cases the Weil–Petersson met-
ric on Teichmüller space is relatively hyperbolic. The situation for these remaining
cases has now been resolved by work of Brock and Masur [24]. Brock and Masur
prove that when ξ(S) = 3, then the Weil–Petersson metric is relatively hyperbolic.
On the other hand, when ξ(S) = 4 or 5 they showed that the Weil–Petersson metric is
thick. More precisely, when ξ(S) = 4 or 5, except S = S2,1, then this space is thick
of order 1, while for S2,1 this metric is thick of order at most 2.

The following interesting question remains open:

Question 12.8 For S2,1 is the Weil–Petersson metric on Teichmüller space thick of
degree 1 or 2?
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13 Subsets in symmetric spaces and lattices

Subsets in symmetric spaces. Let X be a product of finitely many non-positively
curved symmetric spaces and Euclidean buildings of rank at least two, and let distX

be a product metric on it (uniquely defined up to rescaling in the factors). Given a
geodesic ray r in X , the Busemann function associated to r is defined by

fr : X → R, fr (x) = lim
t→∞[distX (x, r(t))− t].

Remark 13.1 The Busemann functions of two asymptotic rays in X differ by a constant
[20].

The level hypersurface H(r) = {x ∈ X ; fr (x) = 0} is called the horosphere
determined by r , the sublevel set Hbo(r) = {x ∈ X ; fr (x) < 0} is the open horoball
determined by r .

Proposition 13.2 Let R be a family of geodesic rays in X, such that no ray is con-
tained in a rank one factor of X and such that the open horoballs in the family
{Hbo(r) | r ∈ R} are pairwise disjoint. Then for any M > 0, any connected compo-
nent C of

⋃

r∈R NM (H(r)) endowed with distX is M-thick of order one with respect to

L = {H(r) | r ∈ R, H(r) ⊂ C}.

Proof The fact that {Hbo(r) | r ∈ R} are pairwise disjoint implies that their base-
points {r(∞) | r ∈ R} are pairwise opposite. If the previous set has cardinality at
least three, then according to [31, proof of Proposition 5.5, b] all the rays in R are
congruent under the action of the group Isom(X). Hence all horospheres H(r) with
r ∈ R are isometric if R has cardinality at least three. Thus in order to have property
(θ) in (M2) it suffices to prove that one such horosphere endowed with the restriction
of distX is unconstricted.

Let H be such a horosphere. According to [31, Lemma 4.2], any asymptotic cone
H∞ = Coneω(H, h, d) is a horosphere in the asymptotic cone X∞ = Coneω(X, h, d).
The cone X∞ is a Euclidean building having the same rank as X [58]. Let r∞ be the
ray in X∞ such that H∞ = H(r∞). The hypothesis that rays in R are not contained
in a rank one factor of X implies that r∞ is not contained in a rank one factor of
X∞. According to Proposition 3.1.1 and Lemma 3.3.2 in [32], under this hypothesis
any two points x, y in H∞ can be joined by a pair of topological arcs in H∞ inter-
secting only in their endpoints. This is mainly due to three facts. Firstly, a horoball
Hb(r∞) intersects a maximal flat (or apartment) in X∞ in a convex polytope, and
the horosphere H(r∞) intersects that flat in the boundary polytopic hypersurface [32,
Proposition 3.1.1]. Secondly, any two points x, y ∈ H(r∞) are also contained in a
maximal flat F in X∞, by the axioms of a Euclidean building. Thirdly, given a max-
imal flat F in X∞ intersecting H(r∞) and two points x, y ∈ F ∩ H(r∞) one may
ensure, by replacing a half-flat of F if necessary, that F ∩ H(r∞) is a finite polytope
[32, Lemma 3.3.2]. We conclude that H∞ cannot have cut-points, hence that H is
unconstricted.
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The fact that C is connected implies that for every H(r), H(r ′) ∈ L there exists
a finite sequence r1 = r, r2, . . . , rn = r ′ such that NM (H(ri )) ∩ NM (H(ri+1)) is
non-empty. Then dist(H(ri ), H(ri+1)) ≤ 2M . There exists a maximal flat F in X
containing rays asymptotic to both ri and ri+1. Remark 13.1 implies that one may
suppose that both ri and ri+1 are contained in F . Since ri (∞) and ri+1(∞) are oppo-
site, F ∩ H(ri ) and F ∩ H(ri+1) are two parallel hyperplanes, at distance at most
2M . It follows that NM (H(ri ))∩NM (H(ri+1)) has infinite diameter. Thus H(r) and
H(r ′) are thickly connected by the sequence H(r1), H(r2), . . . , H(rn).

��

Higher rank lattices. Particularly interesting examples of spaces C satisfying the
hypotheses of Proposition 13.2 are those on which some Q–rank one lattice acts
cocompactly. In this case, the space C is quasi-isometric to the lattice, and one can
prove more than just metric thickness.

We recall first some known facts about lattices. In rank one semisimple groups,
uniform lattices are hyperbolic, while non-uniform lattices are relatively hyperbolic
with respect to their maximal unipotent subgroups (this in particular implies that max-
imal unipotent subgroups are undistorted in the lattice). Thus in both cases lattices
cannot be thick.

In higher rank semisimple groups, uniform lattices have as asymptotic cones Euclid-
ean buildings of higher rank [58] so they are unconstricted, thus in particular they are
thick of order zero.

In what follows we prove that non-uniform lattices in higher rank semisimple groups
are algebraically thick of order at most one. In our arguments we also use unipotent
subgroups. Unlike in the rank one case, these subgroups are distorted in the ambient
lattice, therefore we have to embed them into solvable undistorted subgroups of the
lattice, in order to prove thickness. For details on the notions and the results mentioned
in this section we refer to [13,14,62,65].

Let G be a connected semisimple group. Then G has a unique decomposition, up
to permutation of factors, as an almost direct product G = ∏m

i=1 Gi (ki ), where ki is
a locally compact non-discrete field and Gi (ki ) is a connected group almost simple
over ki . Recall that:

– An algebraic group defined over a field k is called almost simple over k if all the
proper k-algebraic normal subgroups of it are finite.

– An algebraic group is called absolutely almost simple if any proper algebraic nor-
mal subgroup of it is finite.

– An algebraic group G is an almost direct product of its subgroups H1, . . . , Hm if
the multiplication map H1 × · · · × Hm → G is surjective and of finite kernel (an
isogeny).

The rank of G is defined as rank G = ∑m
i=1 rankki Gi , where rankki Gi is the

dimension of the maximal ki –split torus of Gi . Recall that a ki –split torus is a sub-
group of G defined over ki which is abelian, closed, connected, with every element
semisimple, and which is diagonalizable over the field ki . We make the following two
assumptions on G:
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(Hyp1) For every i = 1, 2, . . . ,m, char ki = 0.
(Hyp2) For every i = 1, 2, . . . ,m, rankki Gi ≥ 1, and rank G ≥ 2.

Notation Given two functions f, g defined on a set X and taking real values, we write
f � g if f (x) ≤ Cg(x) for every x ∈ X , where C is a constant uniform in x . We
write f � g if f � g and g � f .

The group G can be endowed with a left invariant metric distG with the property
that for fixed embeddings of each Gi (ki ) into SL(ni , ki ),

distG(1, g) �
m

∑

i=1

ln
(

1 + ‖gi − Idi‖i,max
)

. (12)

See for instance [61] for details.
Let � be an lattice in G, that is, a discrete subgroup of G for which G/� carries

a G–left invariant finite measure. If the projection of � to any direct factor of G is
dense then the lattice is called irreducible. Otherwise it is commensurable to a product
�1 × �2, where �i are lattices in direct factors of G. Note that in this latter case, � is
unconstricted, according to the first example following Definition 3.4. Therefore, in
what follows we always assume that � is irreducible.

The lattice� is called uniform if G/� is compact. Throughout the rest of the section
we assume that � is a non-uniform lattice, that is G/� is not compact.

Theorem 13.3 (Lubotzky–Mozes–Raghunathan [61], Theorem A) The word metric
on � is bi-Lipschitz equivalent to distG restricted to �.

By Margulis’ Arithmeticity Theorem [62, Chapter IX], the hypotheses that
rank G ≥ 2 and that � is irreducible imply that � is an S–arithmetic group: there
exists a global field F , a simply connected absolutely almost simple algebraic group
G defined over F , a finite set S of valuations of F containing the archimedean ones
and a homomorphism � : ∏

v∈S G(Fv) → G such that ker� is compact, Im� is a
closed normal subgroup of G with G/Im� also compact, and � is commensurable
with �(G(OS)), where OS is the ring of S–integers in F , defined by | · |v ≤ 1 for
every v �∈ S. Here G(OS) is G(F)∩GL(n,OS) if we assume that G is an F-algebraic
subgroup of GL(n), and we identify G(OS) to its image under the diagonal embedding
in

∏

v∈S G(Fv). The hypothesis that � is non-uniform is equivalent to the property
that rankF G ≥ 1.

Theorem 13.4 The lattice � is algebraically thick of order at most one.

Proof It suffices to prove the statement for G = ∏

v∈S G(Fv) and � = G(OS), where
G(OS) is identified to its image under the diagonal embedding in G. We first recall
some useful notions and results. A reductive group is F–anisotropic if it is defined
over F and if it does not contain any non-trivial F–split torus.

Lemma 13.5 A reductive subgroup R of G which is defined over F intersects � in a
lattice, that is R/R ∩ � has finite measure. Moreover if R is F–anisotropic then the
lattice is uniform, that is R/R ∩ � is compact.
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Let P be a parabolic subgroup of G defined over F . Then we have the following:

(1) The unipotent radical U of P (i.e. the unique maximal unipotent normal subgroup
of P) is algebraic defined over F .

(2) There exists an F–split torus T such that P = Z(T )U , where Z(T ) is the
centralizer of T in G.

(3) In its turn, Z(T ) is an almost direct product of a torus T ′ with M = [Z(T ), Z(T )],
and the group M is semisimple.

(4) The torus T ′ is an almost direct product of T with an F–anisotropic torus C .
(5) The groups Z(T ),M, T ′ are algebraic defined over F .
(6) The group M contains countably many F–anisotropic tori D each of which is

maximal in M and contains for each v ∈ S a maximal torus of M defined over
Fv [61, Lemma 3.10]. For each such torus D, the product T C D is a maximal
torus in G.

(7) When the F-parabolic group P is minimal, T is a maximal F-split torus, U is a
maximal F-unipotent subgroup of G, and U∩� is a maximal unipotent subgroup
in �.

(8) Conversely, given an F–split torus T there exist finitely many F–parabolic sub-
groups P that can be written as P = Z(T )U , and such that all the above decom-
positions and properties hold. These parabolic subgroups correspond to finitely
many faces of Weyl chambers composing T .

Let T be a maximal F-split torus in G, and let T ′ = T C , D < M and ˜T = T C D
be tori associated to T as above. Let � be the system of F-roots of G with respect to

T , and let ˜� be the system of roots of G with respect to ˜T . For every ˜λ ∈ ˜�, if its
restriction to T ,˜λ|T , is not constant equal to 1 then it is in �.

In what follows all bases of roots and lexicographic orders on roots will be con-
sidered as chosen simultaneously on both � and ˜� so that they are compatible with
respect to the restriction from ˜T to T .

Let g be the Lie algebra of G. For every˜λ in ˜� denote by g̃λ the one dimensional
eigenspace

{

v ∈ g ; Ad(t)(v) =˜λ(t)v, ∀t ∈ ˜T
}

. Here Ad(t) is the differential at the
identity of the conjugacy by t . There is a unique one-parameter unipotent subgroup
U

˜λ in G tangent to the Lie algebra g̃λ. Let λ ∈ �. A multiple of it nλ with n ∈ N can
be in � for n ∈ {1, 2}. Consider the Lie subalgebra uλ = ⊕

˜λ|T=λ,2λ g̃λ and let Uλ
denote the unique T -stable F-unipotent subgroup of G tangent to the Lie algebra uλ.
Let � be a basis for � (or, in another terminology, a fundamental system of roots).
Every root λ in � can be written as

∑

α∈� mα(λ) α, where (mα(λ))α∈� are integers
either all non-negative or all non-positive.

Let P be an F-maximal parabolic subgroup. There exists a maximal F-split torus
T , a basis � for the system � of F-roots of G with respect to T , and a root α ∈ �
such that the following holds. Let �+

α = {λ ∈ � ; mα(λ) > 0}. The parabolic P
decomposes as P = Z(Tα)˜Uα , where

• Tα = {t ∈ T ; β(t) = 1, ∀β ∈ �, β �= α};
• ˜Uα is the unipotent subgroup tangent to the Lie algebra ũα = ⊕

˜λ|T∈�+
α

g̃λ. Note
that ũα = ⊕

λ∈�α uλ, where �α is such that any root in �+
α is either contained in
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�α or is the double of a root in �α . In particular, the above implies that Uα is a
subgroup of ˜Uα .

The following result is proved in [80] for rankF G ≥ 2 and in [87] for rankF G = 1.

Theorem 13.6 (Raghunathan; Venkataramana) Let T be a maximal F-split torus in
G and let� be the system of F-roots of G with respect to T . Then the group generated
by the subgroups Uλ ∩ �, λ ∈ �, has finite index in �.

Note that when rankF G = 1, the family of unipotent subgroups {Uλ ; λ ∈ �} con-
tains only two maximal F–unipotent subgroups, which are opposite (i.e. with trivial
intersection).

Each of the subgroups Uλ∩� is finitely generated. Thus in order to prove thickness
it suffices to construct a family H of unconstricted subgroups of� satisfying properties
(AN0) and (AN2), and such that each subgroup Uλ∩� is contained in a subgroup in H.

The parabolic groups defined over F compose a spherical building � of rank
r = rankF G. Minimal parabolic groups correspond to chambers in this building,
while larger parabolic groups correspond to panels and faces in the building. Maximal
parabolic groups correspond to vertices.

In what follows we fix a maximal F-split torus T in G and the system of
F-roots � of G with respect to T . Let P be the finite collection of all the maxi-
mal F–parabolic subgroups in G containing T . They correspond to the vertices of an
apartment in �. Each P ∈ P decomposes as P = Z(Tα)˜Uα for some α ∈ �. Let
MP = [Z(Tα), Z(Tα)], and let CP be the F–anisotropic torus such that Z(Tα) is an
almost direct product of Tα with CP and with MP . Also let DP be a maximal F-aniso-
tropic torus in MP . We make the choice of DP so that if P, P ′ ∈ P correspond to
opposite vertices in the building� (in which case the corresponding unipotent radicals
have trivial intersection, while the corresponding tori Tα and Tα′ coincide, therefore
also MP = MP ′ ) then DP = DP ′ .

Consider the solvable group SP = CP DP ˜Uα . Since CP is an F-anisotropic torus,
by Lemma 13.5 the intersection CP ∩� is a uniform lattice in CP , likewise for DP ∩�
in DP . Also ˜Uα ∩� is a (uniform) lattice in ˜Uα . Consequently the semidirect product
�P = (CP∩�)(DP∩�)(˜Uα∩�) is a uniform lattice in SP . Note that (CP∩�)(DP∩�)
is never trivial. This is due on one hand to the fact that TαCP DP is a maximal torus
in G, so it has dimension at least two, and since Tα has dimension one it follows that
CP DP is of dimension at least one. On the other hand (CP ∩�)(DP ∩�) is a uniform
lattice in CP DP .

We show that � is algebraically thick of order at most 1 with respect to H = {�P |
P ∈ P}. Note that for any λ ∈ � the subgroup Uλ is contained in the unipotent radical
˜Uλ of some P ∈ P . In particular each Uλ ∩ � is contained in at least one �P .

Each group�P , P ∈ P, is finitely generated and solvable, hence it is unconstricted
([34, §6.2], see also Sect. 3, Example 3).

Therefore it only remains to prove properties (AN0) and (AN2).
(AN0) We prove that �P is undistorted in �.

Notation In what follows, given a finitely generated group H we write distH to denote
a word metric on H . Given a Lie group L we denote by distL a metric on L defined
by a left-invariant Riemannian structure.
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It suffices to prove that dist�P (1, g) � dist�(1, g) for every g ∈ �P . An element
g in �P decomposes as g = tu, where t ∈ (CP ∩ �)(DP ∩ �) and u ∈ UP ∩ �.
We have that

dist�P (1, tu) ≤ dist�P (1, u)+ dist�P (1, t).

Note that dist�P (1, t) ≤ dist(CP∩�)(DP∩�)(1, t)� distG(1, t). The last inequality fol-
lows from the fact that a word metric on (CP∩�)(DP∩�) is bi-Lipschitz equivalent to
the restriction of a metric from CP DP , and from the fact that CP DP is undistorted in G.

Lemma 13.7 For every u ∈ UP ∩ �, dist�P (1, u)� distG(1, u).

Proof The group UP is a group of type ˜Uα for some α ∈ �. That is, if �+
α =

{λ ∈ � ; mα(λ) > 0}, then the group UP has Lie algebra ũα = ⊕

˜λ|T∈�+
α

g̃λ. In par-
ticular ũα = ⊕

λ∈�α uλ, where �α is such that any root in �+
α is either contained in

or is the double of a root in �α .

Lemma 13.8 (Lubotzky–Mozes–Raghunathan [61], Sect. 3) Let λ1, λ2, . . . , λN be
the enumeration of the roots in �α in increasing order. The order here is the lexico-
graphic order with respect to some basis � of � having α as first root.

(1) There exist morphisms fi : UP → Uλi , 1 ≤ i ≤ N , such that for every
u ∈ UP , u = f1(u) · f2(u) · · · · · fN (u) and

distG(1, u) ≤
N

∑

i=1

distG(1, fi (u))� distG(1, u).

(2) If �1 is a suitable congruence subgroup of � = G(OS), then for every u ∈
�1 ∩ UP the components fi (u) are in Uλi ∩ � for all i = 1, 2, . . . , N.

Let �1 be as in Lemma 13.8. It has finite index in �, therefore it suffices to prove
Lemma 13.7 for u ∈ UP ∩ �1. In this case fi (u) ∈ Uλi ∩ � for all i = 1, 2, . . . , N ,
and dist�P (1, u) ≤ ∑N

i=1 dist�P (1, fi (u)). By Lemma 13.8, (1), it will then suffice
to prove Lemma 13.7 for each fi (u). Hence we may assume in what follows that
u ∈ Uλ ∩ �, for some λ ∈ �α .

Consider the solvable subgroup Sλ = CP DPUλ of SP , and its uniform lattice
�λ = (CP ∩�)(DP ∩�)(Uλ ∩�), which is a subgroup of �P . It will suffice to prove
that dist�λ(1, u) � distG(1, u), which is equivalent to proving that distSλ(1, u) �
distG(1, u). With a decomposition similar to the one in Lemma 13.8, (1), we can reduce
the problem to the case when u is in the uniparametric unipotent subgroup U

˜λ for some
root ˜λ such that its restriction to T is λ. The torus CP DP is orthogonal to the one-
dimensional F-split torus Tα associated to P , in a maximal torus containing both. If the
root˜λ would be constant equal to 1 on CP DP , then λ would be constant equal to 1 on
CP DP∩T , hence the same would be true forα. Consequentlyαwould be equal to 1 on
the orthogonal of Tα in T . This implies that the F-structure on G is reducible (see for
instance [58] for a geometric argument), which implies that � is reducible, contradict-
ing the hypothesis. Thus there exists at least one uniparametric semisimple subgroup
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T1 in CP DP on which˜λ takes all positive values. An argument as in [47, §3.D] then
implies that distSλ(1, u) ≤ distT1U

˜λ
(1, u)� ln(1 + ‖u − I‖)� distG(1, u). ��

Lemma 13.7 together with the considerations preceding it imply that

dist�P (1, tu)� distG(1, t)+ distG(1, u).

On the other hand distG(1, t) + distG(1, u) � distG(1, tu). This follows from the
well known fact that distG(1, t) ≤ distG(1, tu) and from the triangular inequality
distG(1, u) ≤ distG(1, t) + distG(1, tu). Then dist�P (1, tu) � distG(1, tu) �
dist�(1, tu), where the latter estimate follows from Theorem 13.3. This completes
the proof of (AN0).
(AN2) First we suppose that rankF G = 1. Then P has only two elements, P and

P ′, which are opposite. Consequently �P ∩ �P ′ contains (CP ∩ �)(DP ∩ �), which
is a lattice in a torus of dimension at least one, hence it is infinite.

Suppose now that rankF G ≥ 2. This implies that the building � composed of
F-parabolics has rank at least two, therefore it is connected. Let P, P ′ ∈ P . The
groups P and P ′ seen as vertices in the same apartment in � can be connected
by a finite gallery of chambers in the same apartment. This gallery is represented by
a sequence of minimal F-parabolic subgroups B1, B2, . . . , Bk, with B1 < P and
Bk < P ′. For each i = 1, 2, . . . , k − 1 there exists Pi ∈ P such that both Bi and
Bi+1 are contained in Pi . In the spherical building � the group Pi represents a vertex
of the panel that the chamber Bi and the chamber Bi+1 have in common. Thus one
obtains a sequence of maximal parabolics in P , P0 = P, P1, P2, . . . , Pk−1, Pk = P ′.
For each i = 0, 1, 2, . . . , k − 1, the intersection of the respective unipotent radicals
UPi and UPi+1 of Pi and Pi+1 contains the center Ui,i+1 of the unipotent radical of Bi .
The group Ui,i+1 can be written as Uα with α the maximal positive root in the basis
corresponding to the chamber Bi , in particular it is defined over F . Hence �Pi ∩�Pi+1

contains Ui,i+1 ∩ �, which is a lattice in Ui,i+1. We conclude that �P and �P ′ are
thickly connected by the sequence �P0 = �P , �P1, �P2 , . . . , �Pk = �P ′ . ��
Question 13.9 Are non-uniform higher rank lattices unconstricted?
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