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Abstract. In this paper we establish upper bounds on the length of the shortest conjuga-
tor between pairs of infinite order elements in a wide class of groups. We obtain a general
result which applies to all hierarchically hyperbolic groups, a class which includes map-
ping class groups, right-angled Artin groups, Burger–Mozes-type groups, most 3–manifold
groups, and many others. In this setting we establish a linear bound on the length of the
shortest conjugator for any pair of conjugate Morse elements. For a subclass of these groups,
including, in particular, all virtually compact special groups, we prove a sharper result by
obtaining a linear bound on the length of the shortest conjugator between a suitable power
of any pair of conjugate infinite order elements.

The conjugacy length function is the minimal function which bounds the length of a
shortest conjugator between any two conjugate elements of a given group, in terms of the
sum of the word lengths of the elements. When a set of elements in a group has a linear
conjugacy length function, we say that set has the linear conjugator property. For any subset
of a group satisfying the linear conjugator property, and given two elements of that subset,
there is an exponential-time algorithm which determines whether or not the given elements
are conjugate. One of Dehn’s classic decision problems is the Conjugacy Problem, which
asks if there is an algorithm to decide conjugacy given any pair of elements in a given group.
Even in groups where the Conjugacy Problem is unsolvable for arbitrary pairs of elements,
establishing the linear conjugator property for a particular subset allows one to solve the
Conjugacy Problem for that subset.

An early established result about hyperbolic groups is they have the linear conjugacy prop-
erty [Lys89], thereby providing a quantitative certification of how complicated a conjugator
needs to be. Exploiting the parallels between pseudo-Anosovs in the mapping class group and
loxodromic elements in a hyperbolic group, Masur–Minsky proved the analogous result that
the set of pseudo-Anosov elements satisfies the linear conjugator property [MM00]. These
results beg the question of whether shortest conjugators of “hyperbolic-like” elements should
be linear in the length of the elements being conjugated (see Conjecture B for a precise
formulation).

In the presence of non-positive curvature, the linear conjugator property is surprisingly
common, as we show in this paper, extending an already interesting class of known exam-
ples. Previously established cases of the linear conjugator property include: mapping class
groups (established for pseudo-Anosovs in [MM00], generalized to all elements in [Tao13]; see
also [BD14] for a later, unified proof); hyperbolic elements in semi-simple Lie groups [Sal14];
arbitrary elements in lamplighter groups [Sal16]; non-peripheral elements in a relatively hy-
perbolic group [Bum15]; Morse elements in groups acting on CAT(0) spaces, [BD14]; and
Morse elements in a prime 3–manifold [BD14]. Additionally, right-angled Artin groups enjoy
the linear conjugator property; this result is not explicitly stated in the literature, but it
follows from work in [Ser89] (and we give a new proof below).
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Behrstock was supported by NSF grant DMS-1710890.
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In light of this, we will work in the general setting of hierarchically hyperbolic groups,
introduced by Behrstock–Hagen–Sisto [BHS17b]. This class of groups is quite large, encom-
passing many groups of interest, including: mapping class groups [BHS19]; right-angled Artin
groups, and more generally fundamental groups of compact special cube complexes [BHS17b]
and other CAT(0) cube complexes [HS20]; 3–manifold groups with no Nil or Solv components
[BHS19]; and lattices in products of trees, i.e., as constructed by Burger–Mozes, Wise, and
others, see [BHS17b, BM97, BM00, Cap17, JW09, Rat07, Wis07]. There are a number of
other examples, as well, for instance groups obtained from combination theorems, includ-
ing taking graphs of hierarchically hyperbolic groups and graph products of hierarchically
hyperbolic groups [BHS19, Spr18, BR20], or by taking certain quotients of a hierarchically
hyperbolic group [BHS17a].

The first theorem is new for most hierarchically hyperbolic groups; it also provides a
unified proof for the previously known cases. An element in a finitely generated group is
called Morse if its orbit in the group is a quasi-geodesic with the property that any pλ, cq–
quasi-geodesic beginning and ending on this orbit is completely contained within a uniformly
bounded neighborhood of this orbit. We note that Morse elements in a group are ones whose
geometry in the Cayley graph is similar to that of the axis of a loxodromic isometry of a
hyperbolic space (via the Morse Lemma); in a hierarchically hyperbolic group the Morse
elements can be characterized in several equivalent ways, see [ABD21, Theorem B].

Theorem A. Let pG,Sq be a hierarchically hyperbolic group. There exist constants K,C
such that if a, b P G are Morse elements which are conjugate in G, then there exists g P G
with ga “ bg and

|g| ď Kp|a| ` |b|q ` C.

One special case of the above theorem is a new proof that conjugate pseudo-Anosov el-
ements in the mapping class group have a linear bound on the length of their shortest
conjugator; this case was the main theorem of [MM00].

A natural conjecture arising from Theorem A is the following generalization:

Conjecture B. In a finitely generated group, the set of Morse elements satisfy the linear
conjugator property.

Understanding exactly how the linear conjugator property is related to to hyperbolic prop-
erties in a group remains a rich question, and with Theorem A, hierarchically hyperbolic
groups provide a good place to study this. For instance, we conjecture that there exist hierar-
chically hyperbolic groups where the conjugacy length function is exponential. Accordingly,
we don’t believe the linear conjugator property holds for all elements in all hierarchically
hyperbolic groups, but it does in a number of important examples, which leads us to ask:

Question C. Under what conditions does a hierarchically hyperbolic group satisfy the linear
conjugator property for all elements?

In Section 3 we introduce a family of hierarchically hyperbolic groups in which the notion
of orthogonality carries with it not just geometric implications, but also a useful algebraic
structure. The way in which the algebraic structure is related to orthogonality in these
groups generalizes the relationship between commutativity and orthogonality in mapping
class groups and compact special groups. This family is defined through a series of condi-
tions called the FU stabilizers, orthogonal decomposition, and commutative properties (see
Section 3 for the precise definitions).

After showing in Proposition 3.10 that many groups satisfy the properties we introduce
and that being in this family is preserved by various combination theorems, we then study
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conjugators in these groups. The following generalizes Theorem A by removing the hypothesis
that the elements are Morse:

Theorem D. Let pG,Sq be a hierarchically hyperbolic group satisfying the FU stabilizers,
orthogonal decomposition, and commutative properties. There exist constants K,C and N
such that if a, b P G are infinite order elements which are conjugate in G, then there exists
g P G with gaN “ bNg and

|g| ď Kp|a| ` |b|q ` C.

In particular, compact special groups (i.e., fundamental groups of compact cube complexes
which are special in the sense of Haglund–Wise [HW08]) satisfy the FU stabilizers, orthogonal
decomposition, and commutative properties. Therefore Theorem D holds for all virtually
compact special groups. We note that [CGW09] establish a linear time solution to the
conjugacy problem for fundamental groups of compact special cube complexes. Their result
doesn’t a priori establish the linear conjugator property of Theorem D, although we believe
that their approach could be used to do so.

We believe that the linear conjugator property will in general fail for cubulated groups
without the hypothesis that the cube complex is special. Our proof relies heavily on the close
relationship between orthogonality and commutation, something which can fail for CATp0q
cubical groups which are not special, even though they may be hierarchically hyperbolic
groups. The Burger-Mozes groups [BM97, BM00], for instance, are plausibly a counterex-
ample; see [BHS17b, Section 8.2.2], or Wise’s construction [Wis07].

Acknowledgments. We thank Mark Hagen for many interesting discussions about hierar-
chically hyperbolic spaces. We thank Jacob Russell for feedback on an early draft, and the
anonymous referees for useful comments.

1. Background

1.1. Hyperbolic geometry. We begin by gathering several facts about δ–hyperbolic metric
spaces and refer the reader to [BH99] for further details.

A map of metric spaces f : pX, dXq Ñ pY, dY q is a pλ, cq–quasi-isometric embedding if for
all x, y P X

1

λ
dXpx, yq ´ c ď dY pfpxq, fpyqq ď λdXpx, yq ` c.

A pλ, cq–quasi-geodesic is a pλ, cq–quasi-isometric embedding of an interval I Ď R into X,
and a geodesic is an isometric embedding of I into X. In both cases, we allow f to be a
coarse map, that is, a map which sends points in I to uniformly bounded diameter sets in
X. A (coarse) map f : r0, T s Ñ X is an unparametrized pλ, cq–quasi-geodesic if there exists
a strictly increasing function g : r0, T 1s Ñ r0, T s such that the following hold:

‚ gp0q “ fp0q,
‚ gpT 1q “ fpT q,
‚ f ˝ g : r0, T 1s Ñ X is a pλ, cq–quasi-geodesic, and
‚ for each j P r0, T 1s X N, we have the diameter of fpgpjqq Y fpgpj ` 1qq is at most c.

If Y Ď X is a subspace, then for any constantK ě 0, we denote the closedK–neighborhood
of Y in X by

NKpY q “ tx P X | dXpx, Y q ď Ku.

We may write NX
K pY q to emphasize that the neighborhood is being taken in X.

A subspace Y Ď X is σ–quasi-convex if any geodesic in X with endpoints in Y is contained
in NσpY q. The subspace Y is called quasi-convex if it is σ–quasi-convex for some σ.

If X is a geodesic metric space and x, y P X, we let rx, ys denote a geodesic from x to y.
If we want to emphasize the metric space X, we write rx, ysX .
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Definition 1.1 (δ–hyperbolic space). Fix δ ě 0. A metric space X is δ–hyperbolic if given
any x, y, z P X and any geodesics α, β, γ between them, we have α Y β Ď Nδpγq. If the
particular choice of δ is not important, we simply say that X is hyperbolic.

Quasi-geodesics in a hyperbolic spaces satisfy two important properties: a local-to-global
property and the Morse Lemma. A path p is an L–local pλ, cq–quasi-geodesic if every subpath
p of length at most L is a pλ, cq–quasi-geodesic.

Lemma 1.2 (Local-to-global Property). Let X be a δ–hyperbolic metric space and fix `0 ě 0.
There exists L “ Lp`0, δq depending only on δ and `0 such that: if ` P r0, `0s and γ : I Ñ X
is an L–local p1, `q-quasi-geodesic, then γ is a global p2, `q–quasi-geodesic.

Lemma 1.3 (Morse Lemma). Let X be a δ–hyperbolic metric space, and fix λ ě 1 and
c ě 0. There exists a constant σ depending only on δ, λ, and c such that if γ1 and γ2 are
pλ, cq–quasi-geodesics in X with the same endpoints, then γ1 Ď Nσpγ2q.

We say σ is theMorse constant associated to pλ, cq–quasi-geodesics in a δ–hyperbolic space.

Let G act by isometries on a δ–hyperbolic metric space X. Then h P G is:
‚ elliptic if it has bounded orbits;
‚ loxodromic if the map Z Ñ X defined by n ÞÑ hnx is a quasi-isometric embedding
for some (equivalently, any) x P X;

‚ parabolic otherwise.
Isometries of a hyperbolic space can also be characterized by their limit sets in the Gromov
boundary BX of X. An element h P G is elliptic, parabolic, or loxodromic if the limit set of
h has cardinality 0, 1, or 2, respectively. If the limit set of h has cardinality 2, we call these
limit points h˘8.

Loxodromic isometries will play a particularly important role in this paper, and we discuss
them in more depth. For the rest of the subsection, fix a group G acting by isometries on
a δ–hyperbolic space X, and fix an element h P G that is loxodromic with respect to this
action. The translation length of h is rhsX :“ infxPX dXpx, hxq, or simply rhs if the space X
is clear. The stable translation length of h in X is

τXphq :“ lim
nÑ8

dXpx0, hnx0q
n

for some (equivalently, any) x0 P X. These two quantities are related by τXphq ď rhsX ď

τXphq ` 16δ.
The element h acts on X as translation along a quasi-geodesic axis which connects the

two limit points h˘8 of h in BX. Up to passing to powers, such an axis can be chosen to
be a uniform quality quasi-geodesic, that is, with quasi-geodesic constants which depending
only on δ and not on the choice of loxodromic isometry. As this will be important in this
paper, we now describe the construction of such an axis. The following lemma summarizes
results in [Cou16, Section 3].

Lemma 1.4 (Construction of an `–nerve). Let G act on a δ–hyperbolic space X. Suppose
h P G is loxodromic and τXphq ě LSδ ´ 16δ, where LS depends only on δ (and is more
explicitly described in [Cou16, Definition 2.8]). Then for any ` P r0, δs, there exists a p2, `q–
quasi-geodesic γXh in X which connects the limit points h˘8 of h in BX, called the `–nerve
of h. The `–nerve of h is p`` 8δq–quasiconvex and preserved by h.

We briefly recall the construction of the `–nerve and refer the reader to [Cou16, Defini-
tion 3.3 and subsequent remark] for further details. Fix ` P r0, δs. By the definition of the
translation length rhs, there exists x P X such that dXpx, hxq ď rhs ` `{2. Thus we can
find a p1, `{2q–quasi-geodesic γ from x to hx. If γ has length T , then rhs ď T ă rhs ` `{2.
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Extend γ to a bi-infinite path γXh using the action of xhy; that is γXh is the concatenation
of the segments hiγ for i P Z. In particular, for any h for which τXphq ě LSδ ´ 16δ, we
have that γ is an LSδ–local p1, `q–quasi-geodesic. By Lemma 1.2, γXh is therefore a global
p2, `q–quasi-geodesic.

Definition 1.5 (Quasi-geodesic axis). Let G act on a δ–hyperbolic space X, and fix the
constant LS from Lemma 1.4 and a constant ` P r0, δs. Suppose h P G is a loxodromic
isometry of X, and let k P N be such that τXphkq ě LSδ ´ 16δ. A p2, `q–quasi-geodesic axis
of hk in X is an `–nerve γX

hk
. If the quasi-geodesic constants are not important, we simply

call γX
hk

an axis of hk.

Suppose h, g P G and h is loxodromic with respect to the action of G on a hyperbolic metric
space X with τXphq ě LSδ ´ 16δ and a p2, `q–quasi-geodesic axis γXh . Then ghg´1 is also
loxodromic with respect to the action of G on X with translation length τXpghg´1q “ τXphq,
and it follows from the construction of the `–nerve that gγXh is a p2, `q–quasi-geodesic axis
of ghg´1.

1.2. Hierarchically hyperbolic spaces. We recall the definition of a hierarchically hyper-
bolic space as given in [BHS19]. The definition is in the setting of a quasi-geodesic metric
space, that is, a metric space in which any two points can be connected by a uniform quality
quasi-geodesic.

Definition 1.6 (Hierarchically hyperbolic space). The quasi-geodesic space pX , dX q is a
hierarchically hyperbolic space (HHS) if there exists δ ě 0, an index set S, and a set tCW :
W P Su of δ–hyperbolic spaces pCW, dW q, satisfying the following conditions:

(1) (Projections.) There is a set tπW : X Ñ 2CW | W P Su of projections sending
points in X to sets of diameter bounded by some ξ ě 0 in the various CW P S.
Moreover, there exists K so that each πW is pK,Kq–coarsely Lipschitz and πW pX q
is K–quasiconvex in CW .

(2) (Nesting.) S is equipped with a partial order Ď, and either S “ H or S contains a
unique Ď–maximal element; when V Ď W , we say V is nested in W . (We emphasize
that W Ď W for all W P S.) For each W P S, we denote by SW the set of V P S
such that V Ď W . Moreover, for all V,W P S with V Ĺ W there is a specified subset
ρVW Ă CW with diamCW pρ

V
W q ď ξ. There is also a projection ρWV : CW Ñ 2CV . We

call the elements of the index set S domains.
(3) (Orthogonality.) S has a symmetric and anti-reflexive relation called orthogonality :

we write V KW when V,W are orthogonal. Also, whenever V Ď W and WKU , we
require that V KU . We require that for each T P S and each U P ST for which
tV P ST | V KUu ‰ H, there exists W P ST ´ tT u, so that whenever V KU and
V Ď T , we have V Ď W . The domain W is called the container associated to U in
T . Finally, if V KW , then V,W are not Ď–comparable.

(4) (Transversality and consistency.) If V,W P S are not orthogonal and neither is
nested in the other, then we say V,W are transverse, denoted V&W . There exists
κ0 ě 0 such that if V&W , then there are sets ρVW Ď CW and ρWV Ď CV each of
diameter at most ξ and satisfying:

min
 

dW pπW pxq, ρVW q, dV pπV pxq, ρ
W
V q

(

ď κ0

for all x P X .
For V,W P S satisfying V Ď W and for all x P X , we have:

min
 

dW pπW pxq, ρVW q, diamCV pπV pxq Y ρ
W
V pπW pxqqq

(

ď κ0.

The preceding two inequalities are the consistency inequalities for points in X .
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Finally, if U Ď V , then dW pρUW , ρ
V
W q ď κ0 whenever W P S satisfies either V Ĺ W

or V&W and W & U .
(5) (Finite complexity.) There exists n ě 0, the complexity of X (with respect to S),

so that any set of pairwise–Ď–comparable elements has cardinality at most n.
(6) (Large links.) There exist λ ě 1 and E ě maxtξ, κ0u such that the following holds.

Let W P S and let x, x1 P X . Let N “ λdW pπW pxq, πW px
1qq ` λ. Then there exists

tTiui“1,...,tNu Ď SW ´ tW u such that for all T P SW ´ tW u, either T P STi for some
i, or dT pπT pxq, πT px1qq ă E. Also, dW pπW pxq, ρ

Ti
W q ď N for each i.

(7) (Bounded geodesic image.) There exists E ą 0 such that for all W P S, all
V P SW ´ tW u, and all geodesics γ of CW , either diamCV pρ

W
V pγqq ď E or γ X

NEpρ
V
W q ‰ H.

(8) (Partial Realization.) There exists a constant α with the following property. Let
tVju be a family of pairwise orthogonal elements of S, and let pj P πVj pX q Ď CVj .
Then there exists x P X so that:
‚ dVj pπVj pxq, pjq ď α for all j,
‚ for each j and each V P S with Vj Ď V , we have dV pπV pxq, ρ

Vj
V q ď α, and

‚ if W&Vj for some j, then dW pπW pxq, ρ
Vj
W q ď α.

(9) (Uniqueness.) For each κ ě 0, there exists θu “ θupκq such that if x, y P X and
dX px, yq ě θu, then there exists V P S such that dV pπV pxq, πV pyqq ě κ.

For ease of readability, given U P S, we typically suppress the projection map πU when
writing distances in CU , i.e., given x, y P X and p P CU we write dU px, yq for dU pπU pxq, πU pyqq
and dU px, pq for dU pπU pxq, pq. When necessary for clarity, we may also write CpUq instead
of CU .

An important consequence of being a hierarchically hyperbolic space is the following dis-
tance formula, which relates distances in X to distances in the hyperbolic spaces CU for
U P S. Give a, b P R, the notation ttauub denotes the quantity which is a if a ě b and is 0
otherwise. Given C,D, we say a —C,D b if C´1a ´ D ď b ď Ca ` D. We use a —D b if
|a´ b| ď D, and we use a ĺC,D b if a ď Cb`D.

Theorem 1.7 (Distance formula for HHS; [BHS19]). Let pX ,Sq be a hierarchically hyperbolic
space. Then there exists s0 such that for all s ě s0, there exist C,D so that for all x, y P X ,

dX px, yq —C,D
ÿ

UPS

ttdU px, yquus .

The distance formula says that the distance between two points in X can be approximated
by measuring the distances between their projections to the hyperbolic spaces, and, moreover,
that we only need to consider hyperbolic spaces for which that projection is sufficiently large.

Definition 1.8 (Relevant domains). For any constant R ě s0 and any two points x, y P X ,
we say U P S is relevant (with respect to x, y,R) if dU px, yq ě R; if we want to emphasize
the constant R, we say that U is R–relevant (with respect to x, y). We denote the set of
R–relevant domains by Relpx, y;Rq.

In other words, the set of R–relevant domains for a pair of points x, y P X are the domains
which appear in the distance formula for x and y with the threshold s “ R.

Notation 1.9. Given a hierarchically hyperbolic space pX ,Sq we let E denote a constant
larger than any of the constants occurring in Definition 1.6 and larger than the constant s0
from Theorem 1.7.

Definition 1.10 (Hierarchy path). Given a hierarchically hyperbolic space pX ,Sq and a
constant λ ě 1, a pλ, λq–hierarchy path γ Ă X is a pλ, λq–quasi-geodesic in X with the
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property that for each U P S the path πU pγq is an unparametrized pλ, λq–quasi-geodesic in
CU .

By [BHS19, Theorem 4.4], for any sufficiently large λ, any two points x, y P X are con-
nected by a pλ, λq–hierarchy path. We fix such a constant λ ą E, and let µpx, yq Ď X denote
a pλ, λq–hierarchy path from x to y.

Definition 1.11 (Hierarchically hyperbolic group). A finitely generated group G is a hierar-
chically hyperbolic group if some (hence any) Cayley graph of G is a hierarchically hyperbolic
space, and the hierarchically hyperbolic structure is G–invariant. In particular, a hierarchi-
cally hyperbolic group is a finitely generated group G, equipped with a specific choice of
finite generating set, such that there is a hierarchically hyperbolic space pG,Sq satisfying the
following properties:

‚ G acts cofinitely on S, preserving the relations Ď,& and K;
‚ For each U P S and g P G, there is an isometry g : CU Ñ CpgUq, and if h P G, then
the isometry gh : CU Ñ CpghUq is equal to the composition CU h

ÝÑ CphUq g
ÝÑ CpghUq;

‚ For each U P S and g, x P G, we have gπU pxq “ πgU pgxq; and
‚ For each U, V P S such that U&V or U Ĺ V and each g P G, we have ρgUgV “ gρUV .

Given a hierarchically hyperbolic group pG,Sq, we use dG to denote the distance in the
group G with respect to some (fixed) finite generating set.

1.3. Gate Maps and Standard Product Regions. In analogy with quasiconvex sub-
spaces of hyperbolic spaces, there is a notion of a hierarchically quasiconvex subspace of a
hierarchically hyperbolic space X .

Definition 1.12 (Hierarchically quasiconvex). Let pX ,Sq be a hierarchically hyperbolic
space. A subspace Y of X is k–hierarchically quasiconvex for some k : r0,8q Ñ r0,8q if the
following hold:

(1) For all U P S, the projection πU pYq is a kp0q–quasiconvex subspace of CU ;
(2) For every κ ą 0 and every point x P X satisfying dU pπU pxq, πU pYqq ď κ for all U P S,

we have dX px,Yq ď kpκq.

The first condition says that the subspace Y projects to a (uniformly) quasiconvex subspace
in every hyperbolic space, while the second condition ensures that all points in X which
project near Y in every hyperbolic spaces are near Y in X .

As is the case for quasiconvex subspaces of hyperbolic spaces, if Y is a hierarchically
quasiconvex subspace of a hierarchically hyperbolic space X , then there is a well-defined
“nearest point projection” from X to Y, called a gate map.

Definition 1.13 (Gate maps). If pX ,Sq is a hierarchically hyperbolic group and Y is a
hierarchically quasiconvex subspace of X , then the gate map is a coarsely-Lipschitz map
gY : X Ñ 2Y , so that for each x P X , the image gYpxq is a subset of the points in Y with the
property that for each U P S the set πU pgYpxqq uniformly coarsely coincides with the closest
point projection in CU of πU pxq to πU pYq.

The following lemma shows that gate maps are uniformly coarsely equivariant.

Lemma 1.14 ([RST18, Lemma 4.16]). Let pG,Sq be a hierarchically hyperbolic group, and let
Y be a k–hierarchically quasiconvex subspace of G. Then there exists a constant A depending
on pG,Sq and k such that for every g, x P G, we have

dGpggYpxq, ggYpgxqq ď A.



CONJUGATOR LENGTHS IN HIERARCHICALLY HYPERBOLIC GROUPS 8

We now recall an important family of hierarchically quasiconvex subspaces in a hierarchi-
cally hyperbolic space called standard product regions introduced in [BHS17b, Section 13] and
studied further in [BHS19]. The definition we give can be found in [Rus22, Definition 2.20]
and is also discussed in [BHS17a, Section 1.2.1] .

Definition 1.15 (Standard product region). Let pX ,Sq be a hierarchically hyperbolic space,
and let U P S. The standard product region for U is the set

PU “ tx P X | dV px, ρUV q ď E for all V P S with V&U or V Ľ Uu.

Note that if S P S is Ď–maximal, then PS “ X .

In other words, given U P S and V P S satisfying V&U or V Ľ U , the product region PU

is precisely the set of points which project near ρUV in CV . It thus follows from this definition
that for such U, V , we have ρUV —E πV pPU q; that is, the projection ρUV is coarsely equal to
the projection of the product region PU Ď X into CV .

Though it is not obvious from this definition, the product region PU is quasi-isometric to a
space with decomposes as a direct product of two factors, FU and EU . As these factors will be
important in this paper, we describe them in detail. See [BHS19, Section 5.2] for additional
details. We first define FU and EU as abstract spaces. In the paragraphs following the
definitions, we explain that these spaces admit embeddings into X . Unless otherwise noted,
we will always think of these embeddings, rather than the abstract spaces themselves.

Definition 1.16 (Nested partial tuple (FU )). Let SU “ tV P S | V Ď Uu. Fix κ ě E and
let FU be the set of κ–consistent tuples in

ś

V PSU
2CV (i.e., tuples satisfying the consistency

inequalities of Definition 1.6.(4)).

Definition 1.17 (Orthogonal partial tuple (EU )). Let SKU “ tV P S | V KUuY tW u, where
W is a Ď–minimal element such that V Ď W for all V KU . Fix κ ě E, and let EU be the
set of κ–consistent tuples in

ś

V PSKU´tAu
2CV .

Remark 1.18. The particular choice of constant κ will not be important in this paper. For
simplicity, given a hierarchically hyperbolic group, we fix κ “ E, and for each domain U we
consider only spaces FU and EU defined using E–consistent tuples.

Given X and U P S, there is a well-defined map φU : FU ˆ EU Ñ X . The precise
definition of this map is not necessary for this paper; we refer the interested reader to [BHS19,
Construction 5.10]. The product region PU defined in Definition 1.15 is coarsely equal to
the image φU pFU ˆEU q in X . In this paper, we will only work with PU and FU . For all
results that we state for FU , analogous statements also hold for EU .

Fixing any e P EU restricts φU to a map φĎ : FU ˆ teu Ñ X . In general this map φĎ

depends on the choice of e P EU . When the basepoint is immaterial (or understood), we
abuse notation and consider FU to be a subspace of X , that is, FU “ imφĎ.

It is proven in [BHS19, Lemma 5.5] that standard product regions PU and their factors
FUˆteu for each e P EU (considered as subspaces of X ) are uniformly hierarchically quasicon-
vex. Therefore there are well-defined gate maps gPU

: X Ñ PU and gFUˆteu : X Ñ FU ˆ teu
for each U P S and each e P EU .

Remark 1.19. We note that the gate map gFUˆteu depends on the choice of e P EU .
However, the image of the gate map in CV for any V Ď U is independent of this choice (see
[BHS17a, Remark 1.16]). That is, if e, e1 P EU , then for any x P X , we have πV pgFUˆteupxqq “
πV pgFUˆte1upxqq. In statements where we only consider the image of the gate map in the
hyperbolic spaces, we simplify notation and write gFU

.
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y

x1 y1 PU

x

Figure 1. Geometric picture of Lemma 1.20. Domains which are relevant
for x, y are relevant for either the horizontal red segment or (at least one of)
the vertical red segments.

The following lemma provides a formula for computing the distance between a point and a
product region. It is an immediate consequence of [BHS21, Corollary 1.28]; we give a sketch
of the proof here for completeness.

Lemma 1.20 ([BHS21]). Let pX ,Sq be a hierarchically hyperbolic space. Fix U P S and let
Y “ tY P S | Y&U or Y Ľ Uu. Then for all s ě s0 and any x P X ,

dX px,PU q —C,D

ÿ

Y PY

  

dY px, ρUY q
((

s
,(1)

where s0, C, and D are the constants from Theorem 1.7.

Sketch of proof. To each bounded set A Ă X , we associate a tuple pAV qV PS whose compo-
nents are the projections of A to CV for each V P S, i.e., AV “ πV pAq. We will consider
the case A “ gPU

pxq Ă PU . By [BHS17a, Remark 1.16], if V Ď U or V K U , we have
πV pgPU

pxqq “ πV pxq. Combining this with the definition of PU (Definition 1.15), we have

pgPU
pxqqV “

#

ρUV if V P Y
πV pxq otherwise.

There is a constant K0 depending only on pG,Sq such that dX px,PU q —Ko dX px, gPU
pxqq

by [BHS21, Lemma 1.27]. From the above discussion we see that the only components of the
tuple pxV qV PS associated to x and the tuple ppgPU

pxqV qV PS associated to gPU
pxq which differ

in CV occur when V P Y. Thus the distance from x to gPU
pxq in X can be approximated

using only the domains V P Y. l

Lemma 1.20 gives the following geometric picture. Let x, y P X and U P S, and consider
x1 “ gPU

pxq and y1 “ gPU
pyq. Let V be a domain that is relevant for x and y. Then any

distance in CV contributes either to the distance from x or y to the product region PU or to
the distance within PU , but not both (see Figure 1). In particular, if V&U or V Ľ U , then
V is relevant for either x, x1 or y, y1 but not for x1, y1. Any other V is relevant for x1, y1 but
not for x, x1 or y, y1.

1.4. Axial elements in hierarchically hyperbolic groups. Let pG,Sq be a hierarchically
hyperbolic group, and fix the constant LS from Lemma 1.4 and ` P r0, δs. (Note that the
constant δ is part of the definition of pG,Sq; see Definition 1.6.) Following [DHS17], for an
element h P G we define

(2) Bigphq “ tU P S | πU pxhyq is unboundedu.

Lemma 1.21. Let pG,Sq be a hierarchically hyperbolic group. An element h P G is finite
order if and only if Bigphq “ H.
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Proof. In [DHS17, Proposition 6.4] it is proven that an element h P G is elliptic if and only
if Bigphq “ H. The result follows from this, since a group element acts elliptically on its
Cayley graph if and only if the element is of finite order. l

Definition 1.22 (Axial element). An element h P G with Bigphq ‰ H is called axial.

Lemma 1.21 shows that every infinite order element of a hierarchically hyperbolic group
is axial. By [DHS17, Lemma 6.7], the elements of Bigphq are pairwise orthogonal. As the
number of pairwise orthogonal domains in a hierarchically hyperbolic group is uniformly
bounded by the constants in the definition of a hierarchically hyperbolic space [BHS19,
Lemma 2.1], it follows that |Bigphq| is uniformly bounded independently of the choice of h.
As noted in [DHS17], since h : CU Ñ CphUq is an isometry, we have hU P Bigphq whenever
U P Bigphq. Moreover, by [DHS17, Lemma 6.3], there is a constant M depending only on
the constants in the definition of a hierarchically hyperbolic space such that for all h P G
and U P Bigphq, we have hMU “ U . In other words, by passing to a uniform power, we
may assume that h fixes its big set elementwise. Moreover, by passing to this uniform power,
we may assume that h is a loxodromic isometry of CU for any U P Bigphq by [DHS20,
Theorem 3.1]. We let τU phq denote the stable translation length of h in this action and let
γUh be a p2, `q–quasi-geodesic axis of h in CU (see Definition 1.5).

Remark 1.23 (Acylindrical actions). The action of a group G on a metric space X is
acylindrical if for all ε ě 0, there exist constants Rpεq, Npεq ě 0 such that for all x, y P X
satisfying dXpx, yq ě Rpεq, there are at most Npεq elements g P G for which dXpx, gxq ď ε
and dXpy, gyq ď ε. By [BHS17b, Theorem K], G acts acylindrically on CS, where S is
the Ď–maximal element of S. An immediate consequence of this is a lower bound on the
translation length τSphq that depends only on the hierarchy constants [Bow08, Lemma 2.2].

Let U P S, and let H be a subgroup of G which fixes U , so that H acts on CU . If U ‰ S, it
is not necessarily the case that H acts acylindrically on CU , and it remains an open question
whether there is a uniform lower bound on τU phq in general. We deal with this issue in
the present paper by assuming such a uniform lower bound as a hypothesis. Hierarchical
acylindricity is a standard assumption requiring that the action of H on CU is acylindrical
for all such U : this would also ensure a uniform lower bound on translation length.

The next lemma is a straightforward consequence of the hyperbolicity of the spaces CU .

Lemma 1.24. Let pX ,Sq be a hierarchically hyperbolic space, and let G be a group acting
geometrically on X . Fix a basepoint x0 P X , the constant LS from Lemma 1.4, and ` P r0, δs.
Then there exist constants K0, L ě 0 such that the following holds. Let h P G be an axial
element so that hU “ U for each U P BigpUq and τU phq ě LSδ. For any k ě K0 let
x1, y1 P CU be the closest points on γUh to πU px0q and πU phkx0q, respectively.

There exists a point ξ on the subpath of γUh from x1 to y1 so that dU pξ, x1q ď L and
dU pξ, πU pµpx, yqqq ď L.

Proof. Recall that the image of any pλ, λq–hierarchy path in CU is a (unparametrized) pλ, λq–
quasi-geodesic. Since the axis of h in CU is a p2, `q–quasi-geodesic, the concatenation (in the
appropriate order) of πU pµpx0, hkx0qq, rπU px0q, x1sCU , rπU phkx0q, y1sCU , and a subpath of γUh
forms a p2, `q–quasi-geodesic quadrilateral Q in CU . LetM be the Morse constant associated
to p2, `q–quasi-geodesics in a δ–hyperbolic space. Fix K0 so that LSδK0 ą 4δ` 4M ` 1, and
let k ě K0. Note that K0 is independent of the choice of axial element h.

The quadrilateral Q is p2M ` 2δq–thin, that is, given any point z on a side of Q, there is
a point on one of the other three sides of Q at distance at most 2δ ` 2M from z. Let v and
w be points on the subpath of γUh between x1 and y1 so that dSpx1, vq “ r4δ ` 4M ` 1s and
dSpy1, wq “ r4δ ` 4M ` 1s. We claim that the subpath β of γUh from v to w is contained in
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the p2δ ` 2Mq–neighborhood of πU pµpx, yqq. Let z be a point on the subpath of γUh from x1

to y1. Then there is a point z1 on one of the other three sides satisfying dU pz, z1q ď 2M ` 2δ.
Suppose z1 lies on the geodesic rπU pxq, x1s. As x1 is the nearest point on γUh to x (hence
also to z1), we must have dU pz1, x1q ď dU pz1, zq ď 2M ` 2δ. The same holds if z1 lies on the
geodesic rπU pyq, y1s. Thus if z lies on β, then z1 must lie on πU pµpx, yqq, as desired.

Since the map πU is G–equivariant and, in particular, hkπU px0q “ πU ph
kx0q, we also have

y1 “ hkx1. Thus dU px1, y1q ě kτU phq ě K0LSδ ě 4δ ` 4M ` 1. It follows that β is non-
empty. We let ξ be the point on β closest to x1, so that dU pξ, x1q “ r4δ ` 2M ` 1s. Taking
L “ r4δ ` 2M ` 1s completes the proof. l

2. Proof of Theorem A

Let pG,Sq be a hierarchically hyperbolic group. The authors and Durham show in [ABD21,
Corollary 3.8] that by possibly changing the hierarchy structure on G, we may assume that
pG,Sq has unbounded products. In this paper, we don’t directly use the definition of un-
bounded products, rather we only need the following consequence about Morse elements in
the structure pG,Sq, which follows from [ABD21, Theorem 4.4 & Corollary 5.5]: if h P G is
an infinite order Morse element, then h is axial and Bigphq “ tSu, where S is the Ď–maximal
element of S.

We begin by fixing the constants that will be used throughout the proof. Definition 1.6
provides a constant δ such that CU is δ–hyperbolic for all U P S. Let LS be the constant
from Lemma 1.4, and fix ` P r0, δs. Let E be as in Notation 1.9; in particular, E is larger
than any of the hierarchy constants for G. Let T be the lower bound on translation length
in the acylindrical action on CS noted in Remark 1.23. Fix λ ě maxt2, `u so that any two
points x, y P G are connected by a pλ, λq–hierarchy path. Let K0, L be the constants from
Lemma 1.24, and fix a constant R ą 2E.

Finally, set

(3) K “ maxt2δ,R,K0,

R

4L` 3E

T

V

` 2, 2Lu.

This constant K is uniform, in the sense that it depends only on the hierarchy constants for
pG,Sq.

Let a, b P G be two infinite order Morse elements and suppose there exists g P G such
that ga “ bg. Since pG,Sq has unbounded products, we have Bigpaq “ Bigpbq “ tSu. For
simplicity of notation, we denote the asymptotic translation length of b in CS by τpbq. Note
that S is fixed by the action of G on S. Since g conjugates ai to bi for any i P Z, we first
replace a and b by sufficiently high powers so that τpbq ě LSδ. By Remark 1.23, such a
power can be chosen uniformly (that is, depending only on the hierarchy constants, and not
the choice of elements a and b).

Let γb “ γSb be a p2, `q–quasi-geodesic axis of b in CS. Then γa “ γSa “ g´1γb is a p2, `q–
quasi-geodesic axis of a in CS. We now fix a quadrilateral of pλ, λq–hierarchy paths in G:
µp1, gq, µp1, bKq, bKµp1, gq “ µpbK , bKgq, and gµp1, bKq “ µpg, gbKq “ µpg, aKgq.

Our first step is to replace g with a different conjugator whose length we are able to bound
in G. Since K ě K0, we may apply Lemma 1.24 to each of the axes γa, γb in CS and
the points 1, aK P G and 1, bK P G, respectively. This yields a point z1 P γa and a point
w1 P γb such that z1 P NLpπSpµp1, a

Kqqq and w1 P NLpπSpµp1, b
Kqqq. Moreover, if x is a

point on γa nearest to πSp1q and y is a point on γb nearest to πSp1q, then dSpz1, xq ď L and
dSpw1, yq ď L. See Figure 2. Let z P πSpµp1, aKqq and w P πSpµp1, bKqq be points nearest to
z1 and w1, respectively. Since g fixes S, we have gz P πSpµpg, gaKqq “ πSpµpg, b

Kgqq Ď CS
and gz1 P gγa “ γb. Since g is an isometry, we have dSpgz1, gxq “ dSpz1, xq ď L.
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πSp1q

x
z1

z

ď L` δ

w

ď L` δ
ď τpbq

w1
gz1

gz

ď L` δ

πSpgq

gx
y

πSpgb
Kq “ πSpa

Kgq

πSpb
Kq

γb

γa

πSpa
Kq

Figure 2. The geometry of the axes of a and b in CS.

By possibly premultiplying g by a power of b, we may assume that dSpgz1, w1q ď τpbq
(while still conjugating a to b). Thus we have

(4) dSpy, gxq ď dSpy, w1q ` dSpw1, gz1q ` dSpgz1, gxq ď τpbq ` 2L.

Our goal is to bound the length of this new conjugator, which by an abuse of notation we
will still call g.

We will show that for each U P S, we have

(5) dU p1, gq ď 2KdU p1, bq ` dU pg, bKgq `K,

where K is as in (3). After establishing this bound for each U P S, we then apply the
distance formula (Theorem 1.7) with threshold R to obtain

dGp1, gq ĺC,D 2KdGp1, bq ` dGpg, bKgq `K.

Finally, we use the fact that dGpg, bKgq “ dGpg, gaKq “ dGp1, aKq ď KdGp1, aq, which
establishes that

(6) dGp1, gq ĺC,D 2KdGp1, bq `KdGp1, aq `K,

where C,D are the constants given by the distance formula (Theorem 1.7). (Note that by
assumption, R is sufficiently large to serve as a threshold in the distance formula.) This will
provide the desired bound in G.

Fix U P S. If U R Relp1, g;Rq, then we have dU p1, gq ď R ď K, and (5) holds. Thus
we assume for the rest of the proof that U P Relp1, g;Rq. There are two cases to consider:
either U “ S or U Ĺ S. We will deal with each of these possibilities individually.

Case 1: U “ S. In this case we have (as seen in Figure 2):

dSp1, gq ď dSp1, wq ` dSpw,w1q ` dSpw1, gz1q ` dSpgz1, gzq ` dSpgz, gq

ď dSp1, bKq ` 2L` τSpbq ` dSpg, bKgq

ď 2KdSp1, bq ` dSpg, bKgq `K,

where the final inequality follows from the fact that dSp1, bq ě τSpbq and (3). Therefore (5)
holds in this case.
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Case 2: U Ĺ S. As we are assuming that U is R–relevant for 1, g, we must have ρUS Ď CS
is contained in the E–neighborhood of a geodesic in CS from πSp1q to πSpgq by the bounded
geodesic image axiom (Definition 1.6(7)). As geodesic quadrilaterals in δ–hyperbolic spaces
are 2δ–thin, it follows that ρUS is contained in the pE ` 2δq–neighborhood of rπSp1q, ys Y
ry, gxs Y rgx, πSpgqs, where these are geodesics in CS. Since x and gx are the nearest point
projections of πSp1q and πSpgq onto γb, respectively, it follows from (4) that the projection
of rπSp1q, ys Y ry, gxs Y rgx, πSpgqs onto γb has diameter at most τpbq ` 2L. In particular,
since nearest point projection maps in hyperbolic spaces are Lipschitz, the nearest point on
γb to ρUS is distance at most τpbq ` 2L` E from y.

By an analogous argument, if U is also R–relevant for bK , bKg, we must have that ρUS is
contained in the pE ` 2δq–neighborhood of rπSpbKq, bkys Y rbky, bkgxs Y rbkgx, πSpbkgqs. In
particular, the nearest point on γb to ρUS is at distance at most τpbq ` 2L` E from bKy.

However, our choice of K in (3) ensures that

dSpy, bKyq ě Kτpbq ě

ˆR

4L` 3E

T

V

` 2

˙

τpbq ě 4L` 3E ` 2τpbq,

which is a contradiction. Therefore U is not R–relevant for bK , bKg, and so dU pbK , bKgq ď R.
Therefore,

dU p1, gq ď dU p1, bKq ` dU pbK , bKgq ` dU pbKg, gq

ď KdU p1, bq ` dU pbK , bKgq `R

ď KdU p1, bq ` dU pbK , bKgq `K,

where the final inequality follows from our choice of K in (3).
Therefore (5) holds in this case, which completes the proof of theorem. l

3. A family of hierarchically hyperbolic groups

In this section, we highlight three properties which isolate some of the nice features of
compact special groups and which appears in many other contexts as well. We will show in
Proposition 3.10 that many hierarchically hyperbolic groups satisfy these three properties,
which we call FU stabilizers, orthogonal decomposition, and commutativity.

Fix a hierarchically hyperbolic group pG,Sq. If U Ď S is a collection of pairwise orthogonal
domains, we denote the container of U in S by CU (Definition 1.6(3)); by definition, each
domain V which is orthogonal to every U P U is nested into CU . We sayG has clean containers
if for every collection of pairwise orthogonal domains U , the container CU is orthogonal to
every U P U . If U “ tUu, we write CU instead of CtUu.

Recall that for any domain U P S, we identify PU with FU ˆEU (see the discussion after
Definition 1.17). If a subgroup H ď G fixes a domain U P S (in the action of G on S), then
whenever V Ď U or V K U , we have hV Ď U or hV K U , respectively, for each h P H. It
follows that H stabilizes the product region PU and each of its factors FU and EU .

Definition 3.1. For any U P S, let GU be the subgroup of G that fixes U in the action of
G on S and that stabilizes FU ˆ teu for each e P EU .

Equivalently, GU is the subgroup which stabilizes each factor of FU ˆEU and acts as the
identity on the second factor. We note that when G has clean containers, the second factor
EU is isometric to FCU

by Lemma 3.6.

Example 3.2. Right-angled Artin groups and, more generally, compact special groups, pro-
vide a good example to have in mind when reading this section. With the standard hi-
erarchically hyperbolic group structure given in [BHS17b], such groups are hierarchically
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acylindrical, and have clean containers [ABD21, Proposition 7.2]. One nice property of
right-angled Artin groups is that two elements commute if and only if all the generators in
a cyclically reduced factorization of one of the elements commute with all the generators in
a cyclically reduced factorization of the other element. Hence, in the Salvetti complex of a
right-angled Artin group, G, we have that two elements span a periodic plane if and only if
they commute. Similarly, if a group is compact special it embeds as a quasi-convex subgroup
of a right-angled Artin group and thus inherits this property as well. Further, if a group is
virtually compact special, then, up to taking powers, two elements commute if and only if
they span a periodic plane. For these groups U, V P S are orthogonal if and only if they have
associated subcomplexes of the cube complex which span a direct product. Hence, it follows
that given U, V P S which are orthogonal, the subgroup which fixes U in the action on S
and which stabilizes the subset FU ˆ teu for each e P EU has the property that it commutes
with the similarly defined subset for V . In other words, elements of GU and GV commute.
In particular, if g P G fixes each Ui P BigpGq then g can be written as a product of elements
in GUi .

3.1. The FU stabilizers, orthogonal decomposition, and commutative properties.
We will now extract and formalize the properties which we described above for right-angled
Artin groups.

3.1.1. The FU stabilizers property. Since pG,Sq is a hierarchically hyperbolic group, there
is a finite fundamental domain S1 for the action of G on S. We may choose S1 to have the
property that for each U P S1, there exists e P EU such that 1 P FU ˆ teu, where 1 is the
identity element of G. We denote this copy of FU by FU . For such domains U , we always
have GU Ď FU . To see this, consider any f R FU . Since 1 P FU and f “ f ¨ 1 R FU , the
element f does not stabilize FU , so f R GU .

The first property says that for all U P S1, the sets FU and GU are coarsely equal.

Definition 3.3 (FU stabilizers). A hierarchically hyperbolic group pG,Sq satisfies the FU
stabilizers property if there exists a constant ν depending only on the hierarchy constants
such that dGpf,GU q ď ν for each U P S1 and any f P FU .

The FU stabilizers property implies that for domains U P S1, the subgroup GU inherits
many geometric properties from FU , including hierarchical quasiconvexity. In a hierarchically
hyperbolic group, there is a function k : r0,8q Ñ r0,8q so that for any U P S, the subspace
FU is k–hierarchically quasiconvex [BHS19, Construction 5.10]. If the group has the FU
stabilizers property, then since GU and FU are at uniformly bounded distance whenever
U P S1, there is a function k1 : r0,8q Ñ r0,8q depending only on k and E so that the
subgroup GU is also hierarchically quasiconvex for any U P S1. It then follows from [BHS19,
Lemma 5.5] that there is a well-defined gate map gGU

: G Ñ GU . Moreover, for any g P G,
each coset gGU of GU is also k1–hierarchically quasiconvex in G, so we also have a well-
defined gate map ggGU

: GÑ gGU . These gate maps will be important for defining the two
additional properties we introduce in this section.

The next lemma says that pGU ,SU q is a hierarchically hyperbolic group, where SU “

tV P S | V Ď Uu.

Lemma 3.4. Let pG,Sq be a hierarchically hyperbolic group satisfying the FU stabilizers
property. For any U P S1, pGU ,SU q is a hierarchically hyperbolic group.

Proof. The FU stabilizers property says that GU is at uniformly bounded distance from FU .
In particular, FU and GU are quasi-isometric. Since pFU ,SU q is a hierarchically hyperbolic
space [BHS19, Proposition 5.11], this immediately implies that pGU ,SU q is a hierarchically
hyperbolic space, where the associated hyperbolic spaces and maps are the same as those for
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pFU ,SU q. It remains to show that pGU ,SU q is a hierarchically hyperbolic group. For this,
note that GU stabilizes SU by definition. Since pG,Sq is a hierarchically hyperbolic group
and GU ď G, the four additional conditions from Definition 1.11 hold because they hold for
the action of G on S. For example, since G acts cofinitely on S and preserves the relations
Ď,&, and K, so does GU . Similar arguments show the other three conditions hold. l

3.1.2. The orthogonal decomposition property. The next property allows any infinite order
element which fixes a collection of pairwise-orthogonal domains tU1, . . . , Uku to be decom-
posed into a product of elements in GUi . Before defining this property, the following lemma
establishes that for each i “ 1, . . . , k there is a preferred FUi ˆ teiu which we denote by FUi .
The careful reader will note that if Ui is already in the fundamental domain S1, then the
choice given by the lemma is consistent with our previous choice of FUi .

Lemma 3.5. Let pG,Sq be a hierarchically hyperbolic group with the FU stabilizers property,
and let U “ tU1, . . . , Uku be a maximal collection of pairwise-orthogonal domains in S. Then
there exist t P G and copies FUi ˆ teiu such that the following hold for all i:

‚ Ui “ tU 1i for some U 1i P S
1;

‚ FUi ˆ teiu “ tFU 1i ;
‚ GUi “ tGU 1i t

´1; and
‚ dGpt, gPU p1qq ď Eν, where ν is the constant from Definition 3.3.

Proof. Consider the product region PU associated to U , and let t1 be any point in gPU p1q.
For the first part of the proof, it will be convenient to distinguish between the abstract
product region PU “ FU1 ˆ ¨ ¨ ¨ ˆ FUk

and its image φU pPU q Ď G (see the discussion after
Definition 1.17). Let pt11, . . . , t1kq P PU be such that φU pt11, . . . , t1kq “ t1. We will adjust
each t1i individually to find a new point pt1, . . . , tkq, which will determine the points ei in
the statement. At the ith stage, we change the ith coordinate of the point in PU to ensure
that it lies in a coset of GUi that is completely contained in the associated copy of FUi . In
subsequent steps, we will adjust later coordinates: this may change which coset of GUi the
point lies in, but it will simultaneously translate the copy of FUi so that this new coset is
still contained in the new copy of FUi , as desired. After changing all coordinates, the desired
element t will be φU pt1, . . . , tkq.

We begin with i “ 1. Since S1 is a fundamental domain, there is some f 11 P G and
U 11 P S1 such that φU pFU1 , t

1
2, . . . , t

1
kq “ f 11FU 11 . Since GU 11 Ď FU 11 , we have f 11GU 11 Ď

φU pFU1 , t
1
2, . . . , t

1
kq. By the FU stabilizers property, there is an element t1 P FU1 with

dGpt1, φU pt1, t12, . . . , t
1
kqq ď ν and φU pt1, t12, . . . , t1kq P f

1
1GU 11 .

We fix t1 from the previous paragraph and now consider i “ 2. The point φU pt1, t12, . . . , t1kq
is in φU pt1,FU2 , t

1
3, . . . , t

1
kq. Again, as above, there is some f 12 P G and U 12 P S1 for which

φU pt1,FU2 , t
1
3, . . . , t

1
kq “ f 12FU 12 . Also, as above, we can find an element t2 P FU2 with

dGpφU pt1, t12, . . . , t
1
kq, φU pt1, t2, t

1
3, . . . , t

1
kqq ď ν and φU pt1, t2, t13, . . . , t1kq P f

1
2GU 12 .

Continuing in this way for each i yields a point pt1, t2, . . . , tkq P FU1 ˆ ¨ ¨ ¨ ˆ FUk
. Letting

t “ φU pt1, . . . , tkq, it follows from the triangle inequality that

(7) dGpt1, tq ď kν ď Eν,

where the final inequality holds because any collection of pairwise orthogonal domains has
cardinality bounded by E.

We now return to our convention of identifying PU with its image φU pPU q Ď G. We have
shown that, for each i, we have t P FUiˆteiu for some ei. Precisely, ei “ φKU pt1, . . . , t̂i, . . . , tkq,
where t̂i indicates that the term ti does not appear in the tuple.

We now show that FUi ˆ teiu satisfies the conclusion of the lemma for each i. The final
bullet point holds by (7).
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There is an element fi P G such that FUi ˆ teiu “ fiFU 1i , where Ui “ fiU
1
i , and t P fiGUi .

Thus fiGU 1i “ tGU 1i , and GUi “ tGUit
´1, so the third bullet point holds. Also, since t “ fiqi

for some qi P GU 1i , we have
tFU 1i “ fiqiFU 1i “ fiFU 1i ,

so the second bullet point holds. Finally, tU 1i “ fiqiU
1
i “ fiU

1
i “ Ui, which shows that the

first bullet point holds and concludes the proof of the lemma. l

The following lemma is presumably well-known, but is not in the literature. An immediate
corollary of this is that an axial element fixes the container associated to its big set.

Lemma 3.6. Let pG,Sq be a hierarchically hyperbolic group with clean containers, and let
tU1, ..., Uku be a (non-maximal) collection of pairwise orthogonal domains. There exists a
unique C P S such that: if for each i, a domain V P S satisfies V K Ui then V Ď C.

Proof. First, by Definition 1.6(3) some C exists with the desired property, what is needed
is to prove uniqueness. So suppose that both C and C 1 satisfy this property. Since the
containers are clean, each of C and C 1 are orthogonal to Ui for each i. Thus, since C is a
container and since C 1 is orthogonal to all the Ui, we must have that C 1 Ď C. Similarly,
C Ď C 1. Thus C “ C 1, as desired. l

Definition 3.7 (Orthogonal decomposition). Let pG,Sq be a hierarchically hyperbolic group
with clean containers which satisfies the FU stabilizers property, and let h P G be an infinite
order element. Let tU1, . . . , Uk`1u be a maximal collection of pairwise orthogonal domains
of S so that Bigphq “ tU1, . . . , Uku and Uk`1 is the container associated to Bigphq in S.
Suppose h P G fixes Bigphq elementwise. By Lemma 3.5, there exists t P G and, for each
i “ 1, . . . , k, a domain U 1i P S1 with Ui “ tU 1i . The label of the vertex gtGUi

phq is th1i for
some h1i P Gu1i Ď FU 1i . Define

(8) hUi :“ th1it
´1 P tGU 1i t

´1 “ GUi .

The group pG,Sq satisfies the orthogonal decomposition property if the following two prop-
erties hold for all axial elements h P G. First, there is a uniform lower bound on the trans-
lation length τUiphq for each Ui P Bigphq (this uniformity only depends on the hierarchy
constants and not the choice of h). Second, after possibly relabeling the domains of Bigphq,
we have

h “ hU1hU2 . . . hUk
“ th11 . . . h

1
kt
´1.

We say hU1hU2 . . . hUk
is a decomposition of h.

This decomposition may depend on the order of the factors. In particular, it may be
the case that hUi does not commute with hUj , because elements of GUi and GUj may not
commute. However, the final property we discuss will require that such elements do commute,
and so the order of the factors will not be important for the groups we consider.

3.1.3. The commutative property. The final property ensures that GU and GV commute
whenever U K V .

Definition 3.8 (Commutative property). A hierarchically hyperbolic group pG,Sq with the
FU stabilizers property satisfies the commutative property if rGU , GV s “ 1 whenever U K V .

The following lemma is a consequence of the commutative property.

Lemma 3.9. Let G be a hierarchically hyperbolic group satisfying the FU stabilizers, orthog-
onal decomposition, and commutative properties. Let h P G be an axial element which fixes
Bigphq “ tH1, . . . ,Hku elementwise, and let C be the clean container associated to Bigphq.
Then there exists a uniform constant K such that phKqC “ 1, where phKqC is the factor
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corresponding to C in the decomposition of hK with resepect to tH1, . . . ,Hk, Cu and 1 is the
identity element of GC ď G.

Proof. First, note that by Lemma 3.6, h fixes tH1, . . . ,Hk, Cu elementwise, and so the de-
composition h “ hH1 . . . hHk

hC of h with respect to this set is well-defined. Recall that
hC P GC is an element of the hierarchically hyperbolic group pGC ,SCq. Since C R Bigphq,
hC is not an axial element of GC . Therefore hC must be finite order by Lemma 1.21. By
[HHP20, Theorem G] there are finitely many conjugacy classes of finite order elements in a
hierarchically hyperbolic group, and therefore there is a uniform constant K such that hKC is
the identity element of GC .

By the commutative property, we have

hK “ phH1 . . . hHk
hCq

K “ phH1q
K . . . phHk

qKphCq
K “ phH1q

K . . . phHk
qK .

From this decomposition, it is clear that phKqC “ 1. l

3.1.4. Examples. We now give several examples of hierarchically hyperbolic groups satisfy-
ing the three properties defined above. Moreover, additional examples can be built using
combination theorems, of which there are several in the literature (see, e.g., [BHS19, BR20,
BR, RS]).

Proposition 3.10. Let Ξ be the set of hierarchically hyperbolic groups with clean containers
which satisfy the FU stabilizers, orthogonal decomposition, and commutative properties. Then
the following groups are in Ξ.

(1) Hyperbolic groups
(2) Compact special groups
(3) Groups hyperbolic relative to a collection of groups in Ξ
(4) Direct products of groups in Ξ

Proof. We consider each class of groups in turn.
(1) The statement is immediate for hyperbolic groups G, as they all admit hierarchically

hyperbolic structures with a single domain S, and the action on CS is acylindrical.
For this domain, FS is a Cayley graph of the group and GS “ G. As there is no
orthogonality, the orthogonal decomposition and commutative properties vacuously
hold.

(2) For compact special groups, we use the standard structure described in [BHS19].
This structure satisfies the three properties by a completely analogous argument to
the one given for right-angled Artin groups in Example 3.2.

(3) Let G be a group which is hyperbolic relative to a collection P of hierarchically hyper-
bolic groups with clean containers satisfying the FU stabilizers, orthogonal decom-
position, and commutative properties. Then G is a hierarchically hyperbolic group
by [BHS19, Theorem 9.1] and has clean containers by [ABD21, Proposition 7.4]. For
each P P P, let pP,SP q be an HHG structure for P , and for each left coset gP , let
SgP be a copy ofSP , with the associated hyperbolic spaces and projections. Let pG be
the hyperbolic space formed from G by coning off each left coset of each P P P. Then
the hierarchically hyperbolic group structure on G is given by S “ t pGu\gPPGP SgP .
The domain pG is the unique Ď–maximal domain, and if U P SgP and V P Sg1P 1

where gP ‰ g1P 1, then U&V . We refer the reader to [BHS19, Section 9] for details
of this structure, but note one important feature of the structure pG,Sq: any pair of
orthogonal domains are contained in some gP P GP.

We first check that the FU stabilizes property holds. A fundamental domain for
the action of G on S is given by S1 “ t pGu \PPP SP . Let U P S1. If U “ pG,
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then FU “ G and GU “ G, so the property holds for this domain. Now suppose
U P SP for some P P P. Then FU Ď P . If g R P , then gFU Ď gP ‰ P , and so
g R GU . Therefore GU is a subgroup of P in this case. Since pP,SP q satisfies the FU
stabilizers property, it follows that pG,Sq does, as well.

We now check the orthogonal decomposition property. Since G is hyperbolic rela-
tive to P, every infinite order element h P G is either loxodromic with respect to the
action of G on pG, in which case Bigphq “ tĜu or is conjugate into some P P P, in
which case we consider the conjugate ghg´1 P P . In the first case, the action of G
on pG is acylindrical, and so there is a uniform lower bound on the translation length
of h, and we have the trivial orthogonal decomposition of h. In the second case,
there is a uniform lower bound on the translation length of ghg´1 in each domain
in Bigpghg´1q by the assumption that each P satisfies the orthogonal decomposition
property. Translation length is invariant under conjugacy, and so we obtain a uniform
lower bound on the translation length of h in each domain in Bigphq. There is also an
orthogonal decomposition of ghg´1 coming from the assumption on pP,SP q. Since
Bigphq “ g´1 Bigpghg´1, conjugating each term in the decomposition of ghg´1 by
g´1 yields an orthogonal decomposition for h.

Finally, the commutative property follows immediately from the construction of
the orthogonal decomposition in the previous paragraph and the fact that pP,SP q

satisfies the commutative property for each P P P.
(4) Assume G “ G1 ˆ G2, and suppose pG1,S1q, pG2,S2q are hierarchically hyperbolic

groups with clean containers which satisfy the FU stabilizers, orthogonal decompo-
sition, and commutative properties. Then G is a hierarchically hyperbolic group by
[BHS19, Proposition 8.27] and has clean containers by [ABD21, Proposition 7.3]. The
hierarchy structure on G is given by S “ tS,U1, U2u\S1\S2\tVU | U P S1YS2u,
where S is the unique Ď–maximal element, Ui is a domain into which all domains in
Si nest, and for each U P Si, the domain VU is a domain into which all domains in Sj

with j ‰ i and all domains in Si orthogonal to U nest. The only important relation
between domains for this proof is orthogonality. In addition to any orthogonality
among domains in S1 or S2, we have that all domains in S1 are orthogonal to all
domains in S2, U1 K U2, and VU K U for each U P S1YS2. By construction, pG,Sq
has clean containers. See [BHS19, Section 8] for further details on this structure.

When we refer to subsets of Gi or the pGi,Siq structure, we append a superscript
i to the notation. For example, if U P Si, then FiU is the corresponding subset of Gi.

We first check the FU stabilizers property. If U “ S, there is nothing to check, so
suppose first that U P S1. Let G1

U denote the subgroup from the structure pG1,S1q

which stabilizers F1
U ˆ teu for each e P E1

U . In the structure pG,Sq, there are
additional domains orthogonal to U ; in particular every domain in S2 is orthogonal
to U . We have FU “ F1

U , but now EU “ E1
U ˆG2. Therefore, we have pg1, g2q P GU

if and only if g1 P G1
U and g2 “ 1. Thus GU » G1

U ˆ t1u. Since pG1,S1q satisfies
the FU stabilizers property, G1

U is coarsely equal to F1
U . The above discussion then

implies that GU is coarsely equal to FU . Similarly, if U P S2, then GU » t1u ˆG2
U ,

and we again have that GU is coarsely equal to FU .
Suppose next that U “ U1. Then FU “ G1, and EU “ G2. Since G is the direct

product of G1 and G2, we have that GU1 “ G1, and so GU1 is coarsely equal to FU .
The analogous argument holds if U “ U2.

Finally, fix U P S1, and consider the domain VU . Let CU be the container associ-
ated to U in the Ď–maximal domain of S1. Then FVU “ EU “ E1

UˆG2 “ F1
CU
ˆG2,

and EVU “ E1
CU

. It follows that GVU » G1
CˆG2. Since F1

CU
is coarsely equal to G1

CU
,
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we also have that FVU is coarsely equal to GVU , as desired. An analogous argument
holds if we fix U P S2. Therefore, pG,Sq satisfies the FU stabilizers property.

The orthogonal decomposition and commutative properties both follow immedi-
ately because they hold in each pGi,Siq and G1 and G2 commute. l

The FU stabilizers, orthogonal decomposition, and commutative properties all involve
orthogonality and properties of product regions. Hence, intuitively, if a combination theorem
does not add any additional orthogonality relations (or only in a trivial way, such as by adding
domains whose associated hyperbolic space is bounded diameter), then such a combination
of groups in Ξ should, in general, yield a group in Ξ. For example, we expect that trees of
groups in Ξ satisfying the hypotheses of the combination theorem in [BHS19, Theorem 8.6]
are also in Ξ. In particular, combined with Proposition 3.10 (3) & (4), this would show that
for hierarchically hyperbolic groups π1pMq where M is the fundamental group of compact
3–manifolds with no Nil or Sol in its prime decomposition, then π1pMq is in Ξ.

3.2. A non-example: the mapping class group. We briefly explain why the standard
hierarchy structure on the mapping class group fails to satisfy the FU stabilizers property.
Notwithstanding this fact, we believe that a modification of the properties of this section can
be used to make the present approach work for the mapping class group, as well. We do not
carry this out, though, because the approaches we see for doing so are all technical, and the
present results are already known for mapping class groups. We record this fact for those
using these properties in the future with an eye towards other applications.

The standard hierarchically hyperbolic group structure S on the mapping class group
of a surface S is described in [BHS19, Theorem 11.1]. The domains U P S correspond
to homotopy classes of essential, not necessarily connected, open subsurfaces U Ď S. Two
domains are orthogonal if the corresponding subsurfaces are disjoint. In particular, the annuli
about the boundary curves of a subsurface do not intersect the subsurface; thus an annulus
around a boundary curve is a domain orthogonal to the subsurface. A finite fundamental
domain S1 for the action of MCGpSq on S is provided by taking a collection of subsurfaces,
one for each homeomorphism type of subsurface. For each U P S1, FU is coarsely equal to
the mapping class group of the subsurface associated to U and EU is coarsely equal to the
mapping class group of the complementary closed subsurface S ´ U .

One subtlety in the hierarchically hyperbolic structure on mapping class groups is that
while elements of MCGpSq supported on disjoint subsurfaces commute, elements supported
on disjoint closed subsurfaces are distinct, while two elements supported on disjoint open
surfaces may coincide. A simple example of this is found by taking a product of elements in
a once punctured torus which generate the Dehn twists along the boundary. Taking the genus
two surface obtained by doubling along the boundary curve, we see that we can generate that
same Dehn twist by a product of elements on either of the open once-punctured tori separated
by that curve.

Associated to a closed subsurface V , which includes its boundary components, is an element
of S consisting of the disjoint union of the interior of V , which we will denote V̊ , with annuli
around the elements α1, . . . , αk of BV . The Dehn twist about a boundary curve in BV can
be represented as a product of mapping class elements supported on the interior of V , even
those these are orthogonal domains. Accordingly the stabilizer of V̊ , in the action of G on
S, is (possibly up to finite index if V is homeomorphic to S ´ V ) a central extension of
MCGpV̊ q ˆMCGpS ´ V q by Zk, where Zk is generated by Dehn twists along the boundary
curves αi, see, e.g., [BLM83]. The domains V̊ , S ´ V, and the annuli around each αi form a
maximal collection of pairwise orthogonal domains. If this was a semidirect product instead
of a central extension, this would yield the FU stabilizers and orthogonal decomposition
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properties. However, the fact that MCGpV̊ q doesn’t act cocompactly on FU means that the
FU stabilizers property doesn’t hold in this structure.

We note, though, that any open subsurface Ů is contained in a larger subsurface U obtained
by taking the union of Ů and all the annuli which bound Ů . For this subsurface U , the
subgroup GU of the mapping class group of S which stabilizes FU and fixes EU pointwise
can be identified with MCGpUq. This is a weaker version of the FU stabilizers property. We
expect that this weaker version might be useful in future work.1

3.3. Conjugators in HHGs. We are now ready to prove Theorem D, which we restate for
the convenience of the reader.

Theorem D Let pG,Sq be a hierarchically hyperbolic group satisfying the FU stabilizers,
orthogonal decomposition, and commutative properties. There exist constants K,C and N
such that if a, b P G are infinite order elements which are conjugate in G, then there exists
g P G with gaN “ bNg and

|g| ď Kp|a| ` |b|q ` C.

Proof. Fix a hierarchically hyperbolic group pG,Sq and a finite fundamental domain S1 for
the action of G on S as at the beginning of this section. Assume that pG,Sq satisfies the
FU stabilizers, orthogonal decomposition, and commutative properties. For each U P S, we
fix FU “ FU ˆ teu as described in Lemma 3.5.

We fix the same constants as in the beginning of the proof of Theorem A, and let σ
be the Morse constant for pλ, λq–quasi-geodesics in a δ–hyperbolic space. Fix the function
k1 : r0,8q Ñ r0,8q so that GU is k1–hierarchically quasiconvex whenever U P S1, and let A
be the constant from Lemma 1.14 applied to k1–hierarchically quasiconvex subspaces. We
further increase R so that R ą maxt3E `A,E ` Eν `A` ν, s0u and K so that

(9) K “ maxt2δ, 3R,K0,

R

4L` 4δ ` E

T

V

` 2, 2L` 2δ,
6E `A` σ ` 1

T
, 3E ` 2σu.

Let a, b P G be two infinite order elements, and suppose there exists g P G such that
ga “ bg. Then gBigpaq “ Bigpbq. Let C be the container associated to Bigpbq in S, so
that BigpbqY tCu “ tB1, . . . , Bk, Cu is a maximal collection of pairwise orthogonal domains.
Since g conjugates ai to bi for any i, we first replace a and b by sufficiently high powers so
that the following conditions are satisfied:
(a) Bigpaq and Bigpbq are fixed pointwise by a and b, respectively;
(b) b has the decomposition b “ b1 ¨ ¨ ¨ bk with respect to Bigpbq “ tB1, . . . , Bk, Cu, where

bi “ bBi is as in (8); and
(c) τV pbq ě LSδ for every V P Bigpbq.
Such powers exist and can be chosen uniformly (that is, depending only on the hierarchy
constants, and not the choice of elements a and b) by the discussion after Definition 1.22 in
the first case, the orthogonal decomposition property and Lemma 3.9 in the second case, and
the assumed bound on translation length in the orthogonal decomposition property in the
third case. Lemma 3.5 applied to Bigpbq provides an element t P G so that bi “ tb1i, where
b1i P GU 1i Ď FU 1i , where U

1
i P S

1 and Ui “ tU 1i for all i “ 1, . . . , k.

For each Z P Bigpbq, let γZb be a p2, `q–quasi-geodesic axis of b in CZ. Then γg
´1Z
a : “

g´1γZb is an p2, `q–quasi-geodesic axis of a in Cpg´1Zq. We now fix a quadrilateral of pλ, λq–
hierarchy paths µp1, gq, µp1, bKq, bKµp1, gq “ µpbK , bKgq, and gµp1, bKq “ µpg, gbKq “
µpg, aKgq in G.

1We note that a related property to this is studied in forthcoming work of Montse Casals-Ruiz, Mark
Hagen, and Ilya Kazachkov.
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Step 1: Changing the conjugator. Our first step is to replace g with a (possibly) different
conjugator whose length we are able to bound in G. We will do this by first premultiplying
g by a power of bi P GBi for each Bi P Bigpbq. By the commutative property, any power of bi
commutes with b, and so this new element will still conjugate a to b. This is analogous to how
we changed the conjugator in the proof of Theorem A, when Bigpaq “ Bigpbq “ tSu. In that
situation, the orthogonal decomposition of b was simply b “ bS , and we premultiplied the
conjugator by a power of b. In the current situation we need to be a bit more careful because
not only may b have more than one term in its orthogonal decomposition, but now Bigpaq
and Bigpbq may be different collections of domains. Because of this, we will need to estimate
distances in multiple hyperbolic spaces. Finally, we will alter g in the clean container C
associated to Bigpbq.

Fix Z P Bigpbq and let bZ “ gGZ
pbq. Since K ě K0, we may apply Lemma 1.24 to each of

the axes γZb in CZ and γg
´1Z
a in Cpg´1Zq, and the points 1, aK P G and 1, bK P G, respectively.

This yields a point z1 P γg
´1Z
a and a point w1 P γZb such that z1 P NLpπg´1Zpµp1, a

Kqqq and
w1 P NLpπZpµp1, b

Kqqq, where these neighborhoods are taken in Cg´1Z and CZ, respectively.
Moreover, if x is a nearest point on γg

´1Z
a to πg´1Zp1q in Cpg´1Zq and y is a nearest point

on γZb to πZp1q in CZ, then dg´1Zpx, z
1q ď L and dZpy, w1q ď L. Let z P πg´1Zpµp1, a

Kqq and
w P πZpµp1, b

Kqq be nearest points to z1 and w1, respectively, so that dg´1Zpz, z
1q ď L and

dZpw,w1q ď L. See Figure 3.
Since the isometry g maps Cpg´1Zq to CZ, we have gz1 P gγg

´1Z
a “ γZb and gz P

gπg´1Zpµp1, a
Kqq “ πZpµpg, ga

Kqq “ πZpµpg, b
Kgqq. Moreover, dZpgz, gz1q “ dg´1Zpz, z

1q ď

L and dZpgz1, gxq “ dg´1Zpz
1, xq ď L.

πg´1Zp1q

x z1

ď L γg
´1Z
a

πg´1Zpa
Kq

Cpg´1Zq

z

w

ď L
ď τZpbq

w1

gz1

gz

ď L

πZpgq

gxy

πZpgb
Kq “ πZpa

Kgq

πZpb
Kq

γZb

CZ

πZp1q

g

Figure 3. The geometry of the axes of a and b in Cg´1Z and CZ, respectively.

By possibly premultiplying g by a power of bZ , we may assume that dZpgz1, w1q ď τZpbq.
Moreover, this new element also conjugates a to b, because bZ commutes with b by the
commutative property.

We perform the above procedure for each Z P Bigpbq and possibly premultiply g by a
(possibly different) power mZ of each bZ .

We now alter g in the clean container C associated to Bigpbq. Let t P G be as in Lemma 3.5
applied to tB1, . . . , Bk, Cu, so that C “ tC 1 for some C 1 P S1. The label of the vertex gtGC

pgq
is tgC1 , where gC1 P GC1 Ď FC1 . Let gC :“ tgC1t

´1 P GC .
We claim that g´1C g conjugates a to b and dV p1, g´1C gq ď A for each V Ď C. The commu-

tative property and condition (b) ensure that g´1C commutes with b, hence g´1C g conjugates
a to b.

We have
gFC

pg´1C gq —A g
´1
C ggCFC

pgq “ tg´1C1 t
´1gFC

pgq,
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where the first estimate follows from Lemma 1.14 and the second from the definition of gC
and the fact that gCFC “ FC .

By the FU stabilizers property, dGpgFC
pgq, gGC

pgqq ď ν. We also have

tg´1C1 t
´1gGC

pgq “ tg´1C1 t
´1ptgC1q “ t.

Thus

(10) dGpt, gFC
pg´1C gqq ď dGpt, tg´1C1 t

´1gFC
pgqq ` dGptg´1C1 t

´1gFC
pgq, gFC

pg´1C gqq ď ν `A.

By [BHS17a, Remark 1.16] and Remark 1.19, we have πV pgFC
pg´1C gqq “ πV pg

´1
C gq. Since the

projection maps π are Lipschitz, it thus follows from (10) that dV pt, g´1C gq ď A ` ν for all
V Ď C.

By Lemma 3.5, we have dGpt, gPU p1qq ď Eν, where U “ tB1, . . . , Bk, Cu. The only
domains which are E–relevant for 1, gPU p1q are those which are transverse to some ele-
ment of U or into which some element of U properly nests by Lemma 1.20. In particular,
dV p1, gPU p1qq ď E for all V Ď C. By the triangle inequality and the fact that the maps πU
are Lipschitz, we have for all V Ď C

dV p1, g´1C gq ď dV p1, gPU p1qq ` dV pgPU p1q, tq ` dV pt, g´1C gq ď E ` Eν `A` ν ă R.

This yields a new element
´

ś

ZPBigpbq b
mZ
Z

¯

g´1C g, which also conjugates a to b. We have
shown that this new conjugator, which by an abuse of notation we still call g, satisfies the
following properties:

(11) dZpy, gxq ď dZpy, w1q ` dZpw1, gz1q ` dZpgz1, gzq ď τZpbq ` 2L

for each Z P Bigpbq, and

(12) dV p1, gq ă R

whenever V Ď C.

Step 2: Bounding the length of g. Our goal is to bound the length of g in G. As in the proof
of Theorem A, we will show that for each U P S, we have

(13) dU p1, gq ď 2KdU p1, bq ` dU pg, bKgq `K,

where K is as in (9). After establishing this bound for each U P S, we then apply the
distance formula with threshold R and the fact that dGpg, bKgq “ dGpg, gaKq “ dGp1, aKq,
which, as in the proof of Theorem A, establishes that

(14) dGp1, gq ĺC,D 2KdGp1, bq `KdGp1, aq `K,

where C,D are the constants given by the distance formula (Theorem 1.7). (Note that by
assumption, R is sufficiently large to serve as a threshold in the distance formula.) This will
provide the desired bound in G.

Fix U P S. If U R Relp1, g;Rq, then we have dU p1, gq ď R ď K, and (13) holds. Thus we
assume for the rest of the proof that U P Relp1, g;Rq. There are five cases to consider: there
is some Z P Bigpbq such that U “ Z; there is some Z P Bigpbq such that U Ĺ Z; there is
some Z P Bigpbq such that U Ľ Z; and there is some Z P Bigpbq such that U&Z, and U K Z
for all Z P Bigpbq.

Cases 1 and 2: There is some Z P Bigpbq such that U “ Z or U Ĺ Z.
These two cases follow almost exactly as in proof of Theorem A, the distinction being that

Z plays the role of S and we measure distances in both Cpg´1Zq and CZ. In Case 2, one
must also use (11) in place of (4).
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ď E ` σ

ď E ` σ

πU p1q

πU pgq πU pb
Kgq “ πU pga

Kq

πU pb
Kq

ρZU

Figure 4. Case 3.

Case 3: There is some Z P Bigpbq such that U Ľ Z.
By our choice ofK, we haveKT ě E, and thus dZp1, bKq ě E. Applying the bounded geo-

desic image axiom (Definition 1.6 (7)) to πU pµp1, bKqq in CU , we obtain ρZU Ď NE`σpπU pµp1, b
Kqqq

in CU , and hence

(15) dU p1, ρZU q ď dU p1, bKq ` E ` σ.

Additionally, g´1Z P Bigpaq and g´1U Ľ g´1Z. The choice of K ensures that dg´1Zp1, a
Kq ě

E, so applying the bounded geodesic image axiom to πU pµp1, aKqq in Cpg´1Uq yields

ρg
´1Z
g´1U

Ď NE`σpπU pµp1, a
Kqqq

in Cpg´1Uq. Applying the isometry g we obtain

gρg
´1Z
g´1U

Ď NE`σpgπg´1U pµp1, a
Kqqq “ NE`σpπU pµpg, b

Kgqqq

in CU . See Figure 4. Moreover, projection maps in a hierarchically hyperbolic group are
G–equivariant, and so gρg

´1Z
g´1U

“ ρZU . Thus

(16) dU pg, ρZU q “ dU pg, gρ
g´1Z
g´1U

q ď dU pg, bKgq ` E ` σ.

Therefore, by the triangle inequality, (15), and (16), we have

dU p1, gq ď dU p1, ρZU q ` diamCU pρ
Z
U q ` dpρZU , gq

ď dU p1, bKq ` 3E ` 2σ ` dU pg, bKgq

ď KdU p1, bq ` dU pg, bKgq `K,

where the final inequality follows because K ě 3E ` 2σ.

Case 4: There is some Z P Bigpbq such that U&Z.
Consider the product region PZ , and let ξ “ gPZ

pgq and ν “ gPZ
pgq. See Figure 5.

Since we are assuming that U is relevant for 1, g and U&Z, it follows from Lemma 1.20
that U P Relp1, ξ;Rq YRelpg, ν;Rq. As b is loxodromic with respect to the action on CZ
for all Z P Bigpbq, we have dZpν, bKνq ě KτZpbq ě KT ě R. Thus Z P Relpν, bKν;Rq.
Similarly, Z P Relpξ, bKξ;Rq. Note that this implies Z P Relp1, bK ;Rq XRelp1, bKξ;Rq X
Relpg, bKg;Rq XRelpg, bKν;Rq, as well.

Claim 1. If U is R–relevant for g, gν, then U is not R–relevant for bKν, bKg. If U is R–
relevant for 1, ξ, then U is not R–relevant for bKξ, bK .

Proof. We will prove the first statement. The proof of the second statement is completely
analogous.

Since U is relevant for g, ν, the domain bKU P S is relevant for bKν, bKg. Moreover, since
b fixes Bigpbq pointwise, we have bKZ “ Z. As U&Z, we must also have bKU&Z. From this,
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1

gν

bk

bkgν “ gakν

bkg “ gak

g

Pb

Figure 5. Conjugate elements a and b, with conjugator g, in G. Solid seg-
ments are hierarchy paths, while dotted segments are geodesics.

we apply the G–equivariance of the projections maps in a hierarchically hyperbolic group to
conclude that bKρUZ “ ρb

KU
Z in CZ. Thus we have

dZpρUZ , ρ
bKU
Z q “ dZpρUZ , b

KρUZ q ľE KτZpbq ě KT.

Since Z P Bigpbq, Lemma 1.20 implies that Z is not s–relevant for g, ν for any s ě s0. In
particular, since E ě s0, the distance between πZpgq and πZpνq in CZ is bounded by E. On
the other hand, since U is R–relevant for g and ν, it follows from [BHS19, Proposition 5.17]
that any hierarchy path µpg, νq in G has a subpath which is contained in the E–neighborhood
of PU . Since the projection maps π are Lipschitz, we have

(17) dZpπZpPU q, πZpµpg, νqqq ď E.

Recall that ρUZ —E πZpPU q (see comments after Definition 1.15). Thus (17) implies:

dZpρUZ , πZpµpg, νqqq ď 2E.

Since πZpµpg, νqq is an unparametrized pλ, λq–quasigeodesic, it is contained in the σ–neighborhood
of a geodesic in CZ from πZpgq to πZpνq. By the above discussion, such a geodesic necessarily
has length at most E. Therefore,

dZpρUZ , gq ď 3E ` σ.

By the triangle inequality, we have

dZpρUZ , b
Kgq ě dZpg, bKgq ´ dZpρUZ , gq

ě KτZpbq ´ dZpρUZ , gq

ě KT ´ p3E ` σq

ą 3E `A,

where the final inequality follows from our choice of K ě 6E`A`σ`1
T . See Figure 6. Therefore

dZpρUZ , b
Kgq is large enough to apply the consistency inequalities (Definition 1.6 (4)), yielding

(18) dU pρZU , b
Kgq ď E.

The same argument bounding the distance in CZ between g and ν applies to show that Z
is not E–relevant for bkg, gPZ

pbKgq. By Lemma 1.14, we have bKν —A gPZ
pbKgq. Therefore

Z is not pE `Aq–relevant for ν, bkν, and so πZpbKgq —E`A πZpbKνq in CZ. It follows that
dZpρUZ , b

Kνq —2E`A dZpρUZ , b
Kgq ą 3E `A,

from which we conclude dZpρUZ , b
Kνq ą E. Thus we may again apply the consistency in-

equalities, yielding

(19) dU pρZU , b
Kνq ď E.
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πZpgq πZpb
Kgq “ πZpga

Kq

πZpb
Kgνq

ď E

πZprg, gνsq

πZpgνq

ρUZ

ď E

ď E ` σ

ě KT

Figure 6. The arrangement of points in CZ in the proof of Claim 1 in Case 4.

Combining this with (18) and applying the triangle inequality yields

dU pbKg, bKνq ď dU pbKg, ρZU q ` diamCU pρ
Z
U q ` dU pρZU , b

Kνq ď E ` E ` E “ 3E.

Since R ą 3E, we have U R RelpbK , bKν;Rq. This completes the proof of the claim. l

Suppose first that U P Relp1, ξ;Rq X Relpg, ν;Rq. Then by the claim, we have that
U R RelpbK , bKξ;Rq Y RelpbKg, bKν;Rq. By Lemma 1.20 and the fact that U&Z, this is
equivalent to U R RelpbK , bKg;Rq. Thus dU pbK , bKgq ă R, and so we have:

dU p1, gq ď dU p1, bKq ` dU pg, bKgq `R ď KdU p1, bq ` dU pg, bKgq `K.
Now suppose that U R Relp1, ξ;RqXRelpg, ν;Rq. Since U P Relp1, ξ;RqYRelpg, ν;Rq, we

must have either U P Relp1, ξ;Rq or U P Relpg, ν;Rq. Suppose without loss of generality that
U P Relp1, ξ;Rq but U R Relpg, ν;Rq. It follows from the claim that U R RelpbK , bKξ;Rq.
Moreover, by Lemma 1.20, we have dU pbKξ, νq ď R. Therefore:

dU p1, gq ď dU p1, bKq ` dU pbK , bKξq ` dU pbKξ, νq ` dU pν, gq

ď KdU p1, bq `R`R`R

ď KdU p1, bq `K,

where the final inequality follows because K ě 3R. Thus (13) holds regardless of whether
U P Relp1, ξ;Rq XRelpg, ν;Rq.

Case 5: U K Z for all Z P Bigpbq. Note that U K Z for all Z P Bigpbq if and only if U Ď C,
where C is the container associated to Bigpbq “ tB1, . . . , Bku. Thus the bound dU p1, gq ď R
follows immediately from (12).

This completes the proof of the theorem. l

Remark 3.11. Theorem D establishes the linear conjugator property for suitable powers
of pairs of conjugate infinite order elements. In particular, the conjugator whose length we
bound in these theorems may not conjugate a to b. There are two additional steps necessary
to extend the ideas in these proofs to show the linear conjugator property holds for all pairs
of conjugate infinite order elements. First, one would have to deal with the fact that an
element may permute the elements in its big set, an issue we avoid by passing to a power to
assume that the big set is fixed elementwise. This is likely not a serious problem. Second, one
would need to understand the conjugator length function for finite order elements. Recall
that in the decomposition of b in the proof of Theorem D, the factor bC corresponding to
the container associated to the big set of b was a finite order element of the corresponding
sub-hierarchically hyperbolic group pGC ,SCq. We passed to a power so that we could assume
this factor was trivial. If we don’t pass to a power, we need a different way to modify the
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conjugator in that sub-hierarchically hyperbolic group GC . To do this, we need to understand
conjugators of finite order elements. The conjugator length function for finite order elements
of hierarchically hyperbolic groups is unknown, hence this second step is currently out of
reach.
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