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ABSTRACT. In this paper we establish upper bounds on the length of the shortest conjuga-
tor between pairs of infinite order elements in a wide class of groups. We obtain a general
result which applies to all hierarchically hyperbolic groups, a class which includes map-
ping class groups, right-angled Artin groups, Burger—Mozes-type groups, most 3—manifold
groups, and many others. In this setting we establish a linear bound on the length of the
shortest conjugator for any pair of conjugate Morse elements. For a subclass of these groups,
including, in particular, all virtually compact special groups, we prove a sharper result by
obtaining a linear bound on the length of the shortest conjugator between a suitable power
of any pair of conjugate infinite order elements.

The conjugacy length function is the minimal function which bounds the length of a
shortest conjugator between any two conjugate elements of a given group, in terms of the
sum of the word lengths of the elements. When a set of elements in a group has a linear
conjugacy length function, we say that set has the linear conjugator property. For any subset
of a group satisfying the linear conjugator property, and given two elements of that subset,
there is an exponential-time algorithm which determines whether or not the given elements
are conjugate. One of Dehn’s classic decision problems is the Conjugacy Problem, which
asks if there is an algorithm to decide conjugacy given any pair of elements in a given group.
Even in groups where the Conjugacy Problem is unsolvable for arbitrary pairs of elements,
establishing the linear conjugator property for a particular subset allows one to solve the
Conjugacy Problem for that subset.

An early established result about hyperbolic groups is they have the linear conjugacy prop-
erty |Lys89], thereby providing a quantitative certification of how complicated a conjugator
needs to be. Exploiting the parallels between pseudo-Anosovs in the mapping class group and
loxodromic elements in a hyperbolic group, Masur—Minsky proved the analogous result that
the set of pseudo-Anosov elements satisfies the linear conjugator property [MMOO]. These
results beg the question of whether shortest conjugators of “hyperbolic-like” elements should
be linear in the length of the elements being conjugated (see Conjecture [B| for a precise
formulation).

In the presence of non-positive curvature, the linear conjugator property is surprisingly
common, as we show in this paper, extending an already interesting class of known exam-
ples. Previously established cases of the linear conjugator property include: mapping class
groups (established for pseudo-Anosovs in [MMO00], generalized to all elements in [Taol3]; see
also [BD14] for a later, unified proof); hyperbolic elements in semi-simple Lie groups [Sall4];
arbitrary elements in lamplighter groups [Sall6]; non-peripheral elements in a relatively hy-
perbolic group [Buml5|; Morse elements in groups acting on CAT(0) spaces, [BD14]; and
Morse elements in a prime 3-manifold [BD14]. Additionally, right-angled Artin groups enjoy
the linear conjugator property; this result is not explicitly stated in the literature, but it
follows from work in [Ser89] (and we give a new proof below).
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In light of this, we will work in the general setting of hierarchically hyperbolic groups,
introduced by Behrstock—Hagen—Sisto [BHS17b]. This class of groups is quite large, encom-
passing many groups of interest, including: mapping class groups [BHS19]; right-angled Artin
groups, and more generally fundamental groups of compact special cube complexes [BHS17b|
and other CAT(0) cube complexes [HS20)]; 3-manifold groups with no Nil or Solv components
[BHS19]; and lattices in products of trees, i.e., as constructed by Burger-Mozes, Wise, and
others, see [BHS17h, BM97, BM00, [Capl7, [JW09, Rat07, Wis07]. There are a number of
other examples, as well, for instance groups obtained from combination theorems, includ-
ing taking graphs of hierarchically hyperbolic groups and graph products of hierarchically
hyperbolic groups [BHS19, [Spri8, [BR20|, or by taking certain quotients of a hierarchically
hyperbolic group [BHS17al.

The first theorem is new for most hierarchically hyperbolic groups; it also provides a
unified proof for the previously known cases. An element in a finitely generated group is
called Morse if its orbit in the group is a quasi-geodesic with the property that any (A, c)—
quasi-geodesic beginning and ending on this orbit is completely contained within a uniformly
bounded neighborhood of this orbit. We note that Morse elements in a group are ones whose
geometry in the Cayley graph is similar to that of the axis of a loxodromic isometry of a
hyperbolic space (via the Morse Lemma); in a hierarchically hyperbolic group the Morse
elements can be characterized in several equivalent ways, see [ABD21], Theorem B|.

Theorem A. Let (G, &) be a hierarchically hyperbolic group. There exist constants K,C
such that if a,b € G are Morse elements which are conjugate in G, then there exists g € G
with ga = bg and

|9l < K(la| +[b]) + C.

One special case of the above theorem is a new proof that conjugate pseudo-Anosov el-
ements in the mapping class group have a linear bound on the length of their shortest
conjugator; this case was the main theorem of [MMO00Q].

A natural conjecture arising from Theorem [A]is the following generalization:

Conjecture B. In a finitely generated group, the set of Morse elements satisfy the linear
conjugator property.

Understanding exactly how the linear conjugator property is related to to hyperbolic prop-
erties in a group remains a rich question, and with Theorem [A] hierarchically hyperbolic
groups provide a good place to study this. For instance, we conjecture that there exist hierar-
chically hyperbolic groups where the conjugacy length function is exponential. Accordingly,
we don’t believe the linear conjugator property holds for all elements in all hierarchically
hyperbolic groups, but it does in a number of important examples, which leads us to ask:

Question C. Under what conditions does a hierarchically hyperbolic group satisfy the linear
conjugator property for all elements?

In Section [3| we introduce a family of hierarchically hyperbolic groups in which the notion
of orthogonality carries with it not just geometric implications, but also a useful algebraic
structure. The way in which the algebraic structure is related to orthogonality in these
groups generalizes the relationship between commutativity and orthogonality in mapping
class groups and compact special groups. This family is defined through a series of condi-
tions called the Fy stabilizers, orthogonal decomposition, and commutative properties (see
Section |3 for the precise definitions).

After showing in Proposition [3.10] that many groups satisfy the properties we introduce
and that being in this family is preserved by various combination theorems, we then study
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conjugators in these groups. The following generalizes Theorem [A]by removing the hypothesis
that the elements are Morse:

Theorem D. Let (G,S) be a hierarchically hyperbolic group satisfying the ¥y stabilizers,
orthogonal decomposition, and commutative properties. There exist constants K,C and N
such that if a,b € G are infinite order elements which are conjugate in G, then there exists
g € G with ga™ = bNg and

|9l < K(la] +[b]) + C.

In particular, compact special groups (i.e., fundamental groups of compact cube complexes
which are special in the sense of Haglund—Wise [HWO08]) satisfy the F; stabilizers, orthogonal
decomposition, and commutative properties. Therefore Theorem [D| holds for all virtually
compact special groups. We note that [CGWO09| establish a linear time solution to the
conjugacy problem for fundamental groups of compact special cube complexes. Their result
doesn’t a priori establish the linear conjugator property of Theorem |D| although we believe
that their approach could be used to do so.

We believe that the linear conjugator property will in general fail for cubulated groups
without the hypothesis that the cube complex is special. Our proof relies heavily on the close
relationship between orthogonality and commutation, something which can fail for CAT(0)
cubical groups which are not special, even though they may be hierarchically hyperbolic
groups. The Burger-Mozes groups [BM97, BMO00], for instance, are plausibly a counterex-
ample; see [BHS17D, Section 8.2.2], or Wise’s construction [Wis07].

Acknowledgments. We thank Mark Hagen for many interesting discussions about hierar-
chically hyperbolic spaces. We thank Jacob Russell for feedback on an early draft, and the
anonymous referees for useful comments.

1. BACKGROUND

1.1. Hyperbolic geometry. We begin by gathering several facts about é—hyperbolic metric
spaces and refer the reader to [BH99| for further details.

A map of metric spaces f: (X,dx) — (Y,dy) is a (), ¢)—quasi-isometric embedding if for
all z,ye X

Ldx(@y) — e < dy(F(@), f(1) < Mx(a,9) + e

A (X, ¢)—quasi-geodesic is a (A, ¢)—quasi-isometric embedding of an interval I < R into X,
and a geodesic is an isometric embedding of I into X. In both cases, we allow f to be a
coarse map, that is, a map which sends points in I to uniformly bounded diameter sets in
X. A (coarse) map f: [0,T] — X is an unparametrized (X, c)—quasi-geodesic if there exists
a strictly increasing function g: [0,7”] — [0, T] such that the following hold:

* 9(0) = f(0),
e 9(T") = J(T),
e fog:[0,7] > X is a (A, ¢)—quasi-geodesic, and
e for each j € [0,7"] n N, we have the diameter of f(g(j)) u f(g(j + 1)) is at most c.
IfY € X is a subspace, then for any constant K > 0, we denote the closed K—neighborhood
of Y in X by
Ng(Y)={ze X |dx(z,Y) < K}.
We may write N7 (Y) to emphasize that the neighborhood is being taken in X.
A subspace Y € X is o—quasi-convex if any geodesic in X with endpoints in Y is contained
in NV, (Y). The subspace Y is called quasi-conver if it is o—quasi-convex for some o.
If X is a geodesic metric space and z,y € X, we let [z, y] denote a geodesic from z to y.
If we want to emphasize the metric space X, we write [z, y]x.
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Definition 1.1 (6—hyperbolic space). Fix § = 0. A metric space X is d—hyperbolic if given
any x,y,z € X and any geodesics «, 3,7y between them, we have o U § S Njs(v). If the
particular choice of § is not important, we simply say that X is hyperbolic.

Quasi-geodesics in a hyperbolic spaces satisfy two important properties: a local-to-global
property and the Morse Lemma. A path p is an L-local (X, ¢)—quasi-geodesic if every subpath
p of length at most L is a (A, ¢)—quasi-geodesic.

Lemma 1.2 (Local-to-global Property). Let X be a —hyperbolic metric space and fix £y = 0.
There exists L = L({y,d) depending only on & and ly such that: if £ € [0,6p] and v: T — X
is an L-local (1,0)-quasi-geodesic, then «y is a global (2,)—quasi-geodesic.

Lemma 1.3 (Morse Lemma). Let X be a d—hyperbolic metric space, and fix X > 1 and
¢ = 0. There exists a constant o depending only on 6, \, and c such that if v1 and 2 are
(A, ¢)—quasi-geodesics in X with the same endpoints, then v1 S Ny (72).

We say o is the Morse constant associated to (A, ¢)—quasi-geodesics in a 0—hyperbolic space.

Let G act by isometries on a d—hyperbolic metric space X. Then h € G is:

e clliptic if it has bounded orbits;

e [oxodromic if the map Z — X defined by n — h"™x is a quasi-isometric embedding
for some (equivalently, any) z € X;

e parabolic otherwise.

Isometries of a hyperbolic space can also be characterized by their limit sets in the Gromov
boundary 06X of X. An element h € G is elliptic, parabolic, or loxodromic if the limit set of
h has cardinality 0,1, or 2, respectively. If the limit set of h has cardinality 2, we call these
limit points h®.

Loxodromic isometries will play a particularly important role in this paper, and we discuss
them in more depth. For the rest of the subsection, fix a group G acting by isometries on
a 0—hyperbolic space X, and fix an element h € G that is loxodromic with respect to this
action. The translation length of h is [h]x := infyex dx (z, hz), or simply [h] if the space X
is clear. The stable translation length of h in X is

n
7x(h) := lim dx (o, h"z0)
n—00 n
for some (equivalently, any) 29 € X. These two quantities are related by 7x(h) < [h]x <
T X(h) + 166.

The element h acts on X as translation along a quasi-geodesic axis which connects the
two limit points h*® of h in 0X. Up to passing to powers, such an axis can be chosen to
be a uniform quality quasi-geodesic, that is, with quasi-geodesic constants which depending
only on § and not on the choice of loxodromic isometry. As this will be important in this
paper, we now describe the construction of such an axis. The following lemma summarizes
results in [Coul@, Section 3.

Lemma 1.4 (Construction of an ¢-nerve). Let G act on a d—hyperbolic space X. Suppose
h € G s loxodromic and Tx(h) = Lgé — 160, where Lg depends only on § (and is more
explicitly described in [Coul€, Definition 2.8]|). Then for any ¢ € [0, 4], there exists a (2,£)—
quasi-geodesic ’y,)f in X which connects the limit points h®° of h in 0X, called the ¢-nerve
of h. The {—nerve of h is (¢ + 89)—quasiconvex and preserved by h.

We briefly recall the construction of the f—nerve and refer the reader to [Coul6, Defini-
tion 3.3 and subsequent remark]| for further details. Fix ¢ € [0,d]. By the definition of the
translation length [h], there exists © € X such that dx(z,hz) < [h] + £/2. Thus we can
find a (1,¢/2)-quasi-geodesic v from z to hx. If v has length T, then [h] < T < [h] + £/2.
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Extend v to a bi-infinite path 7,‘? using the action of (h); that is 7,)1( is the concatenation
of the segments hivy for i € Z. In particular, for any h for which 7x(h) = Lgd — 166, we
have that 7 is an Lgd—local (1,¢)-quasi-geodesic. By Lemma vi( is therefore a global
(2, £)—quasi-geodesic.

Definition 1.5 (Quasi-geodesic axis). Let G act on a é—hyperbolic space X, and fix the
constant Lg from Lemma and a constant ¢ € [0,d]. Suppose h € G is a loxodromic
isometry of X, and let k € N be such that 7x(h*) > Lgd — 165. A (2, /) quasi-geodesic axis
of h* in X is an £-nerve ’yii. If the quasi-geodesic constants are not important, we simply
call ’yii an azis of h¥.

Suppose h, g € G and h is loxodromic with respect to the action of G on a hyperbolic metric

space X with 7x(h) > Lgd — 166 and a (2,¢)-quasi-geodesic axis 7;*. Then ghg™! is also
loxodromic with respect to the action of G on X with translation length 7y (ghg™!) = 7x (h),
and it follows from the construction of the f—nerve that g’y,)f is a (2,¢)—quasi-geodesic axis
of ghg™*.
1.2. Hierarchically hyperbolic spaces. We recall the definition of a hierarchically hyper-
bolic space as given in [BHS19]. The definition is in the setting of a quasi-geodesic metric
space, that is, a metric space in which any two points can be connected by a uniform quality
quasi-geodesic.

Definition 1.6 (Hierarchically hyperbolic space). The quasi-geodesic space (X,dy) is a
hierarchically hyperbolic space (HHS) if there exists 6 > 0, an index set &, and a set {CW :
W e &} of é—hyperbolic spaces (CW, dy ), satisfying the following conditions:

(1) (Projections.) There is a set {my: X — 26V | W € &} of projections sending
points in X to sets of diameter bounded by some & = 0 in the various CW € &.
Moreover, there exists K so that each my is (K, K)—coarsely Lipschitz and 7y (X))
is K—quasiconvex in CW.

(2) (Nesting.) & is equipped with a partial order &, and either & = ¢ or & contains a
unique E-maximal element; when V & W, we say V is nested in W. (We emphasize
that W = W for all W € &.) For each W € &, we denote by Sy the set of V e &
such that V & W. Moreover, for all V. W € & with V & W there is a specified subset
ply < CW with diamew (p)y,) < € There is also a projection plY : CW — 20V We
call the elements of the index set & domains.

(3) (Orthogonality.) & has a symmetric and anti-reflexive relation called orthogonality:
we write VLW when V, W are orthogonal. Also, whenever V &£ W and W_LU, we
require that V_LU. We require that for each T' € & and each U € & for which
{V.e &p | VLU} # &, there exists W € &p — {T'}, so that whenever V1U and
V ET, we have V E W. The domain W is called the container associated to U in
T. Finally, if V1W, then V, W are not =—comparable.

(4) (Transversality and consistency.) If V, W € & are not orthogonal and neither is
nested in the other, then we say V, W are transverse, denoted VAW . There exists
ko = 0 such that if VAW, then there are sets p}//v c CW and p‘(/V c CV each of
diameter at most £ and satisfying:

min {dw (mw (z), piv/), dv (v (2), pt¥ ) } < Ko
for all x € X.
For V,W e & satisfying V = W and for all z € X', we have:

min {dw (mw (z), pi), diamey (my () U pVVV(ﬂW(x)))} < Ko.

The preceding two inequalities are the consistency inequalities for points in X.
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Finally, if U = V, then dW(p%, p%) < ko whenever W € & satisfies either V &= W
or VAW and W £U.

(5) (Finite complexity.) There exists n = 0, the complezity of X (with respect to &),
so that any set of pairwise-=E—comparable elements has cardinality at most n.

(6) (Large links.) There exist A > 1 and F > max{{, o} such that the following holds.
Let W e G and let z,2" € X. Let N = Md,, (mw(z), 7w (2’)) + A. Then there exists
{Ti}ic1,.|n) € Sw — {W} such that for all T' € Gy — {W}, either T' € &7, for some
i, or dp(mp(x), 7p(2)) < E. Also, dW(ﬂ'W(x),paﬁ) < N for each i.

(7) (Bounded geodesic image.) There exists £ > 0 such that for all W € &, all
V € Sy — {W}, and all geodesics v of CW, either diamey (pl¥ (7)) < E or v n
Ne(py) # &.

(8) (Partial Realization.) There exists a constant « with the following property. Let
{Vj} be a family of pairwise orthogonal elements of &, and let p; € 7y, (X) < CVj.
Then there exists € X so that:

o dy;(my;(z),p;) < a for all j,
e for each j and each V € & with V; = V, we have dy (my (2), p“;]) < o, and
o if WAVj for some j, then dw(ﬂw(x),pgj}) < a.

(9) (Uniqueness.) For each k > 0, there exists 6, = 6,(x) such that if z,y € X and

dx(z,y) = 0y, then there exists V € & such that dy (7y (z), 7y (y)) = k.

For ease of readability, given U € &, we typically suppress the projection map 7y when
writing distances in CU, i.e., given x,y € X and p € CU we write dy (z,y) for dy (my (z), v (y))
and dy(z,p) for dy(my(x),p). When necessary for clarity, we may also write C(U) instead
of CU.

An important consequence of being a hierarchically hyperbolic space is the following dis-
tance formula, which relates distances in X to distances in the hyperbolic spaces CU for
U e &. Give a,b € R, the notation {a}, denotes the quantity which is a if a > b and is 0
otherwise. Given C, D, we say a =¢,p b if Cla—D <b< Ca+D. Weuse a =p b if
la —b] < D, and we use a <¢,p bif a <Cb+ D.

Theorem 1.7 (Distance formula for HHS; [BHS19]). Let (X, &) be a hierarchically hyperbolic
space. Then there exists sg such that for all s = sg, there exist C, D so that for all x,y e X,

dx(z, y) =C,D Z {{dU(xa y)}}s :
Ue6
The distance formula says that the distance between two points in X’ can be approximated
by measuring the distances between their projections to the hyperbolic spaces, and, moreover,
that we only need to consider hyperbolic spaces for which that projection is sufficiently large.

Definition 1.8 (Relevant domains). For any constant R > sy and any two points x,y € X,
we say U € G is relevant (with respect to z,y, R) if dy(z,y) > R; if we want to emphasize
the constant R, we say that U is R-relevant (with respect to x,y). We denote the set of
R-relevant domains by Rel(z,y; R).

In other words, the set of R—relevant domains for a pair of points x,y € X are the domains
which appear in the distance formula for x and y with the threshold s = R.

Notation 1.9. Given a hierarchically hyperbolic space (X,&) we let E denote a constant
larger than any of the constants occurring in Definition and larger than the constant sg
from Theorem [I.71

Definition 1.10 (Hierarchy path). Given a hierarchically hyperbolic space (X, &) and a
constant A > 1, a (A, A)—hierarchy path v < X is a (A, A\)—quasi-geodesic in X with the
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property that for each U € & the path 7y () is an unparametrized (A, \)—quasi-geodesic in
CU.

By [BHS19, Theorem 4.4], for any sufficiently large A, any two points z,y € X are con-
nected by a (A, A)-hierarchy path. We fix such a constant A > E, and let u(z,y) € X denote
a (A, A\)~hierarchy path from z to y.

Definition 1.11 (Hierarchically hyperbolic group). A finitely generated group G is a hierar-
chically hyperbolic group if some (hence any) Cayley graph of G is a hierarchically hyperbolic
space, and the hierarchically hyperbolic structure is G—invariant. In particular, a hierarchi-
cally hyperbolic group is a finitely generated group G, equipped with a specific choice of
finite generating set, such that there is a hierarchically hyperbolic space (G, &) satisfying the
following properties:

e (G acts cofinitely on &, preserving the relations =, h and 1;
e For each U € & and g € G, there is an isometry g: CU — C(gU), and if h € G, then

the isometry gh: CU — C(ghU) is equal to the composition CU LR C(hU) % C(ghU);
e For each U € & and g,z € G, we have gny(z) = myy(gz); and
e For each U,V € G such that UhV or U = V and each g € G, we have pgg = gpg.

Given a hierarchically hyperbolic group (G, &), we use dg to denote the distance in the
group G with respect to some (fixed) finite generating set.

1.3. Gate Maps and Standard Product Regions. In analogy with quasiconvex sub-
spaces of hyperbolic spaces, there is a notion of a hierarchically quasiconvex subspace of a
hierarchically hyperbolic space X.

Definition 1.12 (Hierarchically quasiconvex). Let (X, &) be a hierarchically hyperbolic
space. A subspace ) of X is k—hierarchically quasiconvez for some k: [0,00) — [0, 00) if the
following hold:

(1) For all U € &, the projection 77 (Y) is a k(0)—quasiconvex subspace of CU;
(2) For every k > 0 and every point x € X satisfying dy (7 (z), 7y (Y)) < kforall U € &,
we have dy(z,)) < k(k).

The first condition says that the subspace ) projects to a (uniformly) quasiconvex subspace
in every hyperbolic space, while the second condition ensures that all points in X which
project near ) in every hyperbolic spaces are near ) in X.

As is the case for quasiconvex subspaces of hyperbolic spaces, if ) is a hierarchically
quasiconvex subspace of a hierarchically hyperbolic space X, then there is a well-defined
“nearest point projection” from X to ), called a gate map.

Definition 1.13 (Gate maps). If (X, &) is a hierarchically hyperbolic group and ) is a
hierarchically quasiconvex subspace of X, then the gate map is a coarsely-Lipschitz map
gy: X — 2Y so that for each z € X, the image gy(x) is a subset of the points in ) with the
property that for each U € & the set my7(gy(x)) uniformly coarsely coincides with the closest
point projection in CU of myr(z) to my(Y).

The following lemma shows that gate maps are uniformly coarsely equivariant.

Lemma 1.14 (JRST18, Lemma 4.16]). Let (G, &) be a hierarchically hyperbolic group, and let
Y be a k—hierarchically quasiconvex subspace of G. Then there exists a constant A depending
on (G,8) and k such that for every g,x € G, we have

dG(ggy(:C)v ggy(g:z:)) < A.
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We now recall an important family of hierarchically quasiconvex subspaces in a hierarchi-
cally hyperbolic space called standard product regions introduced in [BHS17bl Section 13] and
studied further in [BHS19|. The definition we give can be found in [Rus22, Definition 2.20]
and is also discussed in [BHS17a, Section 1.2.1] .

Definition 1.15 (Standard product region). Let (X, &) be a hierarchically hyperbolic space,
and let U € &. The standard product region for U is the set

Py = {ze X |dy(z,p¥) < E forall V e & with VAU or V 2 U}.
Note that if S € © is E—maximal, then Pg = X.

In other words, given U € & and V' € G satisfying VAU or V 2 U, the product region Py
is precisely the set of points which project near pg in CV. It thus follows from this definition
that for such U, V', we have p‘lf =g my(Pyp); that is, the projection pg is coarsely equal to
the projection of the product region Py € X into CV.

Though it is not obvious from this definition, the product region Py is quasi-isometric to a
space with decomposes as a direct product of two factors, Fyy and E;. As these factors will be
important in this paper, we describe them in detail. See [BHS19 Section 5.2| for additional
details. We first define Fyy and Ey as abstract spaces. In the paragraphs following the
definitions, we explain that these spaces admit embeddings into X'. Unless otherwise noted,
we will always think of these embeddings, rather than the abstract spaces themselves.

Definition 1.16 (Nested partial tuple (Fyr)). Let 6y = {V e &6 | V £ U}. Fix k > F and
let Fyy be the set of k—consistent tuples in HVGGU 2€V (i.e., tuples satisfying the consistency

inequalities of Definition [1.6} ().

Definition 1.17 (Orthogonal partial tuple (Ey)). Let &4 = {V € & | VLU} u {W}, where
W is a E—minimal element such that V = W for all V1U. Fix k > E, and let Ey be the
set of xk—consistent tuples in [ [y g S—{(A} 2eV,

Remark 1.18. The particular choice of constant x will not be important in this paper. For
simplicity, given a hierarchically hyperbolic group, we fix kK = F, and for each domain U we
consider only spaces Fyy and Ey defined using E—consistent tuples.

Given X and U € &, there is a well-defined map ¢y: Fy x Ey — X. The precise
definition of this map is not necessary for this paper; we refer the interested reader to [BHS19|
Construction 5.10|. The product region Py defined in Definition is coarsely equal to
the image ¢y (Fy x Ey) in X'. In this paper, we will only work with Py and Fyy. For all
results that we state for Fy, analogous statements also hold for Eg.

Fixing any e € Ey restricts ¢y to a map ¢=: Fy x {e} — X. In general this map ¢=
depends on the choice of e € Eyy. When the basepoint is immaterial (or understood), we
abuse notation and consider Fy to be a subspace of X, that is, Fyy = im ¢=.

It is proven in [BHSI9, Lemma 5.5] that standard product regions Py and their factors
Fy x {e} for each e € Eyy (considered as subspaces of X') are uniformly hierarchically quasicon-
vex. Therefore there are well-defined gate maps gp, : X — Py and gp, x(e}: X = Fu x {e}
for each U € & and each e € Ey.

Remark 1.19. We note that the gate map g, «{c} depends on the choice of e € Ey.
However, the image of the gate map in CV for any V & U is independent of this choice (see
[BHS17a, Remark 1.16]). That is, if e, ¢’ € Ey, then for any x € X', we have 7y (gp, xfe} () =
v (9F, xfery (). In statements where we only consider the image of the gate map in the
hyperbolic spaces, we simplify notation and write gg,, .
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FIGURE 1. Geometric picture of Lemma [1.20] Domains which are relevant
for x,y are relevant for either the horizontal red segment or (at least one of)
the vertical red segments.

The following lemma provides a formula for computing the distance between a point and a
product region. It is an immediate consequence of [BHS21l, Corollary 1.28|; we give a sketch
of the proof here for completeness.

Lemma 1.20 (|[BHS21]). Let (X, &) be a hierarchically hyperbolic space. Fiz U € & and let
Y={Y eS| YU orY 2U}. Then for all s = so and any x € X,

(1) dx(z,Py) =cp Z {dy (z, 0}, ,

Yey
where so,C, and D are the constants from Theorem [1.7]

Sketch of proof. To each bounded set A c X, we associate a tuple (Ay)yes whose compo-
nents are the projections of A to CV for each V € &, i.e., Ay = 7y (A). We will consider
the case A = gp,(z) < Py. By |[BHSI7al Remark 1.16|, if V £ U or V' L U, we have
mv(gp, () = mv(z). Combining this with the definition of Py (Definition [1.15)), we have

U .
_ Py ifVe y
(gpy (2))v {WV (x) otherwise.

There is a constant K depending only on (G, &) such that dy(z, Py) =k, dx(z, gp, (z))
by [BHS21, Lemma 1.27|. From the above discussion we see that the only components of the
tuple (zy)ves associated to x and the tuple ((gp,, (2)v)ves associated to gp,, (x) which differ
in CV occur when V € ). Thus the distance from x to gp,(z) in X can be approximated
using only the domains V' € ). Il

Lemma gives the following geometric picture. Let z,y € X and U € &, and consider
' = gp,(z) and ¥ = gp,(y). Let V be a domain that is relevant for  and y. Then any
distance in CV contributes either to the distance from x or y to the product region Py or to
the distance within Py, but not both (see Figure . In particular, if VAU or V2 U, then
V is relevant for either x, 2’ or y,y’ but not for 2’,y’. Any other V is relevant for z’,y’ but
not for z, 2’ or y,y’.

1.4. Axial elements in hierarchically hyperbolic groups. Let (G, &) be a hierarchically

hyperbolic group, and fix the constant Lg from Lemma and ¢ € [0,6]. (Note that the
constant § is part of the definition of (G, &); see Definition [1.6]) Following [DHS17|, for an
element h € G we define

(2) Big(h) = {U € & | my(¢h)) is unbounded}.

Lemma 1.21. Let (G, &) be a hierarchically hyperbolic group. An element h € G is finite
order if and only if Big(h) = &.
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Proof. In [DHS17, Proposition 6.4] it is proven that an element h € G is elliptic if and only
if Big(h) = ¢J. The result follows from this, since a group element acts elliptically on its
Cayley graph if and only if the element is of finite order. O

Definition 1.22 (Axial element). An element h € G with Big(h) # (J is called azial.

Lemma [I.2]] shows that every infinite order element of a hierarchically hyperbolic group
is axial. By [DHS17, Lemma 6.7], the elements of Big(h) are pairwise orthogonal. As the
number of pairwise orthogonal domains in a hierarchically hyperbolic group is uniformly
bounded by the constants in the definition of a hierarchically hyperbolic space [BHS19|
Lemma 2.1}, it follows that | Big(h)| is uniformly bounded independently of the choice of h.
As noted in [DHSI1T], since h: CU — C(hU) is an isometry, we have hU € Big(h) whenever
U € Big(h). Moreover, by [DHS17, Lemma 6.3, there is a constant M depending only on
the constants in the definition of a hierarchically hyperbolic space such that for all h € G
and U € Big(h), we have KU = U. In other words, by passing to a uniform power, we
may assume that h fixes its big set elementwise. Moreover, by passing to this uniform power,
we may assume that h is a loxodromic isometry of CU for any U € Big(h) by [DHS20l
Theorem 3.1]. We let 77(h) denote the stable translation length of A in this action and let
7Y be a (2, ¢)-quasi-geodesic axis of h in CU (see Definition .

Remark 1.23 (Acylindrical actions). The action of a group G on a metric space X is
acylindrical if for all € > 0, there exist constants R(e), N(¢) = 0 such that for all z,y € X
satisfying dx(z,y) = R(e), there are at most N(g) elements g € G for which dx(z,gz) < e
and dx(y,gy) < e. By [BHSI7bH, Theorem K], G acts acylindrically on CS, where S is
the CT-maximal element of 6. An immediate consequence of this is a lower bound on the
translation length 7¢(h) that depends only on the hierarchy constants [Bow08, Lemma 2.2].

Let U € G, and let H be a subgroup of G which fixes U, so that H acts on CU. If U # S, it
is not necessarily the case that H acts acylindrically on CU, and it remains an open question
whether there is a uniform lower bound on 7y7(h) in general. We deal with this issue in
the present paper by assuming such a uniform lower bound as a hypothesis. Hierarchical
acylindricity is a standard assumption requiring that the action of H on CU is acylindrical
for all such U: this would also ensure a uniform lower bound on translation length.

The next lemma is a straightforward consequence of the hyperbolicity of the spaces CU.

Lemma 1.24. Let (X,S) be a hierarchically hyperbolic space, and let G be a group acting
geometrically on X. Fizx a basepoint xg € X, the constant Lg from Lemma and ¢ € [0,46].
Then there exist constants Ko, L = 0 such that the following holds. Let h € G be an azial
element so that hU = U for each U € Big(U) and 77(h) = Lgd. For any k > Ky let
',y € CU be the closest points on 7Y to my(zo) and my(h*zo), respectively.

There exists a point & on the subpath of vY from 2’ to y' so that dy(&,2') < L and
du (&, mu(p(z,y))) < L.

Proof. Recall that the image of any (A, A\)-hierarchy path in CU is a (unparametrized) (A, A)—
quasi-geodesic. Since the axis of h in CU is a (2, £)—quasi-geodesic, the concatenation (in the
appropriate order) of 7y (u(wo, h*wo)), [7u(w0), 2'cv, [7v (h*20),y |cu, and a subpath of 7V
forms a (2, {)—quasi-geodesic quadrilateral @ in CU. Let M be the Morse constant associated
to (2, £)—quasi-geodesics in a é—hyperbolic space. Fix Ky so that Lgd Ky > 45 + 4M + 1, and
let £ > K. Note that K is independent of the choice of axial element h.

The quadrilateral @ is (2M + 2J)-thin, that is, given any point z on a side of @, there is
a point on one of the other three sides of ) at distance at most 26 + 2M from z. Let v and
w be points on the subpath of 47 between 2’ and y so that dg(z/,v) = [46 + 4M + 1] and
ds(y/,w) = [46 + 4M + 1]. We claim that the subpath 3 of 47 from v to w is contained in
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the (20 + 2M)-neighborhood of 7y (p(z,y)). Let z be a point on the subpath of ¥ from 2’
to y'. Then there is a point 2z’ on one of the other three sides satisfying di/(z, 2’) < 2M + 24.
Suppose 2’ lies on the geodesic [my(x),2']. As 2’ is the nearest point on 7 to z (hence
also to z), we must have dy (', 2') < dy(2/,2) < 2M + 2. The same holds if 2’ lies on the
geodesic [y (y),y']. Thus if z lies on B, then 2z’ must lie on 7y (u(z,y)), as desired.

Since the map 7 is G-equivariant and, in particular, k¥ (2¢) = my(hFzg), we also have
y = h¥a2'. Thus dy(z',y') = kry(h) = KoLgd = 40 + 4M + 1. It follows that § is non-
empty. We let ¢ be the point on 3 closest to 2/, so that dy (&, 2") = [40 + 2M + 1]. Taking
L = [46 + 2M + 1] completes the proof. ]

2. PROOF OF THEOREM [A]

Let (G, &) be a hierarchically hyperbolic group. The authors and Durham show in [ABD21],
Corollary 3.8| that by possibly changing the hierarchy structure on G, we may assume that
(G, &) has unbounded products. In this paper, we don’t directly use the definition of un-
bounded products, rather we only need the following consequence about Morse elements in
the structure (G, &), which follows from [ABD21l Theorem 4.4 & Corollary 5.5]: if h € G is
an infinite order Morse element, then h is axial and Big(h) = {S}, where S is the E-maximal
element of G.

We begin by fixing the constants that will be used throughout the proof. Definition [I.0]
provides a constant § such that CU is d—hyperbolic for all U € &. Let Lg be the constant
from Lemma and fix £ € [0,6]. Let E be as in Notation in particular, E is larger
than any of the hierarchy constants for G. Let T be the lower bound on translation length
in the acylindrical action on CS noted in Remark Fix A > max{2, ¢} so that any two
points z,y € G are connected by a (A, A)-hierarchy path. Let Ky, L be the constants from
Lemma, and fix a constant R > 2F.

Finally, set

(3) K = max{20, R, Ky,

AL + 3E
|52 v 22m

This constant K is uniform, in the sense that it depends only on the hierarchy constants for
(G,6).

Let a,b € G be two infinite order Morse elements and suppose there exists g € G such
that ga = bg. Since (G, &) has unbounded products, we have Big(a) = Big(b) = {S}. For
simplicity of notation, we denote the asymptotic translation length of b in CS by 7(b). Note
that S is fixed by the action of G on &. Since g conjugates a’ to b’ for any i € Z, we first
replace a and b by sufficiently high powers so that 7(b) > Lgd. By Remark , such a
power can be chosen uniformly (that is, depending only on the hierarchy constants, and not
the choice of elements a and b).

Let v, = I;g be a (2,£)-quasi-geodesic axis of b in CS. Then v, =72 = g 'y is a (2,0)
quasi-geodesic axis of a in CS. We now fix a quadrilateral of (A, \)-hierarchy paths in G:
(1, 9), p(1,6%), 05 u(1, 9) = p(b, 0% g), and gu(1,b%) = u(g, gb™) = p(g, a®g).

Our first step is to replace g with a different conjugator whose length we are able to bound
in G. Since K > Ky, we may apply Lemma to each of the axes 74, 75 in CS and
the points 1,a’® € G and 1,b% € G, respectively. This yields a point 2’ € v, and a point
w' € vy such that 2/ € Np(mg(u(1,a”))) and w' € Np(mg(p(1,6%))). Moreover, if z is a
point on 7y, nearest to mg(1) and y is a point on =y, nearest to 7g(1), then dg(z’,z) < L and
dg(w',y) < L. See Figure Let z € mg(u(1,a®)) and w € mg(u(1, %)) be points nearest to
2 and w', respectively. Since g fixes S, we have gz € 75(u(g, ga®*)) = n5(u(g,b%g)) < CS
and gz’ € gy, = 7. Since g is an isometry, we have dg(gz’, gx) = dg(2’,z) < L.
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SL+90 75(gh™) = m5(a’g)

FIGURE 2. The geometry of the axes of a and b in CS.

By possibly premultiplying g by a power of b, we may assume that dgs(g2’,w’) < 7(b)
(while still conjugating a to b). Thus we have

(4) ds(y, 9z) < dg(y,w’) +dg(w', g2’) + ds(92’, gx) < 7(b) + 2L.

Our goal is to bound the length of this new conjugator, which by an abuse of notation we
will still call g.
We will show that for each U € &, we have

(5) dy(1,9) < 2Kdy(1,b) + dy (g, b%g) + K,

where K is as in . After establishing this bound for each U € &, we then apply the
distance formula (Theorem with threshold R to obtain

da(1,9) <c.p 2Kdg(1,b) +da(g, b g) + K.

Finally, we use the fact that dg(g,b%g) = dg(g,ga®) = dg(1,a”) < Kdg(1,a), which
establishes that

(6) dg(l,g) <c.D 2Kdg(1,b) + Kdg(l,a) + K,

where C, D are the constants given by the distance formula (Theorem [1.7]). (Note that by
assumption, R is sufficiently large to serve as a threshold in the distance formula.) This will
provide the desired bound in G.

Fix U e 6. If U ¢ Rel(1,g; R), then we have dy(1,9) < R < K, and holds. Thus
we assume for the rest of the proof that U € Rel(1, g; R). There are two cases to consider:
either U = S or U = S. We will deal with each of these possibilities individually.

Case 1: U = S. In this case we have (as seen in Figure :
ds(1,9) < ds(1,w) +ds(w,w’) +ds(w', g2') + ds(g2', g2) + ds(gz, 9)
< dg(1,0%) + 2L + 7(b) + ds(g,b% g)
< 2Kdg(1,b) +ds(g,b%g) + K,

where the final inequality follows from the fact that dg(1,b) > 75(b) and (). Therefore
holds in this case.
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Case 2: U = S. As we are assuming that U is R-relevant for 1, g, we must have pg cCS
is contained in the E-neighborhood of a geodesic in CS from mg(1) to ms(g) by the bounded
geodesic image axiom (Definition ) As geodesic quadrilaterals in d—hyperbolic spaces
are 26-thin, it follows that pZ is contained in the (E + 2§)-neighborhood of [rg(1),y] U
[y, 9x] U [g9x,75(g)], where these are geodesics in CS. Since x and gz are the nearest point
projections of mg(1) and mg(g) onto v, respectively, it follows from that the projection
of [rs(1),y] v [y, 9x] U [gz,7s(g)] onto v, has diameter at most 7(b) + 2L. In particular,
since nearest point projection maps in hyperbolic spaces are Lipschitz, the nearest point on
~p to pg is distance at most 7(b) + 2L + E from y.

By an analogous argument, if U is also R-relevant for b b5 g, we must have that pg is
contained in the (F + 2§)-neighborhood of [rg(b%), bFy] U [VFy, bFgz] U [bFgx, ms(bFg)]. In
particular, the nearest point on v, to pg is at distance at most 7(b) + 2L + E from b%y.

However, our choice of K in ensures that

ds(y,b"y) > Kr(b) > ([M;?E}

which is a contradiction. Therefore U is not R-relevant for b*, b% g, and so di7 (b, b5 g) < R.
Therefore,

+ 2> 7(b) = 4L + 3E + 27(b),

du(1,9) < du(1,0%) +du (0", 0% g) + du (6% g, 9)
< Kdy(1,0) + dy (05,65 9) + R
< Kdy(1,b) +dy(b™,0%g) + K,

where the final inequality follows from our choice of K in .
Therefore holds in this case, which completes the proof of theorem. O

3. A FAMILY OF HIERARCHICALLY HYPERBOLIC GROUPS

In this section, we highlight three properties which isolate some of the nice features of
compact special groups and which appears in many other contexts as well. We will show in
Proposition that many hierarchically hyperbolic groups satisfy these three properties,
which we call Fyy stabilizers, orthogonal decomposition, and commutativity.

Fix a hierarchically hyperbolic group (G,S). If i < & is a collection of pairwise orthogonal
domains, we denote the container of U in S by Cy (Definition ); by definition, each
domain V which is orthogonal to every U € U is nested into Cyy. We say G has clean containers
if for every collection of pairwise orthogonal domains U, the container Cy, is orthogonal to
every U e U. If U = {U}, we write Cy instead of Cyyy.

Recall that for any domain U € &, we identify Py with Fyy x Ey (see the discussion after
Definition . If a subgroup H < G fixes a domain U € & (in the action of G on &), then
whenever V &5 U or V L U, we have hV = U or hV L U, respectively, for each h € H. It
follows that H stabilizes the product region Py and each of its factors Fyy and Eyg.

Definition 3.1. For any U € G, let Gy be the subgroup of G that fixes U in the action of
G on G and that stabilizes Fyy x {e} for each e € Ey.

Equivalently, Gy is the subgroup which stabilizes each factor of Fy x Eyy and acts as the
identity on the second factor. We note that when G has clean containers, the second factor
Ey is isometric to F¢,, by Lemma [3.6]

Example 3.2. Right-angled Artin groups and, more generally, compact special groups, pro-
vide a good example to have in mind when reading this section. With the standard hi-
erarchically hyperbolic group structure given in [BHSI7Tb|, such groups are hierarchically
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acylindrical, and have clean containers [ABD21, Proposition 7.2]. One nice property of
right-angled Artin groups is that two elements commute if and only if all the generators in
a cyclically reduced factorization of one of the elements commute with all the generators in
a cyclically reduced factorization of the other element. Hence, in the Salvetti complex of a
right-angled Artin group, GG, we have that two elements span a periodic plane if and only if
they commute. Similarly, if a group is compact special it embeds as a quasi-convex subgroup
of a right-angled Artin group and thus inherits this property as well. Further, if a group is
virtually compact special, then, up to taking powers, two elements commute if and only if
they span a periodic plane. For these groups U,V € & are orthogonal if and only if they have
associated subcomplexes of the cube complex which span a direct product. Hence, it follows
that given U,V € & which are orthogonal, the subgroup which fixes U in the action on &
and which stabilizes the subset Fr; x {e} for each e € Ey has the property that it commutes
with the similarly defined subset for V. In other words, elements of Gy and Gy commute.
In particular, if g € G fixes each U; € Big(G) then g can be written as a product of elements
in GUi'

3.1. The Fy stabilizers, orthogonal decomposition, and commutative properties.
We will now extract and formalize the properties which we described above for right-angled
Artin groups.

3.1.1. The Fy stabilizers property. Since (G, &) is a hierarchically hyperbolic group, there
is a finite fundamental domain &’ for the action of G on &. We may choose &’ to have the
property that for each U € &', there exists e € Eyy such that 1 € Fy x {e}, where 1 is the
identity element of G. We denote this copy of Fy by Fy;. For such domains U, we always
have Gy < Fy. To see this, consider any f ¢ Fy. Since 1 € Fy and f = f -1 ¢ Fy, the
element f does not stabilize Fy, so f ¢ Gyp.

The first property says that for all U € &', the sets Fy and Gy are coarsely equal.

Definition 3.3 (Fy stabilizers). A hierarchically hyperbolic group (G, &) satisfies the Fy
stabilizers property if there exists a constant v depending only on the hierarchy constants
such that dg(f, Gy) < v for each U € &' and any f € Fy.

The Fy stabilizers property implies that for domains U € &', the subgroup Gy inherits
many geometric properties from Fy, including hierarchical quasiconvexity. In a hierarchically
hyperbolic group, there is a function k: [0,00) — [0,00) so that for any U € &, the subspace
Fy is k-hierarchically quasiconvex [BHS19, Construction 5.10|. If the group has the Fy
stabilizers property, then since Gy and Fy are at uniformly bounded distance whenever
U € &, there is a function k': [0,00) — [0,00) depending only on k and E so that the
subgroup Gy is also hierarchically quasiconvex for any U € &'. It then follows from [BHS19|
Lemma 5.5] that there is a well-defined gate map gg, : G — Gy. Moreover, for any g € G,
each coset gGy of Gy is also k'~hierarchically quasiconvex in G, so we also have a well-
defined gate map gy, : G — gGy. These gate maps will be important for defining the two
additional properties we introduce in this section.

The next lemma says that (Gy,Sy) is a hierarchically hyperbolic group, where &y =
{(Ves |V U}

Lemma 3.4. Let (G,8&) be a hierarchically hyperbolic group satisfying the ¥y stabilizers
property. For any U € &', (Gy,Sy) is a hierarchically hyperbolic group.

Proof. The Fy stabilizers property says that Gy is at uniformly bounded distance from Fy .
In particular, Fry and Gy are quasi-isometric. Since (Frr, &) is a hierarchically hyperbolic
space [BHS19, Proposition 5.11|, this immediately implies that (Gy, Sy) is a hierarchically
hyperbolic space, where the associated hyperbolic spaces and maps are the same as those for
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(Fy,Sp). It remains to show that (Gy, &y ) is a hierarchically hyperbolic group. For this,
note that Gy stabilizes &y by definition. Since (G, &) is a hierarchically hyperbolic group
and Gy < G, the four additional conditions from Definition hold because they hold for
the action of G on &. For example, since G acts cofinitely on & and preserves the relations
=, M, and 1, so does Gy. Similar arguments show the other three conditions hold. O

3.1.2. The orthogonal decomposition property. The next property allows any infinite order
element which fixes a collection of pairwise-orthogonal domains {Uy, ..., U} to be decom-
posed into a product of elements in Gy,. Before defining this property, the following lemma
establishes that for each i = 1,...,k there is a preferred Fy, x {e;} which we denote by Fy,.
The careful reader will note that if U; is already in the fundamental domain &', then the
choice given by the lemma is consistent with our previous choice of Fy,.

Lemma 3.5. Let (G, &) be a hierarchically hyperbolic group with the ¥y stabilizers property,
and letU = {Uy, ..., U} be a maximal collection of pairwise-orthogonal domains in &. Then
there exist t € G and copies Fy, x {e;} such that the following hold for all i:

o U; = tU] for some U] € &';

o FUZ- X {61} = tFU{;

o Gy, = tGU{t_l; and

o dg(t,gpu(f)) < Ev, where v is the constant from Definition[3.5

Proof. Consider the product region Py, associated to U, and let ¢’ be any point in gp,(1).
For the first part of the proof, it will be convenient to distinguish between the abstract
product region Py = Fy, x --- x Fy, and its image ¢y(Py) < G (see the discussion after
Definition [1.17). Let (¢],...,t}) € Py be such that ¢y (t),...,t;) = t'. We will adjust
each t; individually to find a new point (¢1,...,%;), which will determine the points e; in
the statement. At the ith stage, we change the ith coordinate of the point in Py to ensure
that it lies in a coset of Gy, that is completely contained in the associated copy of Fy,. In
subsequent steps, we will adjust later coordinates: this may change which coset of Gy, the
point lies in, but it will simultaneously translate the copy of Fy, so that this new coset is
still contained in the new copy of Fy,, as desired. After changing all coordinates, the desired
element ¢t will be ¢y (t1, ..., tx).

We begin with ¢ = 1. Since & is a fundamental domain, there is some f{ € G and
Ui € & such that ¢y(Fu,,ts,....t,) = fiFy,. Since Gyr S Fyr, we have fiGyr <
ou(Fu,,th,...,t,). By the Fy stabilizers property, there is an element t; € Fy, with
dg(t,, gzsu(tl,té, R ,t;ﬂ)) < v and ¢u(t1,t/2, ... ,t%) S f{GU{

We fix ¢; from the previous paragraph and now consider ¢ = 2. The point ¢y (t1,15, ..., ;)
is in ¢y (t1,Fu,,t5,...,t). Again, as above, there is some f3 € G and Uy € &' for which
du(t, Fo,, th, ... 1) = fﬁFUé. Also, as above, we can find an element to € Fy, with
dg((ﬁu(tl,té, ... ,t;c), gf)u(tl,tg, té, . ,t?c)) < v and gf)u(tl,tz, t e ,t;c) S féGUé

Continuing in this way for each i yields a point (t1,%2,...,t;) € Fy, x -+ x Fy, . Letting
t = ¢y(ts, ..., tg), it follows from the triangle inequality that
(7) da(t',t) < kv < Ev,

where the final inequality holds because any collection of pairwise orthogonal domains has
cardinality bounded by E.

We now return to our convention of identifying Py, with its image ¢y(Py) € G. We have
shown that, for each 7, we have t € Fyy, x {e;} for some e;. Precisely, e; = q%(tl, oty ),
where {; indicates that the term ¢; does not appear in the tuple.

We now show that Fy, x {e;} satisfies the conclusion of the lemma for each 7. The final
bullet point holds by .
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There is an element f; € G such that Fy, x {e;} = fiFy,, where U; = f;U], and t € f;Gy,.
Thus fiGU; = tGUga and Gy, = tGy,t~ !, so the third bullet point holds. Also, since t = f;q;
for some g; € G/, we have

tFyr = figi¥u: = fiFyy,
so the second bullet point holds. Finally, tU! = fiq;U! = f;U] = U;, which shows that the
first bullet point holds and concludes the proof of the lemma. O]

The following lemma is presumably well-known, but is not in the literature. An immediate
corollary of this is that an axial element fixes the container associated to its big set.

Lemma 3.6. Let (G, &) be a hierarchically hyperbolic group with clean containers, and let
{U1,...,Uk} be a (non-maximal) collection of pairwise orthogonal domains. There exists a

unique C € & such that: if for each i, a domain V € & satisfies V. L U; then V E C.

Proof. First, by Definition some C' exists with the desired property, what is needed
is to prove uniqueness. So suppose that both C and C’ satisfy this property. Since the
containers are clean, each of C' and C’ are orthogonal to U; for each i. Thus, since C is a

container and since C’ is orthogonal to all the U;, we must have that C' = C. Similarly,
C = C'. Thus C = C’, as desired. O

Definition 3.7 (Orthogonal decomposition). Let (G, &) be a hierarchically hyperbolic group
with clean containers which satisfies the Fy; stabilizers property, and let A € G be an infinite
order element. Let {Uj,...,Ugs1} be a maximal collection of pairwise orthogonal domains
of & so that Big(h) = {Ui,...,U;} and U4 is the container associated to Big(h) in S.
Suppose h € G fixes Big(h) elementwise. By Lemma there exists t € G and, for each
i =1,...,k, a domain U] € & with U; = tU]. The label of the vertex thUi(h) is th) for
some h; € G,y € Fpyr. Define

(8) hy, = thit™" € tGyit™! = G,

The group (G, ©) satisfies the orthogonal decomposition property if the following two prop-
erties hold for all axial elements h € G. First, there is a uniform lower bound on the trans-
lation length 7/, (h) for each U; € Big(h) (this uniformity only depends on the hierarchy
constants and not the choice of h). Second, after possibly relabeling the domains of Big(h),
we have

h = hyhu, .. hy, = thy .. bt

We say hy, hy, - .. hy, is a decomposition of h.

k

This decomposition may depend on the order of the factors. In particular, it may be
the case that hy, does not commute with hy;, because elements of Gy, and Gy, may not
commute. However, the final property we discuss will require that such elements do commute,
and so the order of the factors will not be important for the groups we consider.

3.1.3. The commutative property. The final property ensures that Gy and Gy commute
whenever U 1 V.

Definition 3.8 (Commutative property). A hierarchically hyperbolic group (G, &) with the
Fy stabilizers property satisfies the commutative property if [Gy, Gy ] = 1 whenever U L V.

The following lemma is a consequence of the commutative property.

Lemma 3.9. Let G be a hierarchically hyperbolic group satisfying the Fy stabilizers, orthog-
onal decomposition, and commutative properties. Let h € G be an azial element which fizes
Big(h) = {H1,..., Hy} elementwise, and let C' be the clean container associated to Big(h).
Then there exists a uniform constant K such that (h*)c = 1, where (h%)¢ is the factor



CONJUGATOR LENGTHS IN HIERARCHICALLY HYPERBOLIC GROUPS 17

corresponding to C in the decomposition of h’ with resepect to {Hy, ..., Hy,C} and 1 is the
identity element of Go < G.

Proof. First, note that by Lemma , h fixes {Hy,...,Hy,C} elementwise, and so the de-
composition h = hg, ... hg, hc of h with respect to this set is well-defined. Recall that
hc € Ge is an element of the hierarchically hyperbolic group (G¢,S¢). Since C ¢ Big(h),
ho is not an axial element of G¢. Therefore ho must be finite order by Lemma [1.21} By
[HHP20, Theorem G] there are finitely many conjugacy classes of finite order elements in a
hierarchically hyperbolic group, and therefore there is a uniform constant K such that hg is
the identity element of G¢.
By the commutative property, we have

W = (hg, .. hg ho)® = (he) S (b ) S (he)™ = (b)) .. (ha, )",

From this decomposition, it is clear that (h¥)c = 1. ]

3.1.4. Examples. We now give several examples of hierarchically hyperbolic groups satisfy-
ing the three properties defined above. Moreover, additional examples can be built using
combination theorems, of which there are several in the literature (see, e.g., [BHS19, BR20,
BRI RS)).

Proposition 3.10. Let Z be the set of hierarchically hyperbolic groups with clean containers
which satisfy the Fy stabilizers, orthogonal decomposition, and commutative properties. Then
the following groups are in E.

(1) Hyperbolic groups

(2) Compact special groups

(8) Groups hyperbolic relative to a collection of groups in E

(4) Direct products of groups in E

Proof. We consider each class of groups in turn.

(1) The statement is immediate for hyperbolic groups G, as they all admit hierarchically
hyperbolic structures with a single domain S, and the action on CS' is acylindrical.
For this domain, Fg is a Cayley graph of the group and Gg = G. As there is no
orthogonality, the orthogonal decomposition and commutative properties vacuously
hold.

(2) For compact special groups, we use the standard structure described in [BHS19].
This structure satisfies the three properties by a completely analogous argument to
the one given for right-angled Artin groups in Example [3.2]

(3) Let G be a group which is hyperbolic relative to a collection P of hierarchically hyper-
bolic groups with clean containers satisfying the Fy stabilizers, orthogonal decom-
position, and commutative properties. Then G is a hierarchically hyperbolic group
by [BHS19, Theorem 9.1] and has clean containers by [ABD21], Proposition 7.4|. For
each P € P, let (P,&p) be an HHG structure for P, and for each left coset gP, let
Syp be a copy of & p, with the associated hyperbolic spaces and projections. Let G be
the hyperbolic space formed from G by coning off each left coset of cach P € P. Then
the hierarchically hyperbolic group structure on G is given by & = {G} ugpeapr Syp-
The domain G is the unique =-maximal domain, and if U € Gy,p and V € Gy pr
where gP # ¢'P’, then UAV. We refer the reader to [BHS19 Section 9] for details
of this structure, but note one important feature of the structure (G, S): any pair of
orthogonal domains are contained in some gP € GP.

We first check that the Fy; stabilizes property holds. A fundamental domain f(/)\r
the action of G on & is given by &' = {G} upep Sp. Let U € &. If U = G,
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then Fy = G and Gy = G, so the property holds for this domain. Now suppose
U e &p for some P € P. Then Fy € P. If g ¢ P, then gFy < gP # P, and so
g ¢ Gy. Therefore Gy is a subgroup of P in this case. Since (P, &p) satisfies the Fy
stabilizers property, it follows that (G, &) does, as well.

We now check the orthogonal decomposition property. Since G is hyperbolic rela-
tive to P, every infinite order element h € G is either loxodromic with respect to the
action of G on G, in which case Big(h) = {G} or is conjugate into some P € P, in
which case we consider the conjugate ghg~! € P. In the first case, the action of G
on G is acylindrical, and so there is a uniform lower bound on the translation length
of h, and we have the trivial orthogonal decomposition of h. In the second case,
there is a uniform lower bound on the translation length of ghg~' in each domain
in Big(ghg™!) by the assumption that each P satisfies the orthogonal decomposition
property. Translation length is invariant under conjugacy, and so we obtain a uniform
lower bound on the translation length of & in each domain in Big(h). There is also an
orthogonal decomposition of ghg~! coming from the assumption on (P,&p). Since
Big(h) = g~ ! Big(ghg™!, conjugating each term in the decomposition of ghg~! by
g~ ! yields an orthogonal decomposition for h.

Finally, the commutative property follows immediately from the construction of

the orthogonal decomposition in the previous paragraph and the fact that (P, Sp)
satisfies the commutative property for each P € P.
Assume G = G; x G2, and suppose (G1,61), (G2, S2) are hierarchically hyperbolic
groups with clean containers which satisfy the Fy; stabilizers, orthogonal decompo-
sition, and commutative properties. Then G is a hierarchically hyperbolic group by
[BHS19, Proposition 8.27] and has clean containers by [ABD21) Proposition 7.3]. The
hierarchy structure on G is given by & = {S, U1, U} u S uSyu{Vy | U € 61U Ga},
where S is the unique E-maximal element, U; is a domain into which all domains in
S; nest, and for each U € &;, the domain V¢ is a domain into which all domains in &;
with 7 # ¢ and all domains in &; orthogonal to U nest. The only important relation
between domains for this proof is orthogonality. In addition to any orthogonality
among domains in &1 or Go, we have that all domains in &; are orthogonal to all
domains in Sy, Uy L Uy, and Viy L U for each U € &1 U S,y. By construction, (G, S)
has clean containers. See [BHS19. Section 8] for further details on this structure.

When we refer to subsets of G; or the (G;, S;) structure, we append a superscript
1 to the notation. For example, if U € &;, then F}J is the corresponding subset of G;.

We first check the Fy stabilizers property. If U = S, there is nothing to check, so
suppose first that U € &1. Let G,lj denote the subgroup from the structure (G, S1)
which stabilizers F{, x {e} for each e € E{;. In the structure (G, &), there are
additional domains orthogonal to U; in particular every domain in &5 is orthogonal
to U. We have Fyy = Fi;, but now Ey = E}; x G2. Therefore, we have (g1, g2) € Gy
if and only if g1 € G, and g2 = 1. Thus Gy ~ G{; x {1}. Since (G, &) satisfies
the Fy stabilizers property, Gllj is coarsely equal to Fllj The above discussion then
implies that Gy is coarsely equal to Fy. Similarly, if U € &g, then Gy ~ {1} x G%,
and we again have that Gy is coarsely equal to Fy.

Suppose next that U = U;. Then Fyy = G1, and Ey = Go. Since G is the direct
product of G and Ga, we have that Gy, = G1, and so Gy, is coarsely equal to Fy.
The analogous argument holds if U = Us.

Finally, fix U € &4, and consider the domain V7. Let Cy be the container associ-
ated to U in the T-maximal domain of &;. Then Fy;,, = Eyy = E}J x Go = FlcU x (o,
and By, = EICU' It follows that Gy, ~ Glc x Gy. Since FICU is coarsely equal to GlcU,
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we also have that Fy,, is coarsely equal to Gy, as desired. An analogous argument
holds if we fix U € &9. Therefore, (G, S) satisfies the F; stabilizers property.

The orthogonal decomposition and commutative properties both follow immedi-
ately because they hold in each (G;,S;) and G and G2 commute. O

The Fy stabilizers, orthogonal decomposition, and commutative properties all involve
orthogonality and properties of product regions. Hence, intuitively, if a combination theorem
does not add any additional orthogonality relations (or only in a trivial way, such as by adding
domains whose associated hyperbolic space is bounded diameter), then such a combination
of groups in = should, in general, yield a group in =. For example, we expect that trees of
groups in Z satisfying the hypotheses of the combination theorem in [BHS19, Theorem 8.6]
are also in Z. In particular, combined with Proposition (3) & (4), this would show that
for hierarchically hyperbolic groups m1 (M) where M is the fundamental group of compact
3-manifolds with no Nil or Sol in its prime decomposition, then 71 (M) is in =Z.

3.2. A non-example: the mapping class group. We briefly explain why the standard
hierarchy structure on the mapping class group fails to satisfy the Fy stabilizers property.
Notwithstanding this fact, we believe that a modification of the properties of this section can
be used to make the present approach work for the mapping class group, as well. We do not
carry this out, though, because the approaches we see for doing so are all technical, and the
present results are already known for mapping class groups. We record this fact for those
using these properties in the future with an eye towards other applications.

The standard hierarchically hyperbolic group structure & on the mapping class group
of a surface S is described in [BHSI9L Theorem 11.1]. The domains U € & correspond
to homotopy classes of essential, not necessarily connected, open subsurfaces U < S. Two
domains are orthogonal if the corresponding subsurfaces are disjoint. In particular, the annuli
about the boundary curves of a subsurface do not intersect the subsurface; thus an annulus
around a boundary curve is a domain orthogonal to the subsurface. A finite fundamental
domain & for the action of MCG(S) on & is provided by taking a collection of subsurfaces,
one for each homeomorphism type of subsurface. For each U € &', Fy; is coarsely equal to
the mapping class group of the subsurface associated to U and Ey is coarsely equal to the
mapping class group of the complementary closed subsurface S — U.

One subtlety in the hierarchically hyperbolic structure on mapping class groups is that
while elements of MCG(S) supported on disjoint subsurfaces commute, elements supported
on disjoint closed subsurfaces are distinct, while two elements supported on disjoint open
surfaces may coincide. A simple example of this is found by taking a product of elements in
a once punctured torus which generate the Dehn twists along the boundary. Taking the genus
two surface obtained by doubling along the boundary curve, we see that we can generate that
same Dehn twist by a product of elements on either of the open once-punctured tori separated
by that curve.

Associated to a closed subsurface V', which includes its boundary components, is an element
of & consisting of the disjoint union of the interior of V', which we will denote f/, with annuli
around the elements a7,...,ar of V. The Dehn twist about a boundary curve in 0V can
be represented as a product of mapping class elements supported on the interior of V', even
those these are orthogonal domains. Accordingly the stabilizer of f/, in the action of G on
S, is (possibly up to finite index if V' is homeomorphic to S — V') a central extension of
MCQ(‘O/) x MCG(S — V) by Z*, where Z* is generated by Dehn twists along the boundary
curves «;, see, e.g., [BLM83|. The domains V,S — V, and the annuli around each «; form a
maximal collection of pairwise orthogonal domains. If this was a semidirect product instead
of a central extension, this would yield the Fy stabilizers and orthogonal decomposition
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properties. However, the fact that MCG (V) doesn’t act cocompactly on Fyy means that the
Fy stabilizers property doesn’t hold in this structure.

We note, though, that any open subsurface U is contained in a larger subsurface U obtained
by taking the union of U and all the annuli which bound U. For this subsurface U, the
subgroup Gy of the mapping class group of S which stabilizes Fyy and fixes Eyy pointwise
can be identified with MCG(U). This is a weaker version of the F; stabilizers property. We
expect that this weaker version might be useful in future workH

3.3. Conjugators in HHGs. We are now ready to prove Theorem [D| which we restate for
the convenience of the reader.

Theorem |§| Let (G,8) be a hierarchically hyperbolic group satisfying the Fy stabilizers,
orthogonal decomposition, and commutative properties. There exist constants K,C and N
such that if a,b € G are infinite order elements which are conjugate in G, then there exists
g € G with ga™ = bNg and

9] < K(|a] + [b]) + C.

Proof. Fix a hierarchically hyperbolic group (G, &) and a finite fundamental domain & for
the action of G on & as at the beginning of this section. Assume that (G, S) satisfies the
F; stabilizers, orthogonal decomposition, and commutative properties. For each U € &, we
fix Fy = Fy x {e} as described in Lemma

We fix the same constants as in the beginning of the proof of Theorem [A] and let o
be the Morse constant for (A, A\)—quasi-geodesics in a d—hyperbolic space. Fix the function
E': [0,00) — [0,0) so that Gy is k’~hierarchically quasiconvex whenever U € &' and let A
be the constant from Lemma applied to k’—hierarchically quasiconvex subspaces. We
further increase R so that R > max{3E + A, E + Ev + A + v,50} and K so that

AL +46+ FE 6E+A+o0+1
T T
Let a,b € G be two infinite order elements, and suppose there exists g € G such that
ga = bg. Then gBig(a) = Big(b). Let C be the container associated to Big(b) in S, so
that Big(b) u{C} = {B,..., Bg, C} is a maximal collection of pairwise orthogonal domains.
Since g conjugates a’ to b’ for any i, we first replace a and b by sufficiently high powers so
that the following conditions are satisfied:

(9) K =max{25,3R, Ko, [ W +2,2L + 23, ,3E + 207},

(a) Big(a) and Big(b) are fixed pointwise by a and b, respectively;

(b) b has the decomposition b = by - - - by with respect to Big(b) = {B,..., Bk, C}, where
bi = bp, is as in ; and

(¢) Tv(b) = Lgé for every V € Big(b).

Such powers exist and can be chosen uniformly (that is, depending only on the hierarchy

constants, and not the choice of elements a and b) by the discussion after Definition in

the first case, the orthogonal decomposition property and Lemma[3.9)in the second case, and

the assumed bound on translation length in the orthogonal decomposition property in the

third case. Lemma applied to Big(b) provides an element ¢ € G so that b; = tb}, where

b; € Gy € Fyy, where Uj € & and U; = tU] for all i = 1,... k.

For each Z € Big(b), let 4Z be a (2, ¢)-quasi-geodesic axis of b in CZ. Then yg_lz: =
g 4 is an (2, )-quasi-geodesic axis of a in C(g7'Z). We now fix a quadrilateral of (A, \)—
hierarchy paths p(1,g), u(1,0%), b%u(1,9) = p(d",0%g), and gu(1,b%) = u(g,gb™) =
p(g,a"g) in G.

lWe note that a related property to this is studied in forthcoming work of Montse Casals-Ruiz, Mark
Hagen, and Ilya Kazachkov.
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Step 1: Changing the conjugator. Our first step is to replace g with a (possibly) different
conjugator whose length we are able to bound in G. We will do this by first premultiplying
g by a power of b; € Gp, for each B; € Big(b). By the commutative property, any power of b;
commutes with b, and so this new element will still conjugate a to b. This is analogous to how
we changed the conjugator in the proof of Theorem |A] when Big(a) = Big(b) = {S}. In that
situation, the orthogonal decomposition of b was simply b = bg, and we premultiplied the
conjugator by a power of b. In the current situation we need to be a bit more careful because
not only may b have more than one term in its orthogonal decomposition, but now Big(a)
and Big(b) may be different collections of domains. Because of this, we will need to estimate
distances in multiple hyperbolic spaces. Finally, we will alter g in the clean container C'
associated to Big(b).

Fix Z € Big(b) and let bz = gg, (b). Since K > Ko, we may apply Lemma [I.24] to each of
the axes ’be inCZ and ’ygilz inC(g~1'7), and the points 1,a” € G and 1,b% € G, respectively.
This yields a point 2’ € 'yg_lz and a point w' € 7 such that 2z’ € Np(my-17(u(1,a"))) and
w' € N1 (77(u(1,b%))), where these neighborhoods are taken in Cg~'Z and CZ, respectively.
Moreover, if x is a nearest point on 'yg_lZ to m,-17(1) in C(g~'Z) and y is a nearest point
on 77 to mz(1) in CZ, then dj-17(z,2') < L and dz(y,w') < L. Let z € my-1,(u(1,a")) and
w € mz(p(1,b")) be nearest points to 2’ and w’, respectively, so that d,-1,(z,2’) < L and
dz(w,w’") < L. See Figure

Since the isometry g maps C(g~'Z) to CZ, we have gz’ € g’ygilz = 77 and gz €

)

g7g-172(u(1,0")) = w7 (p(g, ga™)) = 7z (u(g,b% g)). Moreover, dz(gz,92') = dg-15(2,2') <
L and dz (g%, gz) = dg-14(2',x) < L.

Clg'2) cZz

Fgle(:l) z T

FIGURE 3. The geometry of the axes of a and b in Cg~'Z and CZ, respectively.

By possibly premultiplying g by a power of bz, we may assume that dz(gz’,w’) < 77(b).
Moreover, this new element also conjugates a to b, because bz commutes with b by the
commutative property.

We perform the above procedure for each Z € Big(b) and possibly premultiply g by a
(possibly different) power my of each by.

We now alter ¢ in the clean container C' associated to Big(b). Let ¢t € G be as in Lemma
applied to {Bi, ..., Bg, C}, so that C' = tC’ for some C’ € &'. The label of the vertex g;c.(g)
is tgcr, where gov € Gov € For. Let go := tgort™ € Ge.

We claim that galg conjugates a to b and dv(l,galg) < A for each V £ C. The commu-
tative property and condition (b) ensure that gal commutes with b, hence gal g conjugates
a to b.

We have

07 (90"9) =4 95" 8gcrc (9) = tgcit ™ are(9),
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where the first estimate follows from Lemma and the second from the definition of go
and the fact that goFo = Fe.
By the Fy stabilizers property, dg(gr. (9), ¢ (9)) < v. We also have

tgoit ' 9a0(9) = tagtt (tger) = t.
Thus

(10)  da(t gr.(95'9)) < da(t tas't 'ar.(9)) + da(too't  ars (9), gre (95
71'

By [BHS17a, Remark 1.16] and Remark we have 1 (gr.. (95"9)) =
projection maps 7 are Lipschitz, it thus follows from (| . ) that dy (t, g
vecd.

By Lemma [3.5] we have dg(t,gp, (1)) < Ev, where Y = {By,...,By,C}. The only
domains which are E-relevant for 1,gp, (1) are those which are transverse to some ele-
ment of U or into which some element of U/ properly nests by Lemma In particular,
dy(1,gp,(1)) < E for all V = C. By the triangle inequality and the fact that the maps m
are Lipschitz, we have for all V £ C

dv(l,galg) <dy(1,gp, (1)) +dv(gp,(1),t) + dv(t,galg) <FEF+Ev+A+v<R.

g9)) <v+ A

C
(95'9)- Since the
'g) < A+ v for all

This yields a new element (1_[ ZeBig(b) b, ) gélg, which also conjugates a to b. We have

shown that this new conjugator, which by an abuse of notation we still call g, satisfies the
following properties:

(11) dz(y, gz) < dz(y,w') + dz(w',g2") + dz(g2', 92) < 72(b) + 2L
for each Z € Big(b), and
(12) dv(l,9) <R

whenever V C C.

Step 2: Bounding the length of g. Our goal is to bound the length of g in G. As in the proof
of Theorem [A] we will show that for each U € &, we have

where K is as in @D After establishing this bound for each U € &, we then apply the
distance formula with threshold R and the fact that dg(g,b%g) = da(g, ga™) = dg(1, a’),
which, as in the proof of Theorem [A] establishes that

(14) da(1,9) <¢,D 2Kdg(1,b) + Kdg(1,a) + K,

where C, D are the constants given by the distance formula (Theorem [1.7)). (Note that by
assumption, R is sufficiently large to serve as a threshold in the distance formula.) This will
provide the desired bound in G.

Fix U e &. If U ¢ Rel(1, g; R), then we have dy(1,9) < R < K, and holds. Thus we
assume for the rest of the proof that U € Rel(1, g; R). There are five cases to consider: there
is some Z € Big(b) such that U = Z; there is some Z € Big(b) such that U & Z; there is
some Z € Big(b) such that U 2 Z; and there is some Z € Big(b) such that UhZ, and U L Z
for all Z € Big(b).

Cases 1 and 2: There is some Z € Big(b) such that U = Z or U & Z.
These two cases follow almost exactly as in proof of Theorem [A] the distinction being that
Z plays the role of S and we measure distances in both C(¢g~'Z) and CZ. In Case 2, one

must also use in place of .
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mu(9) Ty (% g) = Ty (ga™)

FIGURE 4. Case 3.

Case 3: There is some Z € Big(b) such that U 23 Z.

By our choice of K, we have KT > E, and thus dz(1,b*) > E. Applying the bounded geo-
desic image axiom (Deﬁnition ) to 7y (u(1,b%)) in CU, we obtain pf S Np4o(my(u(1,05)))
in CU, and hence

(15) du(1, p%) < dp(1,65) + E + 0.
Additionally, g~'Z € Big(a) and g~'U 22 g~ Z. The choice of K ensures that d,-14(1, a) >
E, so applying the bounded geodesic image axiom to 7 (p(1,a”)) in C(g~1U) yields

P € Nipwolmu(u(1,a¥)

in C(¢~'U). Applying the isometry g we obtain

90915 S Npto(9mg10(n(1,0%))) = N (mu (g, 6% 9)))
in CU. See Figure [d Moreover, projection maps in a hierarchically hyperbolic group are
. . g1z VA
G—equivariant, and so 9Pyt = PO Thus

(16) du(g, pfr) = dU(g,gpzjg) <du(g,b"g) + E + 0.
Therefore, by the triangle inequality, , and , we have
du(1,9) < du(1, pfr) + diameu (pf7) + d(pr, 9)
< dp(1,6%) + 3E + 20 + dy (g, 9)
< Kdy(1,b) +du(g, b g) + K,
where the final inequality follows because K > 3FE + 20.

Case 4: There is some Z € Big(b) such that UhZ.

Consider the product region Pz, and let £ = gp,(g) and v = gp,(g). See Figure

Since we are assuming that U is relevant for 1,¢g and UhZ, it follows from Lemma
that U € Rel(1,&; R) u Rel(g,v; R). As b is loxodromic with respect to the action on CZ
for all Z € Big(b), we have dz(v,b5v) = K74(b) > KT > R. Thus Z € Rel(v,b5v; R).
Similarly, Z € Rel(£,b%¢; R). Note that this implies Z € Rel(1,b%; R) n Rel(1,b5¢; R) N
Rel(g,b%g; R) n Rel(g,b%v; R), as well.

Claim 1. If U is R-relevant for g, gv, then U is not R-relevant for b%v,b5g. If U is R~
relevant for 1, ¢, then U is not R-relevant for b%¢, b5,

Proof. We will prove the first statement. The proof of the second statement is completely
analogous.

Since U is relevant for ¢, v, the domain b® U € & is relevant for b v, b g. Moreover, since
b fixes Big(b) pointwise, we have b Z = Z. As UhZ, we must also have b UhZ. From this,
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brg = gaF

FIGURE 5. Conjugate elements a and b, with conjugator g, in G. Solid seg-
ments are hierarchy paths, while dotted segments are geodesics.

we apply the G—equivariance of the projections maps in a hierarchically hyperbolic group to
conclude that b%pY = prKU in CZ. Thus we have

dz(p%, 0% V) = dz (05,05 p%) =5 K77(b) = KT.

Since Z € Big(b), Lemma implies that Z is not s—relevant for g,v for any s > sg. In
particular, since E > sg, the distance between 7z(g) and mz(v) in CZ is bounded by E. On
the other hand, since U is R-relevant for g and v, it follows from [BHS19, Proposition 5.17]
that any hierarchy path u(g,v) in G has a subpath which is contained in the E—neighborhood
of Py. Since the projection maps 7 are Lipschitz, we have
(17) dz(7z(Pu),mz(p(g,v))) < E.

Recall that p§ =p 72(Py) (see comments after Definition [1.15). Thus implies:

dz(p%, 72 (1(g,v))) < 2E.

Since 7z (u(g, v)) is an unparametrized (A, \)—quasigeodesic, it is contained in the c—neighborhood
of a geodesic in CZ from 7z(g) to mz(v). By the above discussion, such a geodesic necessarily
has length at most E. Therefore,

dz(p%.9) <3E + 0.
By the triangle inequality, we have
dz(p,b"g) = dz(g,b" g) — dz(v%, 9)

> K1z(b) — dz(p%. 9)
> KT — (3E + o)
>3F+ A,

where the final inequality follows from our choice of K > w. See Figure @ Therefore
dz(p%,b% g) is large enough to apply the consistency inequalities (Deﬁnition (4)), yielding
(18) du(p? V¥ g) < E.

The same argument bounding the distance in CZ between g and v applies to show that Z
is not E-relevant for b¥g, gp, (b g). By Lemma we have b%v =4 gp, (b g). Therefore
Z is not (E + A)-relevant for v, b*v, and so 7z(b" g) =g4a 72(b5v) in CZ. It follows that

dz (0,05 v) =op4a dz(p%, b5 g) > 3E + 4,
from which we conclude d Z(pg, bXv) > E. Thus we may again apply the consistency in-
equalities, yielding
(19) dy (p, b5 v) < E.



CONJUGATOR LENGTHS IN HIERARCHICALLY HYPERBOLIC GROUPS 25

mz(b%g) = mz(ga)

FIGURE 6. The arrangement of points in CZ in the proof of Claim [I]in Case 4.

Combining this with and applying the triangle inequality yields
dy (b5 g, b5 v) < dy (b g, p#) + diamey (p&) + dy(pZ,b5v) < E + E + E = 3E.
Since R > 3E, we have U ¢ Rel(b™, b5 v; R). This completes the proof of the claim. O
Suppose first that U € Rel(1,£; R) n Rel(g,v; R). Then by the claim, we have that

U ¢ Rel(b",b5¢; R) U Rel(b¥g,b5v; R). By Lemma and the fact that UhZ, this is
equivalent to U ¢ Rel(b, % g; R). Thus dy (6%, 0% g) < R, and so we have:

du(1,9) < du(1,6") +du(g,0%g) + R < Kdy(1,b) +du(g,6™g) + K.

Now suppose that U ¢ Rel(1,¢; R)nRel(g, v; R). Since U € Rel(1,¢; R)URel(g,v; R), we
must have either U € Rel(1,¢; R) or U € Rel(g, v; R). Suppose without loss of generality that
U € Rel(1,£; R) but U ¢ Rel(g, v; R). Tt follows from the claim that U ¢ Rel(bX,b5¢; R).
Moreover, by Lemma we have di7 (b€, v) < R. Therefore:

< dy(1,0%) + dy (0%, 65¢) + dy (b€, v) + dy (v, g)
< Kdpy(1,b)+ R+ R+ R
< Kdy(1,b) + K,

where the final inequality follows because K > 3R. Thus holds regardless of whether
U € Rel(1,&; R) n Rel(g, v; R).

dU(LQ)

Case 5: U L Z for all Z € Big(b). Note that U L Z for all Z € Big(b) if and only if U £ C,
where C' is the container associated to Big(b) = {Bi, ..., Bi}. Thus the bound di;(1,9) < R
follows immediately from .

This completes the proof of the theorem. O

Remark 3.11. Theorem |D| establishes the linear conjugator property for suitable powers
of pairs of conjugate infinite order elements. In particular, the conjugator whose length we
bound in these theorems may not conjugate a to b. There are two additional steps necessary
to extend the ideas in these proofs to show the linear conjugator property holds for all pairs
of conjugate infinite order elements. First, one would have to deal with the fact that an
element may permute the elements in its big set, an issue we avoid by passing to a power to
assume that the big set is fixed elementwise. This is likely not a serious problem. Second, one
would need to understand the conjugator length function for finite order elements. Recall
that in the decomposition of b in the proof of Theorem the factor bo corresponding to
the container associated to the big set of b was a finite order element of the corresponding
sub-hierarchically hyperbolic group (G¢, S¢). We passed to a power so that we could assume
this factor was trivial. If we don’t pass to a power, we need a different way to modify the
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conjugator in that sub-hierarchically hyperbolic group G¢. To do this, we need to understand
conjugators of finite order elements. The conjugator length function for finite order elements
of hierarchically hyperbolic groups is unknown, hence this second step is currently out of

reach.
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