
DISC DIAGRAMS, WALLSPACES, CUBICAL SMALL-CANCELLATION

The second recitation, on 4 August, will consist of a discussion of a few of the following exercises,
according some type of interest-consensus. Please email questions or corrections to markfhagen@

gmail.com.

Exercise 1. The following exercises illustrate the use of cubical disc diagrams.

(1) A median graph is a graph Γ such that for all triples x, y, z of distinct vertices in Γ, there
exists a unique vertex m =m(x, y, z) such that

d(x, y) = d(m,x) + d(m,y), d(y, z) = d(m,y) + d(m,z), d(x, z) = d(m,x) + d(m,z).

Let X be a CAT(0) cube complex. Use a disc diagram argument to show that X(1) is a
median graph.

(2) Show that the CAT(0) cube complex X has the Helly property : if Y1, . . . ,Yn is a collec-
tion of pairwise-intersecting convex subcomplexes, then ⋂n

i=1Yi ≠ ∅.

(3) Let Y → X be a local isometry of nonpositively-curved cube complexes. Show that this
lifts to an isometric embedding Y →X of their universal covers.

Exercise 2. These exercises concern wallspaces, their dual cube complexes, and the attendant
group actions.

(1) (Overcubulating!) Consider the tiling of the Euclidean plane shown in Figure 1. What is
the cube complex C dual to the system of “antipodal” walls? The group

G ≅ ⟨a, b ∣ a4, b2, (ab)4⟩

acts properly and cocompactly on this tiling. DoesG act properly onC? Find a cocompact
action of G on a CAT(0) cube complex by restricting the set of walls.

Figure 1. The tiling in Exercise 2.(1). G is generated by the order-4 ro-
tation a and the order-2 rotation b. The translation subgroup is ⟨aba, ba2⟩ ≤
G.

(2) Consider the usual action of PGL2(Z) on H2 by Möbius transformations. Find an equi-
variant wallspace structure on H2 and construct the dual cube complex C. Show that the
action of PGL2(Z) on C is proper. What does C look like: how many orbits of hyper-
planes? Verify that the action of PGL2(Z) on C is cocompact. (I suppose it’s possible
that your example is not proper or cocompact; if so, modify it so it is! It’s more fun if C
is not a tree.)
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(3) Construct an example of a group G acting properly and with finitely many orbits of hy-
perplanes on a locally finite CAT(0) cube complex C such that G is not finitely generated.

Exercise 3. These exercises deal with cubical small-cancellation theory.

(1) (Using grids and splaying.) This exercise asks you to fill in a detail in the sketch of

the proof of Theorem 8.7 in the current version of Dani’s lecture notes. Let X be a
nonpositively-curved cube complex with universal cover X. Let {Yi →X} be a collection
of compact based local isometries, so that we have a cubical presentation

⟨X ∣ Yi, . . .Yk⟩.
Show that for any path P in a non-contiguous cone-piece or non-contiguous wall-piece,
there exists a path Q in a contiguous wall-piece with ∣P ∣ ≤ ∣Q∣, i.e. prove the assertion in
the notes that “non-contiguous cone-pieces and non-contiguous wall-pieces are dominated
by contiguous wall-pieces”.

(2) (A C(6) example.) Let

G ≅ ⟨a, b, c ∣ (ab)2, (bc)2, (ca)2, (a3b3c3)2⟩.
Find a finite-index subgroup G′ ≤ G and a C(6) cubical presentation for G′, with respect
to the angling-system discussed in the notes. Is each cone a wallspace?

(3) (Short inner paths) The cubical presentation

⟨X ∣ Yi, . . .Yk⟩
has short inner paths if each cone Yi has the following property: let S be a path in Yj

such that Ωi(S) < π for all i, where Ωi is the total defect defined below. Then for each local
geodesic S′ → Yj that is path-homotopic to S, and for each path Q → Yj such that QS′

is an essential closed path in Yj , we have ∣S′∣ < ∣Q∣. Show that if the cubical presentation
is C′( 1

24
), then it has short inner paths. For which α > 1
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does this hold?

(4) (Cones embed) Let X∗ be the coned-off complex associated to the cubical presentation:

⟨X ∣ Yi, . . .Yk⟩.
Denote by X̃∗ the cover of X associated to

⟨⟨{Yi}⟩⟩ ≤ π1X.

Use the fundamental theorem of small-cancellation theory to show that, under the following
hypothesis, each Yi embeds in X̃∗: there is an angling-system on X∗ such that the ladder
theorem holds and with respect to which X∗ has short inner paths.

Definition 1 (Total defect). Let D →X∗ be a rectified disc diagram of minimal complexity such
that the path S → Yj lies on a cone-cell C in D mapping to Yj . For each corner c in C along
S, the defect at c is π − ∢(c). The defect of along S in D is the sum of the defects at all of the
corners c of C along S. The total defect of S in Yj , denoted Ωj(S), is the infimum over all such
minimal-complexity rectified diagrams D of the total defect of S in D. See Figure 2.

Figure 2. The total defect is 3π
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