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1 Overview
My primary areas of interest are the worlds of finitely generated groups and low di-
mensional manifolds. I am especially interested in interactions between group theory,
geometry, and topology; recently I have also been pursuing connections between these
areas and probabilistic combinatorics.

Geometry and group theory meet via the observation that any finitely generated group
can be endowed with a natural metric which is uniquely determined up to quasi-isometry,
i.e., up to maps which distort distance by a bounded additive and multiplicative amount.
With this basic fact as a starting point, Gromov proposed the problem of classifying groups
by their (quasi-isometric) geometry. The question of classifying groups in this way is a
central question which has received enormous attention, yet about which much work
remains to be done. At present, there are a few important families whose geometry has
successfully been classified and many more for which a classification theorem appears to
be imminent. One beautiful aspect of this program, as I describe below, is the interactions
it fosters between group theory and many areas of mathematics including: analysis,
combinatorics, computer science, logic, geometry, topology, and others.

For a number of the most fundamental families of groups, I have completely resolved
or made significant progress on the quasi-isometric classification question. This includes
mapping class groups [6, 29], 3–manifold groups [33, 34], Artin groups [10, 20, 27, 28],
relatively hyperbolic groups [15], Coxeter groups [20, 22, 26], and others. I have also used
the geometry of groups as a starting point to resolve problems in parts of mathematics
outside of group theory, including: Teichmüller theory [6, 15, 23, 26, 31], Kazhdan’s
Property (T) [16, 17], the Novikov Conjecture [32], random graphs [18, 19, 22], 3–manifold
topology [33, 34], geometric measure theory [13, 14], and elsewhere.

In this overview I will just focus on two of the main directions of my recent work.
In Section 2 I’ll describe recent and ongoing work on hierarchically hyperbolic group
and spaces, which I introduced with M. Hagen and A. Sisto in a series of papers, which
has led to a flurry of activity by ourselves and others. Our work establishes a new
framework for studying non-positive curvature phenomena and has already played a key
role in resolving a number of long-standing questions and conjectures. The results and
techniques in Section 3 primarily involve probabilistic combinatorics and are of a quite
distinct flavor from much of my other research. This work provides novel insights into the
study of random graphs and in turn obtain new results about the geometry of Coxeter
groups. As discussed below, this work has been informed by experiments using computer
software written by myself and with collaborators, including some software written with
undergraduates working with me in a summer “research experience for undergraduates”
program. Finally, in Section 4, I’ll briefly mention a few other results of mine to give a
further sense of some of the other types of questions I’ve studied and some of the variety
of tools I’ve developed to do so.

In addition to the research I’ve carried out, I also actively mentor at all levels and to
a diverse collection of students. For undergraduates I have run several REUs, leading
to research papers and honors theses for a number of the participants. I currently have
several Ph.D. students and have had five graduate so far, each of whom then held a
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postdoc at a top research university. I have also organized a number of conferences aimed
at junior researchers and mentored a number of postdocs, including several with whom
I’ve now written papers [1, 2, 3, 19, 18, 20, 21, 22, 23, 24, 25, 26]. I also wrote an article to
introduce beginning graduate students to the field of geometric group theory [7] based on
a lecture series I gave in China and which I’m in the process of expanding to a book.

2 Hierarchically hyperbolic groups and spaces
In a series of papers with M. Hagen and A. Sisto, we introduced a class of groups and
spaces which we call hierarchically hyperbolic [23, 24, 25, 26]. This class effectively
captures the type of negative curvature phenomenon that one sees in many important
groups and spaces in low dimensional topology, including mapping class groups, right-
angled Artin groups, most 3–manifold groups, Teichmüller space (in any of the well
studied metrics), etc.

Using the viewpoint provided by hierarchical hyperbolicity, we have successfully
proven a number of exciting new results, including: a general framework for proving
quasi-isometric rigidity [26]; distance formulas for cubulated groups and 3–manifold
groups [23, 24] which allow one to quasi-isometrically estimate distances in the group in
terms of more easily accessed data; acylindricity for cubulated groups [23]; restrictions on
quasi-isometric embeddings of nilpotent groups into many spaces [23]; effective bounds
on asymptotic dimension [25]; structure theorems for quasiflats [26]; a generalization
of Thurston’s Dehn filling theorem [21]; etc. We have also been able to give short new
proofs of a number of important and difficult theorems, including: the Masur–Minsky
distance formula forMCG [MM2, 24]; acylindricity of the action ofMCG on the curve
graph [Bow3, 23] and of a right-angled Artin group on its extension graph [KK, 23], quasi-
isometric rigidity ofMCG [29, 26], the Brock–Farb Rank Conjecture for Teichmüller space
[31, 23], and others.

The study of hierarchically hyperbolic spaces (HHSs) began with constructing tools to
generalize the “hierarchy machinery” for mapping class groups which was developed in
[MM1, MM2, 6, 29, 31]. The basic setup allows us to use HHS analogues of tools which
played a central role in proving recent major results including quasi-isometric rigidity
for mapping class groups [29], the Rank Conjecture for Teichmüller space [31], and the
Ending Lamination Conjecture for Kleinian groups [BCM].

Roughly, a hierarchically hyperbolic structure is defined by providing analogues of
the following objects and maps from the theory of surfaces: a notion of “subsurfaces” and
“complexity” of a subsurface; a “curve graph” associated to each surface (for surfaces
this is an infinite δ–hyperbolic graph which encodes the set of all homotopy classes of
simple closed curves on a surface and their intersection patterns); relations of “nesting,”
“disjointness,” and “overlapping”; and, projections from the curve graph of one “subsur-
face” to another with suitable properties. One upshot is that this allows us to prove in
new settings, for instance cubical groups, theorems known for mapping class groups; it
also provides a new perspective for approaching questions about mapping class groups,
which were not accessible from within the theory of mapping class groups (e.g., results in
[25, 26] are two examples of the phenomenon where the HHS perspective is crucial, as it
allows for more flexible constructions than those purely within the world of mapping class
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groups, allowing us to resolve long-standing conjectures about mapping class groups via
a more general result).

Hierarchical hyperbolicity turns out to include a very broad collections of groups and
spaces, including those obtained by a number of combination theorems. Recent papers
enlarging the class of spaces with this property includes a number of papers by myself
and others: [21, 23, 24, 25, BR2, BR1, DDLS, Hae2, HHP, HP, HRSS, HS, Hug, HV, RS,
Rus1, RV1, RV2, Spr2, Vok].

I’ll now describe in slightly more detail a few of the results I’ve been directly involved
in to give a taste of the types of work being done using hierarchical hyperbolicity.

Generalizing classical theorems of Morse and Mostow, it was proven that in a higher-
rank symmetric space an arbitrary quasiflat must lie near a finite number of standard flats
[EF, KL]. A number of long standing questions asked whether generalizations of such a
classification of quasiflats holds in other settings; we resolve these with the following.

Theorem 2.1 (Quasiflats Theorem for HHS; [26]). Let X be an any hierarchically hyperbolic
group (or, more generally, any HHS satisfying a minor technical hypothesis). Then any top-
dimensional quasiflat in X is Hausdorff close to a uniformly bounded number of orthants of
standard flats.

This theorem has numerous applications. Applied to the mapping class group this
theorem affirms a conjecture of Farb. Using this theorem in the case of the Weil-Petersson
metric on Teichmüller space answers a question of Brock [Bro, Question 5.3]. Applied
to fundamental groups of non-geometric 3–manifolds allows us to recover an important
theorem of Kapovich–Leeb [KL1]. For cubulated groups this results generalizes the main
theorems of [BKS] and [Hua], allowing us to, for instance, obtain a quasiflat theorem for
all right-angled Coxeter groups. Also, we used this to give a new very short alternate
proof of quasi-isometric rigidity for mapping class groups and establish a framework for
proving quasi-isometric rigidity in a more general setting.

The following gives a relation between hierarchically hyperbolic groups and acylindri-
cally hyperbolic groups, cf. [Osi2]. For the sake of brevity, we won’t define the automor-
phism group of a hierarchically hyperbolic space here, rather, we just note that it includes,
in the relevant cases, all elements ofMCG and all isometries of a cube complex with a
factor system. The “maximal element” S and CS referred to below are X and its contact
graph, in case X is a CAT(0) cube complex, while they are the surface S and its curve
graph, when G is the mapping class group of S.

Theorem 2.2 (HHS act acylindrically; [23]). Let X be hierarchically hyperbolic with respect
to the set S of hyperbolic spaces and let G ≤ Aut(S) act properly and cocompactly on X . Let S
be the maximal element of S and denote by CS the corresponding hyperbolic space. Then G acts
acylindrically on CS.

The asymptotic dimension of a metric space is a well-studied quasi-isometry invariant, in-
troduced by Gromov [Gro], which provides a coarse version of the topological dimension.
Early motivation for studying asymptotic dimension was provided by Yu, who showed
that groups with finite asymptotic dimension satisfy both the coarse Baum–Connes and
the Novikov conjectures [Yu]. It is now known that asymptotic dimension provides coarse
analogues for many properties of topological dimension, see [BD]. Using very different
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techniques a number of groups and spaces have been shown to have finite asymptotic
dimension, although good estimates on this dimension have proved difficult in many
cases: curve graphs [BF, BB], mapping class groups [BBF], cubulated groups [Wri], graph
manifold groups [Smi], and groups hyperbolic relative to ones with finite asymptotic
dimension [Osi1].

The following very general theorem, which in addition to covering many new cases,
provides a unified proof of finite asymptotic dimension for almost all the cases just
mentioned:

Theorem 2.3 (Finite asymptotic dimension for HHS; [25]). Any hierarchically hyperbolic
group has finite asymptotic dimension.

Not only do we prove finiteness, but we obtain very effective bounds on the dimension.
For instance, for the mapping class group our bound is quadratic in the complexity of the
surface, improving prior bounds which were double exponential [BBF, BB, Web].

Corollary 2.4 (Effective asymptotic dimension bound forMCG(S); [25]). Let S be a con-
nected oriented surface of finite type of complexity ξ(S) ≥ 2. Then the asymptotic dimension of
MCG(S) is at most 5ξ(S)2.

In a recent paper with C. Abbott, we found that many elements in a hierarchically
hyperbolic groups satisfy the linearly bounded conjugator property, which is useful for
solving algorithmic problems in a group. The following is a special case of one of our
results concerning Morse elements, which are elements whose geometry is similar to that
of the axis of a loxodromic isometry of a hyperbolic space.

Theorem 2.5 (Morse elements have linearly bounded shortest conjugators; [1]). Let (G,S)
be a hierarchically hyperbolic group. There exist constants K,C such that if a, b ∈ G are Morse
elements which are conjugate in G, then there exists g ∈ G with ga = bg and

|g| ≤ K(|a|+ |b|) + C.

In a paper with C. Abbott and M. Durham, we proved that Morse elements in a hierar-
chically hyperbolic group admit a number of nice characterizations, see [2, Theorem B].

Arguably, the most basic elements in the mapping class group of a surface are the Dehn
twists. In 1974, in Birman’s classic monograph [Bir], she notes that for the closed genus
two surface the normal closure of the squares of Dehn twists is of index 6! in the mapping
class group; she then asked whether the index is finite or infinite for arbitrary genus.
During the past 50 years there has been a small industry of people showing in various
cases that in some cases these quotients were finite and in others infinite. In the following
result my collaborators and I not only prove that many of these groups are infinite, but we
provide a hierarchically hyperbolic structure on them which gives substantial progress
towards geometrically understanding these quotients.

Theorem 2.6 (Quotients of MCG by powers of Dehn twists; [21, Theorem 2]). For any
surface of finite type there exists a constant K0, so that for any non-zero multiple K of K0 the
quotient of the mapping class group by the normal subgroup generated by K-th powers of Dehn
twists is an infinite hierarchically hyperbolic group.
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The study of hierarchically hyperbolic groups/spaces has already had a tremendous
impact and is growing quickly. In addition to the numerous problems these techniques
have already resolved, they also allow for many new approaches to questions previously
out of reach. The power of our approach can be gleamed from both the large number of
papers that have already been written about hierarchically hyperbolic groups in just a few
years. For instance, some of the papers which use this framework in a crucial way are
the following: [1, 2, 3, 4, 21, 23, 24, 25, 26, But, ANS, BR1, BR2, Bow1, Bow2, DDLS, DHS,
DMS, DZ, Hae2, Hae1, HHP, HP, HRSS, HS, HMS, Hug, HV, JL, Che, Mou1, Mou2, MR,
Pet, PSZ, PS, RS, Rus1, Rus2, RST, RV1, RV2, Sel2, Sel1, She, Sis2, Spr1, Spr2, Vok] and
numerous others in preparation.

3 Random graphs and Coxeter groups
I have been interested in proving geometric group theory analogues of some of Erdős–
Rényi’s foundational work in graph theory. My work has two interlaced aspects: one
is making novel contributions in the field of probabilistic combinatorics; the second is
applying my graph theoretic results to obtain striking new theorems about groups.

Random graphs
A random graph in the Gilbert/Erdős–Rényi model model is obtained by taking a density
function p(n) : N→ (0, 1) and forming a graph on n vertices by independently declaring
each pair of vertices to span an edge with probability p(n); we say such a graph is in
G(n, p). Given a function p, we say a random graph satisfies a given property asymptotically
almost surely (a.a.s.) when, with respect to the density function p(n), the probability that a
random graph satisfies the property approaches 1 as n→∞.

A property of graphs is said to exhibit a sharp threshold if there is a critical density
pc = pc(n) such that for any fixed ε > 0 if p < (1 − ε)pc then a.a.s. P does not hold in
G(n, p), while if p > (1 + ε)pc then a.a.s. P holds in G(n, p). A quintessential example is a
classical theorem of Erdős and Rényi which yields a sharp threshold for connectedness:

Theorem 3.1 (Erdős-Rényi sharp threshold for connectivity; [ER]). There is a sharp threshold
for connectivity of a random graph and the critical density is log(n)

n
. Above this density random

graphs are connected and below it they are disconnected.

An interested family of graphs which my collaborators and I have studied are called
CFS graphs (“Constructed From Squares”). These graphs arise naturally in geometric
group theory in the context of the large–scale geometry of right–angled Coxeter groups
(a special case of these graphs was introduced by Dani–Thomas to study divergence in
triangle-free right-angled Coxeter groups [DT]). Roughly, a graph is in CFS if it can be
built inductively by chaining together induced squares in such a way that each square
overlaps with one of the previous squares along opposite vertices. The CFS property
provides a strong notion of connectivity, and thus the next result which establishes the
critical threshold for the CFS property, is an analogue of Erdős–Rényi’s Theorem 3.1.
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Theorem 3.2 (Critical threshold for CFS; [18, 19]). Suppose p(n) is bounded away from 1.
There is a sharp threshold for a random graph to have the CFS property and the critical density is√√

6− 2 · n− 1
2 . Above this density random graphs have CFS and below it they do not.

One application of Theorem 3.2 is that it allowed us to establish in [19] a conjecture of
Bollobas and Riordan about percolation [BR] and provides a framework for answering
other questions, including additional ones asked in [BR].

Applications to geometric group theory
My interest in random graphs arose from studying the geometry of right-angled Coxeter
groups. These groups are an extremely interesting source of examples. Indeed, the
richness of the class of right-angled Coxeter groups has led to many significant advances
in geometric group theory and 3–manifold topology, especially in light of recent work by
Agol, Haglund, Wise, and many others [Ago, HW, Wis2, Wis1].

A right-angled Coxeter group admits the following concise finite presentation: each gen-
erator is of order two and the only defining relators are that certain generators commute.
Right-angled Coxeter groups can be described (uniquely) via a finite simplicial graph: the
vertices correspond to the (order 2) generators and edges to pairs of generators which
commute. Following the usual convention, we denote the graph Γ and the corresponding
right-angled Coxeter group by WΓ.

A powerful invariant for distinguishing metric spaces and groups up to quasi-isometry
is that of divergence. The notion of the divergence of a metric space originates in work
of Gromov and Gersten, and, roughly speaking, measures how far one must travel to
connect two points while avoiding a specified ball centered at a third. An illustrative
example is symmetric spaces of non-compact type where the order of the divergence of
geodesic rays is either exponential (when the rank is one) or linear (when the rank is at
least two).

The class of Coxeter groups contains many examples of hyperbolic and relatively
hyperbolic groups. There is a criterion for hyperbolicity purely in terms of the presentation
graph due to Moussong [Mou] and an algebraic criterion for relative hyperbolicity due to
Caprace [Cap]. The class of Coxeter groups includes examples which are non-relatively
hyperbolic, for instance, those constructed by Davis–Januszkiewicz [DJ] and, also, ones
studied by Dani–Thomas [DT].

In [22], we establish a geometric criterion for relatively hyperbolicity and obtain
computable invariants for quasi-isometrically distinguishing many Coxeter groups:

Theorem 3.3 (Canonical relative hyperbolicity structures; [22]). Every Coxeter group either
has polynomial divergence or is hyperbolic relative to a canonical (possibly empty) collection of
subgroups which each have polynomial divergence. Moreover, for each n ∈ N there exist Coxeter
groups with divergence which is polynomial of order n and one-ended Coxeter groups which are
hyperbolic relative to subgroups which each have divergence which is polynomial of order n.

Note that relatively hyperbolic groups have exponential divergence (see [Sis1]), while
polynomial divergence in the above result is established via establishing a property called
thickness then applying my results from [12].
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Further, the above characterization can be formulated in terms of the combinatorics of
the graph [22, Lev2]; this allows us to deduce group theoretic results from graph theoretic
ones.

By associating to a random graph, Γ ∈ G(n, p), its associatedWΓ yields a notion of a ran-
dom right-angled Coxeter group. In the papers [18, 19] we found the exact range of densities
for which random right-angled Coxeter group have quadratic divergence. Interestingly, a
special case of this theorem is the following which shows that a conjecture of Gromov’s
about non-existence of polynomial divergence in CAT(0) spaces [Gro, Section 6.B2] is false
for the generic right-angled Coxeter group!

Theorem 3.4 (The generic RACG as counterexample to Gromov’s conjecture; [18, 19]). For
any ε > 0, if p : N → (0, 1) is bounded away from 1 and satisfies p(n) ≥

(√√
6− 2 + ε

)
· n 1

2

for all sufficiently large n, then the random right-angled Coxeter group WΓ, for Γ ∈ G(n, p),
asymptotically almost surely has quadratic divergence.

In his Ph.D. thesis, my student Ivan Levcovitz proved that a graph is CFS if and only
if the right-angled Coxeter group with that presentation graph has quadratic divergence
[Lev1]. His result together with Theorem 3.2 show that below the density in Theorem 3.4
asymptotically almost surely the random right-angled Coxeter group has divergence
which is at least cubic.

0 1
n

log(n)
n n−

5
6 n−

1
2 1− α

n2 1

hyp. hyp. rel D2
∞ rel hyp?thick? thick of order 1 virt. Zn

finite

infinite div. exp. div. ≥ cubic div. quadratic divergence lin. div

Figure 1: Behavior of random RACG at a spectrum of densities. Each listed property
occurs a.a.s. at the given density, as proven in [18, 19, 22, Lev1]. Prevalence of the blue/red
properties in the middle are a subject of my current research; indeed my recent preprint
[11] makes a huge leap in this direction by showing that the range for relatively hyperbolic
range extends all the way up to (n log(n))−

1
2 , thereby affirming that the statement in the

first bullet point of Conjecture 3.5 is the right order of magnitude for the threshold.

An amazing aspect of Erdős–Rényi’s study of connectivity in random graphs is their
famous “double jump theorem.” Their result shows that the size of the largest connected
components of graphs in G(n, p) has a double jump at 1

n
: for probabilities below this, the

size is logarithmic in n; at the threshold, the size is roughly n
2
3 ; and, above it, the size of

the largest component is linear in n. My viewpoint on the above results about RACG is
that they are leading to the following conjecture for RACGs, which would be the first
analogue in geometric group theory, by showing that there exists a “double jump” in the
qualitative change in behavior at a particular critical threshold:

Conjecture 3.5 (RACG double jump conjecture). Let ε > 0, λ =
√√

6− 2, and Γ ∈ G(n, p).
One of the following occurs.
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• If 0 ≤ p(n) ≤ λ−ε√
n

, then WΓ has exponential divergence (and is relatively hyperbolic).

• If p(n) = λ√
n

, then WΓ has polynomial divergence.

• If λ+ε√
n
≤ p(n) ≤ 1− (1+ε) logn

n
, then WΓ has quadratic divergence.

Note that my collaborators and I already established the third bullet point in [19, 22].
One of the ways in which we were led to Theorem 3.4 and have found evidence

for Conjecture 3.5 is by computer experimentation using software I developed, some
of which was done with the help of undergraduates. Recently I generated the data
for the figure at right which displays the results of testing random graphs to see if the
corresponding RACG is thick and, if so, the order of thickness (which is exactly one less
than the order of polynomial diver-
gence); if not thick then they are rel-
atively hyperbolic. This data set looks
at a range of vertex sizes, n, and den-
sities of the form p = α · n− 1

2 . For each
pair (n, p) of this type, I generated and
tested 100 random graphs (note that
above α = 0.55 they all were thick; be-
low that at least 95% were, except at
α = 0.45 where for n < 550 approxi-
mately 70% were thick). The data il-
lustrates the tight correlation between
density (as a multiple of n−

1
2 ) and or-

der of thickness as a function of the
number of vertices. This data provides
some computational evidence that p = α · n− 1

2 is where a threshold will lie for a threshold
between thickness and relative hyperbolicity (which should roughly be thought of as an
infinite order of thickness).

4 Selected other results
Below is a short summary of some of my other work to give a quick view of a few of my
interests beyond those discussed in the two projects described above.

A continuing source of inspiration for me is the example of the mapping class group,
MCG(S) which is the group of isotopy classes of homeomorphisms of a surface, S. This
group plays a central role in the topology of surfaces, it is important in Teichmüller
theory, algebraic geometry, three-dimensional topology, and is a rich source of interesting
phenomena providing a model for study throughout geometric group theory.

The geometric rank of a space is the maximal dimension of a euclidean space which can
be quasi-isometrically embedded into that space. J. Brock and B. Farb [BF2] formulated

See http://comet.lehman.cuny.edu/behrstock/random.html for an animation with related
data.

http://comet.lehman.cuny.edu/behrstock/random.html
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Rank Conjectures for the mapping class group and for Teichmüller space. Minsky and
I resolved these conjectures in [31] by calculating the geometric rank of these spaces. In
doing so we showed that the geometric rank of the mapping class group of a surface is
equal to the maximal rank of an abelian subgroup, the latter of which was computed
by Birman–Lubotzky–McCarthy to be equal to the maximal number of pairwise disjoint
homotopy classes of simple closed curves on a given surface [BLM].

One of my first obsessions as a mathematician was a long-standing question: is the
mapping class group quasi-isometrically rigid. Loosely speaking, this asks whether the
isomorphism class of such groups is determined by their geometry. My collaborators and
I resolved this in [29] by proving that a finitely-generated group Γ is quasi-isometric to
MCG(S) if and only if there exists a finite-index subgroup Γ′ < Γ and a homomorphism,
with finite kernel and finite-index image, from Γ′ toMCG(S) modulo its center.

I am interested in analytic properties of groups. One such property with roots in
representation theory is Kazhdan’s Property (T). With C. Druţu and M. Sapir, one of
the results we proved is that any group with Property (T) admits only finitely many
non-conjugate homomorphisms into any mapping class group [16, 17].

Another property from analysis is the Rapid Decay property (a.k.a. the Haagerup inequal-
ity) which holds for a group G, when the space of rapidly decreasing functions on G, with
respect to some length function, is inside the reduced C∗–algebra of G. This is a property
which is enjoyed by hyperbolic groups and many, but not all, lattices in semi-simple Lie
groups [Haa, dlH]. In work with Minsky, we proved the mapping class group has the
Rapid Decay property [32]. This property has many applications, for instance we used it
to give a proof of the strong Novikov conjecture for mapping class groups.

My paper [6], introduced a key inequality for studying non-positively curved spaces,
which has since been widely used both in my research and by others. This result which
people often call the “Behrstock inequality” has played an important role in several Ph.D.
theses from the University of Michigan, Utah, Yale, and elsewhere [AK1, Man1, Sun] and
numerous publications where people are interested in this inequality or analogues of it,
see e.g., [AK2, BBF, BF, BM, CLM, Dur, Run, Man2, SS, ST, Tay2, Tay1].

The fundamental groups of 3–manifolds are an important and rich family of groups.
Neumann and I wrote a series of papers which completed resolved the quasi-isometric
classification problem for graph manifolds (answering a conjecture of Kapovich–Leeb
[KL2] in the process) and established a framework for the general quasi-isometric clas-
sification problem for 3–manifold groups [33, 34]. As part of our work we introduced a
notion which we call bisimilarity — in homage to a related notion in computer science —
which is an algorithmically checkable equivalence relation on colored finite graphs. This
allows us, for instance, to prove results such as: there are exactly 204535126 quasi-isometry
classes of fundamental groups of non-geometric graph manifolds composed of at most 8
Seifert fibered pieces [33], see also [Slo].

Our notion of bisimilarity has now been used to obtain quasi-isometric classifications
for other families of groups, see: [28, CRKZ1, CRKZ2, Cas, CM1, CM2, HNT, Mar, NT,
Oh, SW].

In the previous section I discussed a bit about the divergence function which provides
a rich quasi-isometry invariant for metric spaces and finitely generated groups. In sym-
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metric spaces of non-compact type the divergence of geodesic rays is either exponential
(when the rank is one) or linear (when the rank is at least two). Gromov discussed this
in [Gro, Section 6.B2] and explicitly conjectured that all pairs of geodesic rays in the
universal cover of a closed Riemannian manifold of non-positive curvature must diverge
either linearly or exponentially. In the early 1990’s, Gersten provided counterexamples
to this conjecture by producing examples of CAT (0) spaces and groups with quadratic
divergence [Ger1, Ger2]; he then raised the question of whether one could find CAT (0)
spaces whose divergence was polynomial of degree greater than two.

Twenty years after Gromov’s question, in joint work with C. Druţu [12], we provide
a complete answer to the Gromov/Gersten question [Gro, Ger1, Ger2] by providing an
abundant collection of (counter-)examples, including infinite families of pairwise non-
quasi-isometric finitely generated CAT (0) groups which each have divergence which is
polynomial of degree any fixed integer.

Analogous to the standard divergence function, one can consider “higher dimensional”
isoperimetric and divergence functions. The k–dimensional isoperimetric function is defined
by taking the supremum of filling volumes over all k–dimensional spheres of volume
at most a fixed constant times xk. To make sense of this one needs a way to measure
volume. In the case of a group, G, which acts cellularly and properly discontinuously
on an n–connected CW–complex, X , such that X(n+1)/G has finitely many cells, for any
1 ≤ k ≤ n we define the k–dimensional isoperimetric function of G to be the k–dimensional
combinatorial isoperimetric function of X .

Motivated by theorems about groups acting on Hadamard spaces [Gro, Kle], Druţu
and I computed the higher divergence and isoperimetric functions of the mapping class
group in [13, 14]; one of our results is that these functions exhibit a phase transition at the
geometric rank. This result is the mapping class group analogue of a result for Hadamard
spaces proven in [Wen, BF1, Leu, Hin].
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