
Algorithmic Computation of Thickness in

Right-Angled Coxeter Groups

Robbie Lyman

April 2, 2015

Abstract

The classification of right-angled Coxeter groups up to quasi-isometry
has been a subject of recent inquiry, mostly via two related quasi-isometry
invariants called thickness and divergence. A paper by Behrstock, Hagen
and Sisto gave an algorithm to determine whether a right-angled Coxeter
group was thick or not. A paper by Dani and Thomas gave explicit
characterizations of thickness of orders 0 and 1 for triangle-free graphs and
exhibited a family of groups {Wk : k ∈ N} such that Wk has divergence
of order rk (and is thus thick of order k − 1). We give a brief overview
of Coxeter groups, review the previous results, and then give two new
algorithms that not only determine whether a right-angled Coxeter group
is thick or not but give upper bounds on the order of thickness. We then
discuss applications of these algorithms to random graphs.

1 Coxeter Groups, Basic Notions

While many of the concepts introduced apply to the study of groups more gen-
erally, our main focus will be on Coxeter groups, a particular class of groups
generated by reflections. (For more on Coxeter groups more generally, the in-
terested reader should consult Davis’s book, [Dav07].) Consider a set S, and to
each pair (s, t) ∈ S × S associate a number mst ∈ N ∪ {∞} with the conditions
that

(1) mst = 1 ⇐⇒ s = t, and

(2) mst = mts.

Definition. A Coxeter group W with generating set S is a group defined by
the following presentation:

W = 〈s ∈ S | (st)mst〉

with the convention that there is no relation between s and t if mst =∞.

(1,2)
(2,3)

(3,4)

(1,4)

3 3

3 3

Figure 1: A graph describing S4

as a Coxeter group.

Thus every generator s ∈ S has order 2,
and if s and t are such that mst = 2, then

st = st(tsts) = s(tt)sts = (ss)ts = ts,

i.e. s and t commute. We can encode the
information in this presentation for W in a
graph Γ as follows: let each s ∈ S correspond
to a vertex in Γ labelled s. For each pair
(s, t) with s 6= t, let there be an unlabelled
edge connecting s and t if mst = 2, an edge
labelled mst if 2 < mst < ∞, and no edge
if mst = ∞. Figure 1 gives an example of this process for S4, the symmetric
group on four elements.

Definition. We say that a Coxeter group W is right-angled if for every pair
(s, t) of distinct generators in S, mst is either two or zero, i.e. every defining
relation between generators is a commutator.

We will restrict ourselves to Coxeter groups that are right-angled and have
finite generating sets. In view of the above discussion, given a finite simplicial
graph Γ, we can construct a right-angled Coxeter group with generators the
vertices of Γ and relations the conditions that every generator has order 2 and
two generators commute just when there is an edge between the corresponding
vertices in Γ. We’ll denote this Coxeter group WΓ.

Given a finite simplicial graph Γ and its corresponding right-angled Coxeter
group, WΓ, if we choose a subgraph Λ of Γ by choosing a subset V of the
vertices of Γ together with all the edges of Γ that span vertices in V , WΛ, the
right-angled Coxeter group generated by Λ, will be a subgroup of WΓ. We call
such a subgroup WΛ a special subgroup of WΓ, and such a subgraph Λ a full
subgraph of Γ, or the induced subgraph corresponding to the subset V of
the vertices of Γ.

To study the geometry of Coxeter groups, it will be useful to introduce
geometric objects that the groups act on. The first of these is the Cayley
graph. Further discussion of concepts introduced here can be found in [Hat02]
and [Mei08].

Definition. Given a group G and a generating set S, the Cayley graph of
G with respect to S is the graph with vertices the elements of G and edges
such that g is connected to h by an edge whenever there exists s ∈ S such that
g = h ·s. Between any two vertices there will be at most one edge, and no edges
will have the same vertex as both endpoints.

The Cayley graph for F2, the free group on two generators a and b with
respect to the generating set {a, b}, for example, is a tree with four edges incident
at each vertex, one each for a, a−1, b and b−1, and the Cayley graph for Z×Z with
respect to the generating set {(1, 0), (0, 1)} is the 2-dimensional integer lattice
with edges connecting (m,n) to (m+ 1, n) and (m,n+ 1) for all integers m and

2

n. If CG is the Cayley graph of G, then G acts on CG by left-multiplication of
vertex labels.

We’d also like to consider groups as metric spaces, for which we introduce
the following notion of a word metric, which is closely related to the Cayley
graph.

Definition. Given a finitely-generated group G and a generating set S, the
word metric on G with respect to S is the function dG,S : G×G→ R, with

dG,S(x, y) = ‖x−1y‖

where ‖x−1y‖ is the number of letters in S needed to represent x−1y as a reduced
word.

It is simple to check that dG,S is indeed a metric on G. In fact, dG,S(x, y)
corresponds to the distance between x and y in the Cayley graph of G with
respect to S if every edge is isometric to the unit interval. In the following
discussion, we may suppress the subscript and write dG or d if doing so will not
cause confusion.

We might worry that because this metric depends on a choice of generating
set, it might be possible to choose generating sets S and S′ such that dG,S and
dG,S′ give very different values for the same input, and this is true. However,
these word metrics are equivalent in a certain sense that we will now describe.

Definition. Given two metric spaces (X, dX) and (Y, dY), a map f : X → Y is
a quasi-isometric embedding if there exist constants K ≥ 1 and C ≥ 0 such
that for all x1, x2 ∈ X,

1

K
dX(x1, x2)− C ≤ dY (f(x1), f(x2)) ≤ KdX(x1, x2) + C

If in addition for all y ∈ Y , there exists x ∈ X such that dY (y, f(x)) < C, then
we say that f is a quasi-isometry. Finally, given a quasi-isometry f : X → Y ,
we say a quasi-isometry g : Y → X is a quasi-inverse of f if

sup
x∈X

dX(g ◦ f(x), x) <∞ and sup
y∈Y

dY (f ◦ g(y), y) <∞

The main results that will be important to us are the following:

Proposition 1.1. Given a quasi-isometry f : X → Y , there exists a quasi-
isometry g : Y → X that is a quasi-inverse for f .

The above together with this proposition shows that quasi-isometry is an
equivalence relation of metric spaces.

Proposition 1.2. If S and S′ are two finite generating sets for a group G, then
(G, dG,S) is quasi-isometric to (G, dG,S′).

3

Thus classification up to quasi-isometry can be a useful tool in studying
and classifying finitely-generated groups. Of course, if G is a finite group, then
dG(e, ·), the distance in G from the identity to any other group element is a
bounded function, so G will be quasi-isometric to a single point. Therefore we
will consider only infinite groups.

Finally, all the metric spaces we will consider have the property that between
any two points x, y in (X, d), there is a path from x to y (i.e. a continuous
function f : [0, 1] → X with f(0) = x, f(1) = y) whose length, `(f), satisfies
`(f) = d(x, y). Such a space is a geodesic metric space and such a path
is a minimising geodesic. If CG is the Cayley graph of a group G, then an
appropriate path that traces out the shortest path from e to g (by following the
edges labelled with the generators in the reduced word for g) is a minimising
geodesic.

2 Thickness, Divergence

Since we are interested in results on right-angled Coxeter groups, most of what
follows, particularly in the definitions, will require some reformulation or extra
assumptions to be valid for more general metric spaces or other classes of groups.
Readers interested in a fuller exposition should consult [BHS13] and [DT15].

In order to motivate the definition of thickness, we begin by introducing a
related notion of divergence. Roughly speaking, the divergence of a geodesic
metric space measures how quickly the circumference of a metric ball grows as
the radius of the ball does.

Definition. Let (X, d) be a right-angled Coxeter group with a word metric, or
the Cayley graph of a right-angled Coxeter group with each edge isometric to
[0, 1]. Fixing a basepoint p ∈ X, and letting B(p, r) and S(p, r) denote the open
ball and sphere of radius r at p, the (p, r)-avoidant distance between x and
y, davp,r(x, y) is defined for x, y ∈ X −B(r, p)

davp,r(x, y) = inf{`(f) : f is a path in X −B(r, p) from x to y}

The divergence of X, divX : R→ R is defined as

divX(r) = sup
x,y∈S(r,p)

davp,r(x, y)

If we define a partial order on functions f : R→ R as

f � g if ∃ C > 0 such that f(r) ≤ Cg(Cr + C) + Cr + C

and an equivalence relation ' with f ' g ⇐⇒ f � g and g � f , then
divergence becomes a quasi-isometry invariant, up to '. We say X has linear
divergence if divX ' r, quadratic if divX ' r2, and so forth. Since the
circumference of a circle with radius r in Rn is given by 2πr, divRn is linear.
There exist spaces X such that rk � divX for all k ∈ N; the Poincaré disk model
of hyperbolic space is an example of one such space.

4

We’re now ready to introduce the notion of thickness. Thickness, which
is also a quasi-isometry invariant, guarantees that metric balls grow at most
polynomially. Thus the Poincaré disk is not thick. The definition of thickness
is inductive:

Definition. A finitely generated right-angled Coxeter group W is thick of
order 0 if it can be written as a direct product, W = G1 × G2 of infinite
groups. For n ≥ 1, W is thick of order at most n if there exists a finite
collection H of subgroups such that

(1) Each H ∈ H is quasi-isometrically embedded in W

(2)
〈⋃

H∈HH
〉
, the subgroup generated by the union of all the H ∈ H has

finite index in H.

(3) For all pairs H,H ′ ∈ H, there is a finite sequence H = H1, . . . ,Hk = H ′

with each Hi ∈ H such that Hi ∩Hi+1 is infinite for 1 ≤ i < k.

(4) Each H ∈ H is thick of order at most n− 1.

W is thick of order n if W is thick of order at most n but is not thick of order
at most n− 1.

Since the divergence characterises the upper limit of growth of geodesics in
a space, we might want to interpret this definition with paths in mind: roughly
any two elements of

〈⋃
H∈HH

〉
can be connected by a path that travels within

subgroups that are all thick of order at most n − 1, so we might hope that an
increment in the order of thickness will only increase the order of the divergence
by one. Indeed, the following holds:

Proposition 2.1. (Corollary 4.17 of [BD]) If W is thick of order n, then
divW � rn+1.

3 Combinatorial Approaches

Given our correspondence between finitely generated right-angled Coxeter groups
and finite simplicial graphs, it is natural to ask how much information about
the thickness of a group WΓ can be determined by examining its graph, Γ. This
will require being able to make appropriate choices of subgroups based only on
Γ—in fact, the special subgroups will do.

Lemma 3.1. If WΓ is a right-angled Coxeter group and Λ is a full subgraph of
Γ, then the special subgroup WΛ is quasi-isometrically embedded in WΓ.

The proof relies on ideas found in [Dav07], and is beyond the scope of this
paper.

Lemma 3.2. Two special subgroups WΛ1
and WΛ2

of WΓ have infinite inter-
section when Λ1 ∩ Λ2 is not complete.

5

Proof. Note that if the intersection Λ1 ∩Λ2 is not a complete graph, then there
exist v1 and v2 vertices in Λ1 ∩ Λ2 that are not joined by an edge. If Λ3 is the
subgraph induced by {v1, v2}, then this means WΛ3

∼= Z/2Z ∗ Z/2Z, which is
infinite and a (special) subgroup of both WΛ1

and WΛ2
.

We also have the following result for the base case, when a group is thick of
order zero, for which a little terminology will be useful.

Definition. A graph Γ with vertex set V is a join of two full subgraphs Λ1

and Λ2 (written Γ = Λ1 ? Λ2) if every vertex of Γ belongs to exactly one of the
two subgraphs, every vertex v ∈ Λ1 is connected to every vertex of Λ2, and vice
versa.

Definition. A graph is said to be complete if every pair of (distinct) vertices
is connected by an edge.

Proposition 3.3. If Γ has no triangles, WΓ is thick of order zero ⇐⇒ Γ is
the join of two graphs that are not complete.

Proof. We’ll show the only if direction first. Suppose Γ = Λ1 ? Λ2, where Λ1

and Λ2 are not complete. We want to show that WΓ can be written as a direct
product of infinite groups. Note that WΛ1

and WΛ2
are infinite: because they

are not complete as graphs, they contain at least one pair of generators that do
not commute, so each admits an injective homomorphism from Z/2Z ∗ Z/2Z,
the free product of two copies of Z/2Z. As for the direct product, because every
vertex of Λ1 is connected to each vertex of Λ2, each generator of WΛ1 commutes
with every generator of WΛ2 and vice versa. But this is exactly what is required
for us to write WΓ = WΛ1

×WΛ2
.

Now suppose WΓ = H1 × H2, where H1 and H2 are infinite subgroups of
WΓ. Thus every generator of WΓ is contained in either H1 or H2, and each
subgroup must contain at least one pair that does not commute (otherwise the
subgroup would be finite). Let Λ1 be the subgraph induced from the generators
contained in H1, Λ2 from H2. Because WΓ = H1 × H2, each vertex in Λ1 is
connected to every vertex in Λ2 and vice versa. No vertex can be in both Λ1

and Λ2, otherwise Γ must contain a triangle. Thus Γ = Λ1 ? Λ2.

In the case where Γ is not triangle free, we must allow the possibility that
that Γ = Λ1 ? Λ2 ? K, where K is a complete graph.

Corollary 3.4. WK2,2 , where K2,2 is the square graph, is thick of order zero.

Indeed, K2,2 is the smallest graph whose right-angled Coxeter group is thick.

Corollary 3.5. WΓ is thick of order 1 ⇐⇒ WΓ is thick of order at most 1 and
Γ cannot be written as Λ1 ? Λ2 ? K, where Λ1 and Λ2 are not complete graphs
and K is a complete graph (possibly on zero vertices).

6

Figure 2: K2,2

Since K2,2 is the smallest graph whose right-angled Cox-
eter group is thick, and thickness is built up in stages, we
might expect that the graph of a thick group can be built up
out of squares somehow. There are two affirmative results,
first for order 1 thickness from Dani and Thomas, and more
generally for all right-angled Coxeter groups from Behrstock,
Hagen and Sisto:

Theorem 3.6. (Dani-Thomas) If Γ is triangle free, WΓ is thick of order 1
⇐⇒ Γ is not a join and is CFS. [DT15]

The condition CFS is on the square graph of Γ, denoted Γ4, built from Γ
by taking as vertices all induced subgraphs of Γ that are isomorphic to K2,2,
with an edge between two vertices if their corresponding squares share exactly
three vertices in Γ. A graph Γ is CFS if a connected component of Γ4 has
full support—that is, if every vertex in Γ is contained in one of the squares
corresponding to the vertices of this component. It is important to note that
Dani and Thomas couch their arguments in the language of divergence, not
thickness.

Theorem 3.7. (Behrstock-Hagen-Sisto) WΓ is thick ⇐⇒ Γ ∈ T , where
T is the smallest set of graphs satisfying the following conditions:

(1) K2,2 ∈ T

(2) If Γ ∈ T and Λ is an induced subgraph of Γ that is not complete, then
the graph Γ′ produced by adding a new vertex v and edges between v and
every vertex in Λ is in T . We say Γ′ is produced by coning off Λ in Γ.

(3) If Γ1,Γ2 ∈ T and Λ is a graph that is not complete and isomorphic to a
full subgraph of both Γ1 and Γ2, then the graph Γ produced by taking the
disjoint union Γ1 t Γ2, identifying the copies of Λ, and possibly adding
any number of edges, where each of the added edges is between a vertex
in Γ1 \ Λ and one in Γ2 \ Λ. We say that Γ is a thick union of Γ1 and
Γ2. [BHS13]

Although this characterisation allows us to tell whether a graph is thick or
not, it says nothing about the graph’s order of thickness. Dani and Thomas
also exhibit the family of graphs Γk for k ∈ N. The first few terms of Γk are
given in fig. 3.

Figure 3: Γk for k = 1, 2, 3, 4 [DT15]

7

Theorem 3.8. (Dani-Thomas) WΓk has divergence divWΓk
' rk.

i.e. WΓk is thick of order k−1 for each k, showing that right-angled Coxeter
groups exhibit thickness of all orders.

4 Algorithmic Estimation of Thickness

Now we develop tools to algorithmically determine not only whether a graph
corresponds to a thick right-angled Coxeter group or not, but also to give an
upper bound on the order of thickness. To start, we will show that taking thick
unions and coning to complete graphs increase the order of thickness by at most
1.

Lemma 4.1. (Thick Unions) Let Γ be formed by taking a thick union of Γ1

and Γ2, and suppose WΓ1
and WΓ2

are thick of order at most n− 1. Then WΓ

is thick of order at most n.

Proof. I claim that H = {WΓ1
,WΓ2

} is the collection of subgroups that demon-
strates that WΓ is thick of order at most n. To show this, we need to establish
that (i) Each H ∈ H is quasi-isometrically embedded in W , (ii) the subgroup〈⋃

H∈HH
〉

has finite index in WΓ, (iii) for each pair H,H ′ ∈ H there is a finite
sequence H = H1, . . . ,Hk = H ′ with Hi ∩ Hi+1 infinite for 1 ≤ i < k, and
(iv) each H is thick of order at most n− 1.

(i) In the definition of the thick union, the only edges we add are between
vertices not both in Γi for i = 1, 2, so the induced subgraph on the vertices
of Γ1 in Γ will just be Γ1, and similarly for Γ2—i.e. WΓ1

and WΓ2
are

special subgroups, and are thus quasi-isometrically embedded.

(ii) Because every vertex of Γ is contained in some Γi,
〈⋃

H∈HH
〉

= WΓ.

(iii) Because Λ = Γ1∩Γ2 is assumed to be not complete, WΓ1 ∩WΓ2 is infinite.

(iv) By assumption each WΓi is thick of order at most n− 1.

Lemma 4.2. (Coning to Complete Graphs) Suppose WΓ is thick of order
n− 1, Λ is a full subgraph of Γ that is not complete and let Ck be the complete
graph on k vertices. Then if Γ′ is the graph obtained by coning to Ck over Λ
(i.e. by connecting each vertex of Ck to every vertex in Λ)), then WΓ′ is thick
of order at most n.

Proof. We prove this by induction on k. First we’ll show it for k = 1, where if a
is the generator corresponding to the vertex of C1, I claim thatH = {WΓ, aWΓa}
is the desired collection of subgroups.

WΓ is a special subgroup of WΓ′ , and aWΓa is quasi-isometric to WΓ via
conjugation by a, so it is also quasi-isometrically embedded in WΓ′ . Because
thickness is invariant under quasi-isometry, WΓ and aWΓa are thick of order
n − 1. Because a commutes with every generator corresponding to a vertex in

8

Λ, aWΛa = WΛ, so WΛ ⊂WΓ ∩ aWΓa, which is infinite by our assumption that
Λ is not complete.

So it only remains to show that 〈WΓ ∪ aWΓa〉 has finite index in W ′Γ. We
define a homomorphism ϕ : WΓ′ → Z/2Z by

ϕ(WΓ) = 0, ϕ(a) = 1.

Clearly Kerϕ is the set of all words ω ∈ WΓ′ where a appears an even number
of times in ω. Since this is true of each H ∈ H, we must have 〈

⋃
H〉 ⊂ Kerϕ.

All that remains is the reverse inclusion. So suppose ω is a word in WΓ′ where
a appears an even number of times. We build ω up as a product of words, each
in some H ∈ H. If ω ∈WΓ, were done, so we may assume a occurs in ω. As an
element of WΓ′ , ω is formed as a product of generators in WΓ as well as a, i.e.

ω = γ0 · a · γ1 · a · · · a · γ`

where γi ∈WΓ, (and with possibly γ0 or γ` = 1). Since a occurs an even number
of times, we can group these as

ω = γ0 · (aγ1a) · · · (aγ`−1a) · γ`

thus ω ∈ 〈
⋃
H〉. Therefore 〈

⋃
H〉 has finite index in WΓ′ .

For the inductive step, assume that coning Γ to Ck yields a graph Γ′ such
that WΓ′ is thick of order n, and that a choice H of subgroups of WΓ′ that
demonstrate this is H = {ωWΓω : ω ∈ WCk}, and that

〈⋃
H∈HH

〉
= Kerϕ for

a homomorphism ϕ : WΓ′ →
⊕k

i=1 Z/2Z defined by

ϕ(WΓ) = 0, ϕ(xi) = (0, . . . , 1, . . . , 0)

where the 1 is in the ith coordinate, and xi is the ith generator of WCk . (Note
that this is the case for k = 1.) Then we want to show that coning to Ck+1 also
yields a graph that is thick of order n via a collection of subgroups that satisfies
these hypotheses.

Now we’ll write WΓ′ for the graph obtained by coning Γ to Ck+1. Take
H to be a collection of subgroups that satisfy the assumptions of the previous
paragraph for coning in k of the vertices in Ck+1 and let j be the generator of
WΓ′ corresponding to the remaining vertex. We’ll consider H′ = H ∪ {jHj :
H ∈ H}. By assumption, each H ∈ H is quasi-isometrically embedded in the
full subgraph of WΓ′ obtained by deleting the vertex corresponding to j, so
since the composition of quasi-isometric embeddings is again one, the H are
quasi-isometrically embedded in WΓ′ , and once again conjugation by j shows
that the remaining subgroups are as well, which also shows each H ∈ H′ is thick
of order at most n − 1. Since WCk+1

is abelian, word ω ∈ WCk+1
containing j

can be built from those that do not by multiplying by j on the left—i.e. H′ is
of the form of the previous paragraph.

Since by assumption we can find a finite sequences between any two elements
of H with infinite intersection, we only need to show that we can “connect” the

9

remaining subgroups to H. In fact, given jHj ∈ H′ \ H, we know that WΛ is
contained in H ∩ jHj, since H and jHj are both conjugates of WΓ by words in
generators that all commute with elements of WΛ, so the intersection is infinite
since WΛ is. Since all the remaining subgroups are of this form, we can find
always find a finite sequence connecting any two elements of H′.

All that remains is to show
〈⋃

H∈HH
〉

= Kerϕ, for ϕ : WΓ′ →
⊕k+1

i=1 Z/2Z
as defined above. Kerϕ is clearly the set of words ω ∈ WΓ′ such that each of
the generators in WCk+1

appear an even number of times in ω. Since this is
true for each element of H ∈ H′,

〈⋃
H∈HH

〉
⊂ Kerϕ. So assume ω ∈ Kerϕ.

As above, we write
ω = γ0 · x1 · γ1 · x2 · γ2 · · ·x` · γ`

where γi ∈ WΓ, and each xi is a generator of WCk+1
. I claim that ω can be

expressed as

γ0 · (x1γ1x1) · (x1x2γ2x2x1) · · · (x1x2 · · ·x`−1γ`−1x`−1 · · ·x2x1) · γ`

Each term in the product is (after reducing) clearly an element of ωWΓω for some
ω ∈ WCγ , so it only remains to check that x`−1 · · ·x2x1 = x` ⇐⇒ x1 · · ·x`
represents the identity. But since by assumption each generator of Ck+1 appears
an even number of times in the product x1 · · ·x`, and the generators all commute
and have order 2, this is indeed the case, so ω ∈

〈⋃
H∈HH

〉
.

These two lemmas provide the justification for the following theorem which
gives two algorithms for estimating the order of thickness of a right-angled
Coxeter group. Note first that if Γ is not connected, then WΓ is not thick,
because K2,2 is connected and both transformations for creating graphs in T
yield connected graphs.

Theorem 4.3. Let Γ be a finite simplicial graph, and let M be the collection
of maximal thick join subgraphs of Γ (i.e. each such subgraph is thick of order
zero). Let t = 0. Then if either of the following algorithms returns a number
in {0} ∪ N, WΓ is thick of order at most n. If either algorithm fails, WΓ is not
thick.

Alternate unions and cones

(1) Check whether Γ ∈M. If so, return t.

(2) Otherwise, take unions in M so that each M ∈ M is thick of order at
most t+ 1

(3) Check whether M changed; if so, increment: t = t + 1. Check again
whether Γ ∈M and return t if so.

(4) If not, cone in the biggest possible complete subgraph of Γ to each M ∈M
so that each M ∈M is thick of order at most t+ 1. (If there are multiple
choices for biggest complete subgraph, pick an arbitrary one.)

10

(5) Check whether M changed; if so, increment: t = t + 1 and repeat from
step (1). If M is the same as it was the last time we performed step (1),
report failure.

Prefer unions

(1) Check whether Γ ∈M. If so, return t.

(2) Take unions in M so that each M ∈M is thick of order at most t+ 1.

(3) Check whether M changed; if so, increment: t = t + 1 and repeat from
step (1).

(4) If not, cone the biggest possible complete subgraph of Γ to each M ∈ M
so that each M ∈M is thick of order at most t+ 1.

(5) Check whether M changed; if so, increment: t = t + 1 and repeat from
step (1). If not, report failure.

We see an immediate advantage of beginning by computing join subgraphs:

Corollary 4.4. If either algorithm returns 0 or 1, WΓ is thick of order 0 or 1,
respectively.

Proof. Since we begin each algorithm with the collection of maximal join sub-
graphs, if either algorithm returns 1, WΓ is thick of order at most 1 and Γ is
not a thick join, so WΓ is thick of order 1. Likewise, if either algorithm returns
0, WΓ is a thick join, and thus thick of order zero.

However, for orders other than 0 and 1, both algorithms indeed only prove
that the right-angled Coxeter group corresponding to a given graph is thick of
order at most n—there are examples of graphs for which one or both algorithms
return 2, but the graph in question is CFS. Nevertheless, both algorithms give
the correct answer for each graph in the Dani-Thomas family, and otherwise
appear to be very accurate. Both algorithms were implemented in Haskell, and
the code with light comments is attached in an appendix. Because the inverse
graph (the graph with the same vertices and an edge between two vertices if and
only if there is none in the original graph) of a join is disconnected, computing
maximal join subgraphs is the same as computing separating sets of vertices on
the graph’s inverse, for which we use the algorithm discussed in [BBC99].

5 Applications of Algorithms to Random Graphs

A random graph in the Erdös-Rényi G(n, p) model [ER59] has n vertices, and
pair of distinct vertices are joined by an edge with probability p. By running
our algorithms on graphs generated in this way, we can obtain a sense of the
thickness of a random right-angled Coxeter group. In particular, this also allows
us to consider the asymptotic behavior of right-angled Coxeter groups.

11

Definition. An event En,p defined on random graphs in the G(n, p) model is
said to hold asymptotically almost surely (a.a.s.) if the probability that E
occurs, P (En,p)→ 1 as n→∞.

As shown in [BHS13] with the algorithm introduced there, for any constant
probability 0 < p < 1, a.a.s. a random right-angled Coxeter group will be thick
(of some order). Because the algorithm runs very quickly for sufficiently small
graphs, producing a sample set of random graphs for a given probability and
number of vertices and varying each can provide insight into the thickness of
small random graphs with an eye to giving a bound on the order of thickness.

As it happens, even for graphs with fewer than 100 vertices, random graphs
at certain densities exhibit a general trend: at first most graphs are not thick,
with the algorithms returning large orders of thickness on some graphs. As
the number of vertices increases, so does the proportion of thick graphs, and
the order of thickness decreases until almost all graphs are thick of order 1.
As this begins to happen, the computation time increases, roughly because the
algorithm for enumerating maximal join subgraphs is linear in the total number
of such joins, and a graph that is thick of order 1 will often have many such join
subgraphs. This trend is illustrated in fig. 4, which graphs thresholds for order
1 thickness as a function of probability density.

Figure 4: Thresholds for order 1 thickness as probability density varies

Data from running the algorithm on a cluster also corroborates this evidence
for graphs between 100 and 200 vertices (see fig. 6). In fact, for fixed density,
the order of thickness appears to behave like e−x as a function of the number
of vertices, as shown in fig. 5.

All of this leads us to conjecture that, at least for constant probability density
0 < p < 1, a random right-angled Coxeter group is a.a.s. thick of order 1. This

12

conjecture has been proven by Behrstock, Hagen and Susse, but a discussion of
the proof is beyond the scope of this paper.

Figure 5: Thickness decreasing as e−x in the number of vertices

Figure 6: Mean thickness against probability density and number of vertices

6 Appendix: Algorithm Code

The code reproduced here attempts some optimization for faster computations,
including an option to only perform a few steps of join generation before at-
tempting to generate the graph from unions and cones. Using this option has
the obvious downside of potentially increasing the overestimation of the order of
thickness, and the non-obvious downside of slowing the computation of graphs
that are not thick of any order.

13

The code is split across several files: “ListOps” contains helper functions for
dealing with Haskell lists, “Graph” contains the definitions for graph objects,
“Joins” contains the functions for computing join subgraphs of a graph, “Thick-
ness” contains the code to implement the algorithms, and “tea” is the main file,
from which the executable “tea” (for “thickness estimation algorithm”) is cre-
ated.

ListOps.hs:

module ListOps (unique , uniquely , (~+~) , (~=~), (~-~), (~<~)) where

-- (~+~) adds two lists.

-- Elements from the right list will only be added if they ’re not already

-- contained in the left list. The function is defined recursively on the right list.

-- (calling the function returns a new list and leaves the original lists unchanged)

(~+~) :: (Eq a) => [a] -> [a] -> [a]

(~+~) xs [] = xs

(~+~) xs (y:ys)

| y ‘elem ‘ xs = xs ~+~ ys

| otherwise = (y:xs) ~+~ ys

-- (~-~) subtracts two lists.

-- Elements will be removed from the left list if they ’re in the right list.

(~-~) :: (Eq a) => [a] -> [a] -> [a]

(~-~) [] ys = []

(~-~) xs ys = [x | x <- xs, not (x ‘elem ‘ ys)]

-- (~=~) tests whether lists are equal or equivalent.

-- Under this function , lists are the same if they each contain the same elements.

-- Note that a list with duplicates will be equivalent to a list without.

(~=~) :: (Eq a) => [a] -> [a] -> Bool

(~=~) xs ys = all (flip elem ys) xs && all (flip elem xs) ys

-- (~<~) tests whether a list is a subset of a list

(~<~) :: (Eq a) => [a] -> [a] -> Bool

(~<~) [] ys = True

(~<~) (x:xs) ys

| x ‘elem ‘ ys = xs ~<~ ys

| otherwise = False

-- Calls a helper function to build a list of unique elements

unique :: (Eq a) => [a] -> [a]

unique xs = uniq xs []

-- Recursively builds a list without duplicates.

-- The argument on the right is used to build the new list

uniq :: (Eq a) => [a] -> [a] -> [a]

uniq [] ys = ys

uniq (x:xs) ys

| any (x ==) ys = uniq xs ys

| otherwise = uniq xs (x:ys)

-- A version of the above function but for lists of lists

-- where list equivalence is used instead of equality

uniqL :: (Eq a) => [[a]] -> [[a]] -> [[a]]

uniqL [] ys = ys

uniqL (x:xs) ys

| any (x ~=~) ys = uniqL xs ys

| otherwise = uniqL xs (x:ys)

-- Calls the helper function for the list of lists

uniquely :: (Eq a) => [[a]] -> [[a]]

uniquely xs = uniqL xs []

Graph.hs

module Graph (Vertex , Edge , Graph , (~:), edge , edges , vertices , makeGraph , invert ,

WithGraph , ksa , toGraph) where

import Data.List (intersect , sort)

import ListOps

import Control.DeepSeq

import Control.Monad.Reader

import Control.Monad.Identity

import Control.Monad.State

-- Vertices --

type Vertex = Int

-- Edges --

newtype Edge = Edge { getEdge :: (Vertex ,Vertex) }

edge :: (Vertex ,Vertex) -> Edge

14

edge (a,b) = Edge (a,b)

instance Eq Edge where

Edge (a,b) == Edge (x,y)

| (a,b) == (x,y) = True

| (b,a) == (x,y) = True

| otherwise = False

instance Show Edge where

show (Edge (a,b))

| a < b = show (a,b)

| otherwise = show (b,a)

instance NFData Edge where

rnf (Edge (a,b)) = rnf (a,b)

to = snd . getEdge

from = fst . getEdge

-- Graph definition --

newtype Graph = HiddenConstructor { getGraph :: ([Vertex],[Edge]) }

vertices = fst . getGraph

edges = snd . getGraph

instance Eq Graph where

g1 == g2 = (vertices g1 ~=~ vertices g2) && (edges g1 ~=~ edges g2)

instance Show Graph where

show graph = "graph with vertices: " ++ (show . sort $ vertices graph)

++ " and edges: " ++ (show $ edges graph)

instance NFData Graph where

rnf = rnf . getGraph

makeGraph :: [Vertex] -> [Edge] -> Graph

makeGraph vs es = HiddenConstructor (vs ,es ’)

where es ’ = [e | e <- unique es , to e /= from e, to e ‘elem ‘ vs, from e ‘elem ‘ vs]

-- Graph transformations --

-- inducing a graph from a subset of its vertices

(~:) :: Graph -> [Vertex] -> Graph

graph ~: vs = makeGraph inducedVertices inducedEdges

where

inducedVertices = [v | v <- vs, v ‘elem ‘ vertices graph]

inducedEdges = [e | e <- edges graph , from e ‘elem ‘ inducedVertices , to e ‘elem ‘ inducedVertices]

invert :: Graph -> Graph

invert graph = let

vs = vertices graph

es = edges graph

in makeGraph vs [edge(v,w) | v <- vs, w <- vs, v < w, not $ edge(v,w) ‘elem ‘ es]

-- WithGraph monad: allows functions to ’carry around ’ a graph to reference --

type WithGraph a = ReaderT Graph Identity a

-- ksa also allows functions in other files to ’carry around ’ the graph ’s inverse --

ksa :: (Monad m) => ReaderT Graph m Graph

ksa = do

graph <- ask

return $ invert graph

-- toGraph takes a list of vertices and returns the induced subgraph on those vertices

-- note that it returns the subgraph with reference to the *original* graph --

toGraph :: (Monad m) => [Vertex] -> ReaderT Graph m Graph

toGraph vs = do

graph <- ask

return (graph ~: vs)

Joins.hs
module Joins (start , next , allJ , joinComponents , JoinState , isConnected , paths , cliques) where

import Graph

import ListOps

import Control.Parallel.Strategies

import Control.Monad.State

import Control.Monad.Reader

import Control.Monad.Identity

-- checks whether the graph in question is connected ’monadically ’

-- i.e. the return value also contains the context of the graph in question --

isConnected :: WithGraph Bool

isConnected = do

graph <- ask

if vertices graph == []

then return True

15

else return . (~=~ vertices graph) =<< component =<< return . head . vertices =<< return

graph

-- returns the neighbours of a vertex --

n :: Vertex -> WithGraph [Vertex]

n vertex = do

graph <- ask

return $ [v | v <- vertices graph , edge(v,vertex) ‘elem ‘ edges graph]

-- the non -monadic version of ’n’ --

ng :: Graph -> Vertex -> [Vertex]

ng graph vertex = [v | v <- vertices graph , edge(v,vertex) ‘elem ‘ edges graph]

-- returns the neighbours of a list of vertices , with the convention that the returned list

-- contains no members of the reference list --

neighbours :: [Vertex] -> WithGraph [Vertex]

neighbours vs = do

graph <- ask

return $ [v | v <- vertices graph , not (v ‘elem ‘ vs),

any (‘elem ‘ edges graph) [edge(v,w) | w <- vs]]

-- takes a graph and returns a list of its join components as graphs

joinComponents :: Graph -> [Graph]

joinComponents graph = map (graph ~:) . paths . invert $ graph

-- given a graph , returns a list of its path components , where each path component is a list of vertices

paths :: Graph -> [[Vertex]]

paths graph = uniquely . parMap rpar (\v -> runReader (component v) graph) . vertices $ graph

-- given a vertex , returns the path component containing that vertex (with context) --

component :: Vertex -> WithGraph [Vertex]

component v = pathshelper [v]

-- recursively calls neighbours to do build up the path component containing a set of vertices

pathshelper :: [Vertex] -> WithGraph [Vertex]

pathshelper vs = do

toAdd <- neighbours vs

if toAdd == [] then return vs else pathshelper (vs ++ toAdd)

-- (rather slowly) returns the totally disconnected subraphs of a graph recursively.

-- useful in the clique -finding algorithm --

disconnect :: Graph -> [[Vertex]] -> [[Vertex]]

disconnect graph vss

| vertices graph == [] = vss

| edges graph == [] = vss ++ [vertices graph]

| otherwise = vss ++ (disconnect one vss) ++ (disconnect two vss)

where

v = head [v | v <- vertices graph , any (‘elem ‘ edges graph) [edge (v,w) | w <- vertices

graph]]

one = graph ~: (vertices graph ~-~ [v])

two = graph ~: (vertices graph ~-~ (runReader (n v) graph))

-- the cliques of a graph is just the set of completely disconnected subgraphs of the inverse graph --

cliques :: WithGraph [[Vertex]]

cliques = do

graph <- ask

let cs = uniquely $ disconnect (invert graph) []

return $ filter (\ c -> not $ any (c ~<~) (cs ~-~ [c])) cs

type JoinState = ([Graph],[Graph])

-- Allows the program to carry the ’context ’ of being partly finished computing the join subgraphs of a

graph --

type WithJoin a = ReaderT Graph (StateT JoinState Identity) a

-- given a set of vertices , returns the path components of the graph with these vertices removed.

scriptC :: [Vertex] -> WithGraph [[Vertex]]

scriptC vs = ask >>= toGraph . (~-~ vs) . vertices >>= return . paths

-- starts the join -generation algorithm , generating one join for every vertex in the graph

start :: WithJoin [Graph]

start = do

invgraph <- ksa

let joins = withStrategy (parList rpar) .

runReader (ask >>= return . vertices >>= mapM (\ v -> return (v : (ng invgraph v))

>>= scriptC >>= mapM (neighbours >=> toGraph)) >>= return . foldl (~+~) []) $ invgraph

put (joins ,[])

graph <- ask

mapM (toGraph . (vertices graph ~-~) . vertices) joins

>>= return . withStrategy (parList $ rparWith rdeepseq)

-- runs the join algorithm until it ’s completed

allJ :: WithJoin [Graph]

allJ = do

start

helper

(seps ,seen) <- get

graph <- ask

mapM (toGraph . (vertices graph ~-~) . vertices) seps

>>= return . withStrategy (parList $ rparWith rdeepseq)

16

-- recursively generates more joins (a la ’next ’) until there aren ’t any more to be found

helper :: WithJoin ()

helper = do

(seps ,seen) <- get

invgraph <- ksa

let notChecked = seps ~-~ seen

if notChecked == [] then return () else do

let newSeps = foldl (~+~) seps . withStrategy (parList rpar) . map (\g ->

runReader ((return $ vertices g) >>=

mapM (mapM (toGraph <=< neighbours) <=< scriptC . (vertices g ~+~) . ng

invgraph)

>>= return . withStrategy (parList rpar) >>= return . foldl (~+~) [])

invgraph) $ notChecked

put (newSeps , seps)

helper

-- for every join that hasn ’t already ’been checked ,’ generates a new join by

-- swapping out each vertex of the join componenent for its neighbours , roughly.

next :: WithJoin [Graph]

next = do

(seps ,seen) <- get

invgraph <- ksa

let notChecked = seps ~-~ seen

if notChecked == [] then return [] else do

let newSeps = foldl (~+~) seps . withStrategy (parList rpar) . map (\g ->

runReader ((return $ vertices g) >>=

mapM (mapM (toGraph <=< neighbours) <=< scriptC . (vertices g ~+~) . ng

invgraph)

>>= return . withStrategy (parList rpar) >>= return . foldl (~+~) [])

invgraph) $ notChecked

put (newSeps ,seps)

graph <- ask

mapM (toGraph . (vertices graph ~-~) . vertices) (newSeps ~-~ seps)

>>= return . withStrategy (parList $ rparWith rdeepseq)

Thickness.hs
module Thickness (execThickness , Flag (Short ,Long ,Extra)) where

import Graph

import Joins

import ListOps

import Control.Monad.State

import Control.Monad.Writer

import Control.Monad.Identity

import Control.Monad.Reader

import Control.Parallel.Strategies

import Control.Parallel (par ,pseq)

import Control.DeepSeq

-- in the end our monads make the actual algorithm function really short , but also pretty difficult to read.

-- roughly we have a lot of extra contexts to our computations: a running log of computations

-- (which in the more verbose modes gets us real -time updates of progress when significant things happen),

-- a graph that we’re processing , a flag that tells whether we want short results , long results , or extra

long ,

-- a list of blocks as well as a variable that tells us whether we took unions or cones last

-- AND we sometimes also have the join state from earlier.

-- After all is said and done , the execFunction is all about plugging in the initial values and then

-- just letting the result fall out.

type Results a = WriterT [String] (ReaderT (Graph ,Flag) (StateT ([Graph],Maybe Bool) Identity)) a

runResults True flag n graph = runIdentity (runStateT (runReaderT (runWriterT $ thickness algorithm ’ n) (

graph ,flag)) ([], Nothing))

runResults False flag n graph = runIdentity (runStateT (runReaderT (runWriterT $ thickness algorithm n) (

graph ,flag)) ([], Nothing))

execThickness :: Bool -> Flag -> Int -> Graph -> [String]

execThickness b f n g = if log == [] then (maybe "n/a" show result):[] else log ++ ("Final result: " ++ (

maybe "n/a" show result)):[]

where (result ,log) = fst $ runResults b f n g

data Flag = Short | Long | Extra

instance Eq Flag where

Short == Short = True

Long == Long = True

Extra == Extra = True

_ == _ = False

-- these functions more or less ’lift ’ the join generation functions into the contexts we ’re talking about

startM :: Results ([Graph],JoinState)

startM = do

(graph ,flag) <- ask

case flag of

Short -> return ()

Long -> tell ["Starting new graph ..."]

Extra -> tell ["Starting new graph ...","Generating first batch of blocks ..."]

return . runIdentity $ runStateT (runReaderT (start) graph) ([] ,[])

17

-- remember that almost no extra computation is done if we call next more times than necessary

nextM :: JoinState -> Results ([Graph],JoinState)

nextM gen = do

(graph ,flag) <- ask

if flag == Extra then tell ["Generating next batch of blocks ..."] else return ()

return . runIdentity $ runStateT (runReaderT (next) graph) gen

allM :: Results ([Graph],JoinState)

allM = do

(graph ,flag) <- ask

case flag of

Short -> return ()

Long -> tell ["Starting new graph ..."]

Extra -> tell ["Starting new graph ...","Generating all blocks ..."]

return . runIdentity $ runStateT (runReaderT (allJ) graph) ([] ,[])

-- filters the results of join generation to be just those that are thick joins

orderZero :: ([Graph],JoinState) -> ([Graph],JoinState)

orderZero (blocks ,j) = (withStrategy (parList rpar) . filter ((2<=) . length . filter notComplete .

joinComponents) $ blocks ,j)

-- a little helper function to sequence calls of nextM

(>~>) :: (JoinState -> Results ([Graph],JoinState)) -> (JoinState -> Results ([Graph],JoinState)) ->

JoinState -> Results ([Graph],JoinState)

a >~> b = \j -> do

(blocks2 ,j2) <- a j

(blocks3 ,j3) <- b j2

return (blocks2 ++ blocks3 ‘using ‘ (parList rpar),j3)

-- given a number of steps of join generation and a flavour of algorithm ,

-- gives us the thickness of a graph by calling refine --

thickness :: (Int -> Results (Maybe Int)) -> Int -> Results (Maybe Int)

thickness function n = do

(graph ,flag) <- ask

if runReader (isConnected) graph == False

then do

if flag == Extra then tell ["Graph is disconnected."] else return ()

return Nothing

else do

if n == -1

then allM >>= return . orderZero >>= refine function

else do

let m = max (n-1) 0

if m == 0

then startM >>= return . orderZero >>= refine function

else return ([] ,[]) >>= foldl (>~>) (_ -> startM) (

replicate m nextM)

>>= return . orderZero >>= refine function

-- if it’s possible to generate more joins and try again after the algorithm fails to find thickness

-- refine is the function that will do that. It also reports final success or failure

-- (which is why we call it even if we already generated all joins)

refine :: (Int -> Results (Maybe Int)) -> ([Graph],JoinState) -> Results (Maybe Int)

refine function (blocks ,gen) = do

(_,flag) <- ask

put (blocks ,Nothing)

case flag of

Short -> return ()

Long -> do

if length blocks == 1

then tell $ ["At thickness 0, there is 1 block."]

else tell $ ("At thickness 0, there are " ++ (show $ length blocks) ++ "

blocks."):[]

Extra -> do

if length blocks == 1

then tell $ ("At thickness 0, there is 1 block: " ++ show blocks ++ "."):[]

else tell $ ("At thickness 0, there are " ++ (show $ length blocks) ++ "

blocks: "

++ show blocks ++ "."):[]

test <- function 0

if test /= Nothing

then do

if flag == Extra then tell ["Success!"] else return ()

return test

else do

if flag == Extra then tell ["Failure!"] else return ()

(nextblocks ,nextgen) <- return . orderZero =<< nextM gen

if nextblocks == []

then do

case flag of

Short -> return ()

Long -> tell ["Failure!"]

Extra -> tell ["No new blocks to try."]

return Nothing

else do

case flag of

Short -> return ()

Long -> tell ["Failed; trying again ..."]

Extra -> tell ["Trying again ..."]

refine function $ orderZero (blocks ~+~ nextblocks ,nextgen)

18

-- the ’alternate unions and cones ’ algorithm

algorithm :: Int -> Results (Maybe Int)

algorithm n = do

(blocks ,last) <- get

if blocks == [] then return Nothing else do

(graph ,_) <- ask

if graph ‘elem ‘ blocks then return $ Just n else do

case last of

Just True -> do

m <- doCones n

if n == m

then do

o <- doUnions n

if o == n then return Nothing else algorithm o

else algorithm m

_ -> do

m <- doUnions n

if n == m

then do

o <- doCones n

if o == n then return Nothing else algorithm o

else algorithm m

-- the ’prefer unions ’ algorithm

algorithm ’ :: Int -> Results (Maybe Int)

algorithm ’ n = do

(blocks ,_) <- get

if blocks == [] then return Nothing else do

(graph ,_) <- ask

if graph ‘elem ‘ blocks then return $ Just n else do

m <- doUnions n

if m == n

then do

o <- doCones n

if n == o then return Nothing else algorithm ’ o

else algorithm m

-- doCones adds all the fancy bookkeepping to the coning step.

doCones :: Int -> Results Int

doCones n = do

(graph ,flag) <- ask

(blocks ,_) <- get

let newBlocks = parMap (rparWith rdeepseq) (\g -> runReader (cone g) graph) blocks

if newBlocks ~=~ blocks

then return n

else do

case flag of

Short -> return ()

Long -> do

if length newBlocks == 1

then tell $ ("At thickness " ++ show (n + 1) ++ ", after

coning , there is 1 block."):[]

else tell $ ("At thickness " ++ show (n + 1) ++ ", after

coning , there are "

++ show (length newBlocks) ++ " blocks."):[]

Extra -> do

if length newBlocks == 1

then tell $ ("At thickness " ++ show (n + 1) ++ ", after

coning , there is 1 block: "

++ show newBlocks ++ "."):[]

else tell $ ("At thickness " ++ show (n + 1) ++ ", after

coning , there are "

++ show (length newBlocks) ++ " blocks: " ++ show

newBlocks ++ "."):[]

put (newBlocks ,Just False)

return $ n+1

-- doUnions adds all the fancy bookkeeping to the unions step

doUnions :: Int -> Results Int

doUnions n = do

(graph ,flag) <- ask

(blocks ,_) <- get

let newBlocks = runReader (unionhelper blocks) graph

if newBlocks ~=~ blocks

then return n

else do

case flag of

Short -> return ()

Long -> do

if length newBlocks == 1

then tell $ ("At thickness " ++ show (n + 1) ++ ", after

taking unions , there is 1 block."):[]

else tell $ ("At thickness " ++ show (n + 1) ++ ", after

taking unions , there are "

++ show (length newBlocks) ++ " blocks."):[]

Extra -> do

if length newBlocks == 1

then tell $ ("At thickness " ++ show (n + 1) ++ ", after

taking unions , there is 1 block: "

++ show newBlocks ++ "."):[]

else tell $ ("At thickness " ++ show (n + 1) ++ ", after

19

taking unions , there are "

++ show (length newBlocks) ++ " blocks: " ++ show

newBlocks ++ "."):[]

put (newBlocks ,Just True)

return $ n+1

-- checks whether a graph is complete

notComplete :: Graph -> Bool

notComplete graph

| (length . vertices) graph <= 1 = False

| otherwise = any (not . (‘elem ‘ edges graph) . edge)

[(v,w) | v <- vertices graph , w <- vertices graph , v < w]

-- checks whether the intersection of two graphs is not a clique

overlap :: Graph -> Graph -> WithGraph Bool

overlap j k = do

graph <- ask

return . notComplete . (graph ~:) $ [v | v <- vertices j, v ‘elem ‘ (vertices k)]

-- the ’n’ function is useful here , but it doesn ’t make sense to have the Joins file export it.

n :: Graph -> Vertex -> [Vertex]

n graph vertex = [v | v <- vertices graph , edge(v,vertex) ‘elem ‘ edges graph]

-- asks whether two lists share an element

intersects :: (Eq a) => [a] -> [a] -> Bool

x ‘intersects ‘ y = any (‘elem ‘ x) y

-- cones (an arbitrary choice from) the largest possible clique to a given block

cone :: Graph -> WithGraph Graph

cone block = do

graph <- ask

let cs = runReader (cliques) . (graph ~:) . filter

(notComplete . (graph ~:) . (filter (‘elem ‘ vertices block)) . (n graph))

$ (vertices graph) ~-~ (vertices block)

if cs == []

then return block

else do

let m = maximum $ map length cs

toGraph . (vertices block ~+~) . head . filter ((m==) . length) $ cs

-- takes all possible thick unions that can be done ‘‘at once ’’

unionhelper :: [Graph] -> WithGraph [Graph]

unionhelper bs = do

graph <- ask

return . withStrategy (parList rpar)

=<< mapM (toGraph . foldl (~+~) [] . map vertices) =<< foldM (helper) [] bs

-- builds up a list of lists of blocks such that each sublist contains only blocks that can be joined in one

union step

helper :: [[Graph]] -> Graph -> WithGraph [[Graph]]

helper blocks block = do

graph <- ask

if any ((~=~ vertices graph) . foldl (~+~) [] . map vertices) blocks

then return blocks

else do

head <- return . withStrategy (parList $ rparWith rdeepseq) . foldl (~+~) [block] .

filter (any (\g -> runIdentity $ runReaderT (overlap block g) graph)) $

blocks

tail <- return . withStrategy (parList $ rparWith rdeepseq) =<<

filterM (return . not . any (\g -> runIdentity $ runReaderT (overlap block g

) graph)) blocks

return $ (force head ‘par ‘ force tail) ‘pseq ‘ (head : tail)

tea.hs
import Thickness

import ListOps

import Graph (Graph , edge , makeGraph , vertices)

import Control.Exception (catch)

import System.Environment (getArgs ,getProgName)

import System.Exit

import Data.Maybe (fromJust)

import Data.List ((\\))

usage = "\nSYNTAX :\ tInput one graph per line as\n\t\t[v1,v2 ,...,vn] [(v11 ,v12),v(21,v22) ,...,(vm1 ,vm2)]"

++ "\n\twith integers for labels .\n"

note = "\nNOTE:\ tDuplicates will be dropped from both lists ,\n\tas will edges with any end not contained in

the graph\n\tand edges from a vertex to itself .\n"

brief = " -e#|-h|u|l|x"

callstyle = brief ++ "\n\nGiven a list of vertices and a list of edges , prints an upper bound on the order

of thickness of the corresponding graph or \"n/a\" if the graph is not thick. The upper bound may not

be sharp.\n"

-- translates graphs from lines of text into variables

readGraph :: String -> Maybe Graph

readGraph input

| length w /= 2 = Nothing

20

| otherwise = Just $ makeGraph (read $ w!!0) (map (edge) . read $ w!!1)

where w = words input

-- boilerplate to process the commandline arguments.

-- Translates each flag into the proper flavour of the algorithm

process :: [String] -> String -> IO (Graph -> [String])

process args prog

| any (‘elem ‘ args) ["-h","--help","-?"] = do

putStr $ "USAGE :\t" ++ prog ++ callstyle ++ usage ++ note

exitFailure

| otherwise = do

(m,nargs) <- if filter ("-e"~<~) args == []

then return (-1,args)

else return (read . (\\ "-e") . head . filter ("-e"~<~) $ args ,filter (not . ("-e"

~<~)) args)

case nargs of

["-ux"] -> do

putStrLn "TEA started."

return $ execThickness True Extra m

["-u","-x"] -> do

putStrLn "TEA started."

return $ execThickness True Extra m

["-x","-u"] -> do

putStrLn "TEA started."

return $ execThickness True Extra m

["-ul"] -> do

putStrLn "TEA started."

return $ execThickness True Long m

["-u","-l"] -> do

putStrLn "TEA started."

return $ execThickness True Long m

["-l","-u"] -> do

putStrLn "TEA started."

return $ execThickness True Long m

["-x"] -> do

putStrLn "TEA started."

return $ execThickness False Extra m

["-l"] -> do

putStrLn "TEA started."

return $ execThickness False Long m

["-u"] -> return $ execThickness True Short m

[] -> return $ execThickness False Short m

_ -> do

putStr $ "USAGE :\t" ++ prog ++ callstyle ++ usage ++ note

exitFailure

-- first we process the command arguments , then we work on each line of the input

main = do

args <- getArgs

prog <- getProgName

function <- process args prog

contents <- getContents

mapM_ (toTry function) (lines contents) ‘catch ‘ handler

-- error handling: we crash with an error message

handler :: IOError -> IO ()

handler _ = putStr usage >> exitFailure

toTry :: (Graph -> [String]) -> String -> IO ()

toTry function contents = do

if readGraph contents == Nothing

then putStr usage >> exitFailure

else mapM_ (putStrLn) . function . fromJust . readGraph $ contents

References

[BBC99] Anne Berry, Jean-Paul Bordat, and Olivier Cogis, Generating all the
minimal separators of a graph, Graph-Theoretic Concepts in Com-
puter Science (Peter Widmayer, Gabriele Neyer, and Stephan Eiden-
benz, eds.), Lecture Notes in Computer Science, vol. 1665, Springer
Berlin Heidelberg, 1999, pp. 167–172 (English).

[BD] J. Behrstock and C. Druţu, Divergence, thick groups, and short con-
jugators, ArXiv:math.GT/0343013.

21

[BHS13] Jason Behrstock, Mark Hagen, and Alessandro Sisto, Thickness, rela-
tive hyperbolicity, and randomness in coxeter groups, arXiv:1312.4789
[math.GR], 2013.

[Dav07] Michael W. Davis, The geometry and topology of coxeter groups,
Princeton University Press, 2007.

[DT15] Pallavi Dani and Anne Thomas, Divergence in right-angled coxeter
groups, Transactions of the American Mathematical Society 367
(2015).

[ER59] P. Erdős and A. Rényi, On random graphs. I, Publ. Math. Debrecen
6 (1959), 290–297.

[Hat02] Allen Hatcher, Algebraic topology, Cambridge University Press, 2002.

[Mei08] John Meier, Groups, graphs and trees, Cambridge University Press,
2008.

22

