
CMP 338 (Fall 2012)
Exam 2, 11/15/12

Name (sign)
Name (print)
email

Question Score

1

2

3

4

5

6

7

8

9

Extra Credit

CMP 338 exam 2 11/15/12

Question 1

For each of the sorting methods below give a) its asymptotic worst-case cost
(in comparisons or array accesses, as appropriate) as a function of the size of
its input n, b) its average-case cost, c) the amount of extra space it requires,
and d) whether or not it is stable.

SelectionSort: sort(Sequence<Item> seq)

a) c)

b) d)

InsertionSort: sort(Item[] a)

a) c)

b) d)

MergeSort: sort(Item[] a)

a) c)

b) d)

QuickSort: sort(Item[] a)

a) c)

b) d)

HeapSort: sort(Sequence<Item> seq)

a) c)

b) d)

CMP 338 exam 2 11/15/12

Question 2

Complete the method below to perform an insertion sort of and array of
items.

@Override public void sort (Item[] a) {

}

CMP 338 exam 2 11/15/12

Question 3

Complete the methods below to perform a merge sort of an array of items.

/**
 * Sort a given region of an array.
 * Divide the region into two sub region.
 * Sort each sub-region recursively.
 * Merge the two sorted sub-regions.
 *
 * @param a is the array containing the region.
 * @param lo is the index of the first element of the region.
 * @param hi is the index of the last element of the region.
 */

private void sort (Item[] a, int lo, int hi) {

}
/**
 * Merge two sorted (adjacent) sub-regions of a region.
 * If items are equal, give preference to items from the first sub-region
 *
 * @param a is the array containing the region.
 * @param lo is the index of the first element of the first sub-region.
 * @param mid is the index of the last element of the first sub-region.
 * @param hi is the index of the last element of the second sub-region.
 */

private void merge (Item[] a, int lo, int mid, int hi){

}

CMP 338 exam 2 11/15/12

Question 4

What result would be returned by a call to the QuickSort method

 partition(a, 0, 15);

on the array a given below?

5 2 9 8 4 1 6 8 7 4 6 3 2 9 8 1

What would a look like after the call?

CMP 338 exam 2 11/15/12

Question 5

Complete the method below to implement quick sort. (Your code may call
any of the helper methods that we covered in class.)

@Override public void sort (Item[] a) {
 sort(a, 0, a.length-1);
}

/**
 * Sort a given region of an array.
 * Pick a random element of the region to use as a pivot.
 * Call partition to divide the region into sub-regions.
 * Find p such that
 * a[lo..p) <= pivot = a[p] <= a(p..hi]
 * Sort the regions (a[lo..p) and a(p..hi])recursively.
 *
 * @param a is the array containing the region.
 * @param lo is the index of the first element of the region.
 * @param hi is the index of the last element of the region.
 */

private void sort (Item[] a, int lo, int hi) {

}

CMP 338 exam 2 11/15/12

Question 7

Complete the method below to sort an array of small integers using counting sort.

 @Override public void sort (Item[] a) {
 Item[] aux = (Item[]) new Object[a.length];
 sort(a, 0, a.length-1, aux); }

/**
 * Sort an array of Item's with small non-negative Integer keys
 * (0 <= key(items[i]) < radix).
 * @param items the array to be sorted.
 * @param radix an upper bound on the keys.
 * @return an array telling where the buckets of each size end. */
public int[] sort (Item[] items, int lo, int hi, Item[] aux) {
 // tabulate the histogram of keys
 int[] count = new int[radix+1];

 for

 // count[i] is the number of Item's with key = i-1;
 // integrate the histogram
 count[0] = lo;

 for

 // count[i] is the number of items with key < i
 // move the items to their sorted position in a new array
 // count[i] is the position of the first item with key == i

 for

 // count[i] is the number of items with key <= i
 // copy the items back to the input array

 for

 return count;
}

CMP 338 exam 2 11/15/12

Question 8

Complete the following helper methods of TreeHeapPriorityQueue.

/** Reestablish the heap property
 * by comparing a given child with its parent.
 * @param n the given child. */

private void swim (Node n) {

}

/** Reestablish the heap property
 * by comparing a given parent with the lesser of its children.
 * @param p the given parent. */

private void sink (Node p) {

}

CMP 338 exam 2 11/15/12

Question 9
Complete the following methods of MSDRadixSort.

@Override public void sort (String[] a) {
 String[] aux = new String[a.length];
 sort(a, 0, a.length-1, 0, aux);
}

/** Sort a given region of Strings that share a common prefix.
 * @param a is the array containing the given region.
 * @param lo is the index of the first String in the region.
 * @param hi is the index of the last String in the region.
 * @param d is the length of the common prefix.
 * @param aux is a scratch array.
 */
protected void sort(String[] a, int lo, int hi, int d, String[] aux){

}

CMP 338 exam 2 11/15/12

Extra Credit
Describe, in a few, short, legible, English sentences, how to efficiently sort a
million thirty-two bit integers.

CMP 338 exam 2 11/15/12

Question 6
Given the initial heap structure depicted below. What would be the result of executing
the following priority queue operations? Draw the resulting heap.

add(17);
add(34);
removeMin();
add(23);

CMP 338 exam 2 11/15/12

